C.1 Pares de series básicas de Fourier en tiempo discreto

Tamaño: px
Comenzar la demostración a partir de la página:

Download "C.1 Pares de series básicas de Fourier en tiempo discreto"

Transcripción

1 impo Coiua ( Discra [ FS Prióica (, [] X X [] prioo DFS [ Ω x Ω y prioo Ω Discra ( o prióica (, X ( D X X ( Ω ( X ( X ( i prioo Coiua (,Ω o prióica (, Prióica (,Ω Frcucia C. Pars sris básicas Fourir impo iscro Domiio l impo Ω + ] ; prioo, M {, M < / 2 Domiio la frcucia X x Ω [ ] [ ] ; Ω Ω s (2M + 2 Ω s 2 pω, p, p ±, p ± 2, {, oro caso / 2, ± p, ± p ±, ± p ± 2, cos( pω {, oro caso / 2, p, p ±, p ± 2, s ( pω { / 2, p, p ±, p ± 2,, oro caso,, ±, ± 2, {, oro caso [ p p x [ ] x [ δ ]

2 C.2 Pars básicos sris Fourir Domiio l impo Domiio la frcucia ; prioo ( Ω ] ( ; x { (, s x, < / 2 s x s( s p δ[ p] cos( p x ( s ( p x ( δ ( p p X [ δ[ p] + δ[ + p] 2 2 X [ δ[ p] δ[ + p] 2 2 C.3 Pars básicos rasformaas Fourir impo iscro Domiio l impo Domiio la frcucia X ( Ω Ω X ( 2 2M + s, M Ω Ω 2 { X (, oro caso Ω s 2 α u[, α < X ( Ω α δ[ X ( X ( Ω p x [ u[ + δ ( p, Ω W Ω x s( W, < W < ( s, W < Ω ; [ X prióica ( + α u[ X ( Ω 2 ( α 2

3 C.4 Pars básicos rasformaas Fourir Domiio l impo Domiio la frcucia x X ( ( X 2 (, 2s( { X (, oro caso s( W, W X ( {, oro caso δ ( X ( X ( δ ( x ( u( X ( + δ ( ( a x u(, R{ a} > X ( a + ( a x u(, R{ a} > X ( ( a + 2 C.5 Pars rasformaas Fourir para sñals prióicas Sñal prióica l rasformaa Fourir omiio l impo X ( δ ( x ( cos( X ( δ ( ( + δ + cos( X ( δ ( δ ( + X ( δ ( x ( δ ( Τ X ( δ, s 2s( s { X ( δ (, < < / 2 + s 3

4 C.6 Pars rasformaas Fourir impo iscro para sñals prióicas Sñal prióica l omiio l impo Ω rasformaa Fourir impo iscro ( 2 X δ ( Ω Ω cos( Ω X ( δ ( Ω Ω + δ ( Ω + Ω s( Ω X ( δ ( Ω Ω δ ( Ω + Ω x [ δ ( X ( δ ( Ω Ω X ( δ ( Ω C.7. Propias la rasformaa Fourir Propias X ( ; y( Y ( Lialia Corrimio l impo Corrimio la frcucia Escalamio Difrciació l impo Difrciació la frcucia Igració / sumaoria Covolució Moulació (Sumaoria Dualia ( a + by( Z( ax ( + by ( X ( γ X ( ( γ a X a a X ( X ( τ τ X ( + X ( δ ( * y( τ y( τ τ X ( Y ( ( X ( υ Y( ( υ X ( υ 4

5 C.7.2 Propias la Sri Fourir FS: FS: Propias ; y( Lialia Corrimio l impo Corrimio la frcucia Escalamio Difrciació l impo Difrciació la frcucia Igració / sumaoria Covolució Moulació (Sumaoria Dualia Y[ ; prio ( a + by( a + by[ a ] a y( τ y( τ τ l x ( y( * Y[ D ( ; X ( C.7.3 Propias la impo iscro D D Propias ( ; y( Y ( Lialia Corrimio l impo Corrimio la frcucia Escalamio Difrciació l impo Difrciació la frcucia Igració / sumaoria Covolució Moulació (Sumaoria Dualia D [ a + b Z( ] Γ D x ( p D D X ( X ( Ω/ p ax ( X ( ( Ω Γ + by ( ; x (, l p D X ( Ω D X ( x [ + X ( Ω δ ( Ω D * X ( Y ( l D Γ ( Ω Γ [ X ( Y ( Γ D ( ; X ( 5

6 C.7.4 Propias la FS impo iscro DFS: Ω Propias ( DFS [ ] ; ( : Ω x y Y[ ; pr. Lialia Corrimio l impo Corrimio la frcucia Escalamio Difrciació l impo Difrciació la frcucia Igració / sumaoria Covolució Moulació (Sumaoria Dualia [ a + b D Ω D Ω Ω ] D Ω Ω D p x ( p ] a + by[ Ω px [ ; x (, l p D Ω l D x [ ( Y ( D Ω l C.8 Rlacios las cuaro rprsacios Fourir. Rprsació la para ua sñal prióica impo coiuo ( FS g( G[ G( G[ δ ( Rprsació la D para ua sñal prióica impo iscro ( DFS Ω D w[ W[ W ( W[ δ ( Ω Ω Rprsació la para ua sñal o prióica impo iscro ( D ( Ω v[ δ ( Vδ ( V v ( ] δ / g( G[ D Ω / w[ W[ D v[ V ( Rprsació la para ua sñal prióica impo iscro Ω wδ ( w[ δ ( Wδ ( W [ δ ; 6

7 C.9 Rlacios musro y raslap Musro por impulsos para sñals prióicas impo coiuo x ( ( ( ( ( δ x s δ s X δ X ; s s Musro ua sñal impo iscro q D ( Ω m / q v[ q Y ( V ( ; q m Musro la D frcucia DFS ; Ω / ; [ ] [ ] 2 Ω w v + m W[ V ( m Musro la frcucia 2 / ; g( + m G[ X ( X ( D v[ V ( s 7

CAPITULO 3.- Representaciones de Fourier para señales.

CAPITULO 3.- Representaciones de Fourier para señales. CAPIULO 3.- Rprsacios Fourir para sñals. 3. Iroucció. 3. Sñals prióicas impo iscro: la sri Fourir impo iscro. 3.3 Sñals prióicas impo coiuo: la sri Fourir. 3.4 Sñals o prióicas impo iscro: la rasformaa

Más detalles

Señales y Sistemas. Análisis de Fourier.

Señales y Sistemas. Análisis de Fourier. Sñals y Sistmas Aálisis d Fourir. Itroducció El foqu d st capítulo s la rprstació d sñals utilizado sos y cosos ( otras palabras, xpocials complas). El studio d sñals y sistmas utilizado xpocials complas

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

SEÑALES Y SISTEMAS I TABLAS. Dpto. Teoría de la Señal y Comunicaciones

SEÑALES Y SISTEMAS I TABLAS. Dpto. Teoría de la Señal y Comunicaciones SEÑALES Y SISEMAS I ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s () ( s) ( s) Lilidd () + b ( ) ( s) b ( s) Dsplzmio l impo ( ) Dsplzmio

Más detalles

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones SISEMAS LIEALES ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s ( s) ( s) Lilidd + b ( ) ( s) b ( s) Dsplmio l impo ( ) Dsplmio l domiio s

Más detalles

Análisis de Fourier para Señales y Sistemas de Tiempo Discreto

Análisis de Fourier para Señales y Sistemas de Tiempo Discreto Aálii d Fourir pr Sñl y Sitm d impo Dicrto Rput d u itm LI l pocil compl [] h[] y [ ] h [ ] [ ] h [ ] [ ] Si y h h H [ ] [ ] [ ] [ ] ( [ ] ( H Autofució d lo Sitm LI Autovlor ocido y Si r rformd Si rformd

Más detalles

TEMA 1 INTRODUCCIÓN A LA TEORÍA DE LA SEÑAL

TEMA 1 INTRODUCCIÓN A LA TEORÍA DE LA SEÑAL EMA INRODUCCIÓN A LA EORÍA DE LA SEÑAL Vicor Moisés Hrádz Cham hdzcham@ux.s Sismas d rasmisió d Daos.ELEMENOS BÁSICOS DE UN SISEMA DE COMUNICACIÓN U sisma d comuicació básico sá compuso por: - fu - caal

Más detalles

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

Tema 0 Repaso de Señales y Sistemas Discretos. 4º Ing. Telecomunicación EPS Univ. San Pablo CEU

Tema 0 Repaso de Señales y Sistemas Discretos. 4º Ing. Telecomunicación EPS Univ. San Pablo CEU Tma Rpaso d Sñals y Sistmas Discrtos 4º Ig. Tlcomuicació EPS Uiv. Sa Pablo CEU Lcturas complmtarias Opp., Pro (sólo hasta.: Itroducció a TDS Importacia d TDS la igiría Prspctiva histórica Esquma d u sistma

Más detalles

ANÁLISIS DE FOURIER CAPÍTULO CUATRO TIEMPO DISCRETO Introducción

ANÁLISIS DE FOURIER CAPÍTULO CUATRO TIEMPO DISCRETO Introducción CAPÍTULO CUATRO AÁLISIS DE FOURIER TIEMPO DISCRETO 4. Itroducció Las técicas dl aálisis d Fourir timpo cotiuo dsarrolladas l capítulo atrior ti mucho valor l aálisis d las propidads d sñals y sistmas d

Más detalles

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad Uiversidad Carlos III de Madrid 3.4 Sisemas LIT SLIT: Sisemas Lieales e Ivariaes co el Tiempo Liealidad Supogamos que la señal se puede expresar como ua combiació lieal de señales más simples ( x i ()

Más detalles

Ing. Mario R. Modesti

Ing. Mario R. Modesti UNIVERSIDAD ECNOLOGICA NACIONAL FACULAD REGIONAL CORDOBA DEPARAMENO ELECRONICA Carrra Asignaura : Ingniría Elcrónica : Análisis d Sñals y Sismas.P.N : Sris y ransformada d Fourir, ransformada invrsa d

Más detalles

Respuesta en frecuencia. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria.

Respuesta en frecuencia. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria. Rspusta frcucia. Procsado Digital d Sñals.4º Igiría Elctróica. Uivrsitat d Valècia. Profsor Emilio Soria. 1 Itrés uso PDS. Ti l mismo uso qu sistmas cotiuos: dtrmiar la salida d u sistma stado stacioario;

Más detalles

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA : Problma Nº 5.3 Opphim Obsrv l siguit sistma: Dtrmi y() Solució: El traycto d arriba produc, al multiplicar por Cos(/), traslació dl spctro

Más detalles

Tema 2: Sistemas. 2.1 Introducción

Tema 2: Sistemas. 2.1 Introducción Tema : Sisemas Tema : Sisemas. Iroducció U sisema respode co uas deermiadas señales a la acció de oras. x() sisema y ( ) = T x( ) Ejemplo Tiempo coiuo: sisema mecáico () dy b d y() T{ } { } d y() dy()

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

Buscapalabras Circula las palabras que escribiste como respuestas

Buscapalabras Circula las palabras que escribiste como respuestas El cocinero babilónico está cocinando algo más rico que sopa de verduras. Es sopa de la Palabra de Dios. Encuentra y marca solo las palabras del versículo en la sopa y escribe el versículo de Lucas 11:28

Más detalles

CAPÍTULO 2.- Representaciones en el dominio del tiempo para sistemas lineales e invariantes con el tiempo

CAPÍTULO 2.- Representaciones en el dominio del tiempo para sistemas lineales e invariantes con el tiempo Sigls Ssms, /E Simo i Brr V V Coprig Jo Wil & Sos Ic All rigs rsrv CAPÍTULO - Rprscios l omiio l impo pr sisms lils ivris co l impo Irocció Covolció: rprsció l rsps l implso Propis l rprsció l rsps l implso

Más detalles

Régimen transitorio. Respuesta a funciones elementales

Régimen transitorio. Respuesta a funciones elementales Régie rasiorio Vibració Trasioria: Desaparece co el paso el iepo, pero puee ser iporae e respuesa a fuerzas o perióicas (golpes, explosioes...). Respuesa a fucioes eleeales c () x ució escaló ució rapa

Más detalles

Nicolás Rivera. 20 de Marzo de 2012

Nicolás Rivera. 20 de Marzo de 2012 Gramáticas Libre de Contexto Aleatorias. Nicolás Rivera 20 de Marzo de 2012 Pontificia Universidad Católica de Chile Tabla de Contenidos 1 Introducción Gramáticas Libres de Contexto Sistema de Producción

Más detalles

1. Sumar monomios semejantes:

1. Sumar monomios semejantes: HOJA 1: Monomios 1. Sumar monomios semejantes: a) 3x + 4x 5x b) 6x 3 x 3 + 3x 3 c) x 5 + 4x 5 7x 5 d) x 4 + 6x 4 + 3x 4 5x 4 e) 7x + 9x 8x + x f) y + 5y 3y g) 3x y 6x y + 5x y h) 4xy xy 7xy i) a 6 3a 6

Más detalles

DISEÑO MECÁNICO RODAMIENTOS NORMALIZACIÓN DE LOS RODAMIENTOS CINEMÁTICA DISTRIBUCIÓN DE CARGA EN EL RODAMIENTO

DISEÑO MECÁNICO RODAMIENTOS NORMALIZACIÓN DE LOS RODAMIENTOS CINEMÁTICA DISTRIBUCIÓN DE CARGA EN EL RODAMIENTO DISEÑO MECÁNICO RODAMIENTOS NORMALIZACIÓN DE LOS RODAMIENTOS CINEMÁTICA DISTRIBUCIÓN DE CARGA EN EL RODAMIENTO REPRESENTACIÓN SIMPLIFICADA DE LOS RODAMIENTOS 2 q q q q q q q q q 3 q q q q q q q q q q q

Más detalles

UNIDAD 3 Transformadas de Laplace

UNIDAD 3 Transformadas de Laplace Traformada de aplace 3. Defiicioe a raformada de aplace de ua fució () f, repreeada co el ímbolo, e la operació maemáica defiida mediae la iguiee iegral impropia: { ()} lim b f e f () d b Por lo geeral,

Más detalles

ALGEBRA III (Curso ) Teoría de conjuntos José A. Alonso Jiménez Ejercicio 1. Probar que para cualesquiera conjuntos a, b y c se tiene que:

ALGEBRA III (Curso ) Teoría de conjuntos José A. Alonso Jiménez Ejercicio 1. Probar que para cualesquiera conjuntos a, b y c se tiene que: ALGEBRA III (Curso 1989-90) Teoría de conjuntos José A. Alonso Jiménez Ejercicio 1. Probar que para cualesquiera conjuntos a, b y c se tiene que: (1) a a. (2) a b b a = a = b. (3) a b b c = a c. (4) a.

Más detalles

Respuesta al escalón unitario

Respuesta al escalón unitario Rpua al caló uiario Epcificacio l domiio dl impo La ampliud duració d la rpua raioria db mar dro d lími olrabl dfiido E ima d corol lial la caracrizació dl raiorio comúm raliza uilizado u caló uiario a

Más detalles

Análisis Geostadístico. de datos funcionales

Análisis Geostadístico. de datos funcionales á í á - á é í : í é : á ó í ( ). é í á ó,,,., í é.,, é ó., í á. í., ó, ó. é ó., á, ó.., ó - ()., é á í. é á., á. ó, ó á. é ó é. í á ó. : ; ; ó ; ; ; ó. ó í............................... á..............................................................

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁCO 1 Código Bloque y Distancia Mínima 2 cíclicos 3 Codificación 4 BCH Código Bloque y Distancia Mínima Si A es un alfabeto,

Más detalles

Superficies cuádricas

Superficies cuádricas Superficies cuádricas Jana Rodriguez Hertz GAL2 IMERL 9 de noviembre de 2010 definición superficie cuádrica definición (forma cuadrática) una superficie cuádrica está dada por la ecuación: definición superficie

Más detalles

Intersección Cono-Esfera - Oposición Hoja 1/3. NOTA: Por razones de espacio, los dibujos se han realizado a la escala 3:4.

Intersección Cono-Esfera - Oposición Hoja 1/3. NOTA: Por razones de espacio, los dibujos se han realizado a la escala 3:4. NOTA: Por razones de espacio, los dibujos se han realizado a la escala 3:4. V 2 En la intersección del cono y de la esfera, dada la posición de sus ejes, que son paralelos y están contenidos en un proyectante

Más detalles

Distribuciones unidimensionales continuas

Distribuciones unidimensionales continuas Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Distribución uniforme continua 2 Estándar 3 Distribución χ 2 de Pearson 4 Distribución uniforme continua Definición Es una variable continua

Más detalles

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos.

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. Topología Segundo cuatrimestre - 2011 Práctica 1 Topologías Ejemplos de topologías 1. Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. 2. Sea X un conjunto. (a) Sea τ = {U

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Toría d Sistmas y Sñals Trasparias: Aálisis ruial d sñals TD Autor: Dr. Jua Carlos Gómz Aálisis ruial d Sñals Timpo Disrto. Sri d ourir d Sñals Timpo Disrto Sa () ua sñal priódia o príodo, s dir: ( ) +

Más detalles

UNIDAD 5 ACTIVIDAD 5.3 El alfabeto griego M.A. Rosa María Funderburk Razo Autor

UNIDAD 5 ACTIVIDAD 5.3 El alfabeto griego M.A. Rosa María Funderburk Razo Autor UNIDAD 5 ACTIVIDAD 5.3 El alfabeto griego M.A. Rosa María Funderburk Razo Autor El alfabeto griego El alfabeto griego es un alfabeto utilizado para escribir la lengua griega. Desarrollado alrededor del

Más detalles

TEMA 4. Anillos de polinomios.

TEMA 4. Anillos de polinomios. TEMA 4 Anillos de polinomios. Ejercicio 4.1. Encontrar un polinomio f(x) de grado 3 tal que: f(0) = 6, f(1) = 12 y f(x) (3x + 3) mod (x 2 + x + 1). Ejercicio 4.2. Demostrar que en un D.E. todos los ideales

Más detalles

UNIDAD 3 Transformadas de Laplace. { ( )} lim b st ( ) f t = e f t dt

UNIDAD 3 Transformadas de Laplace. { ( )} lim b st ( ) f t = e f t dt UNIDAD 3 Traformada de aplace 3. Defiicioe a traformada de aplace de ua fució f ( t ), repreetada co el ímbolo, e la operació memática defiida mediate la iguiete itegral impropia: { lim b t e dt b Por

Más detalles

Materiales-G704/G742. Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García. Lección 2.

Materiales-G704/G742. Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García. Lección 2. -G704/G742 Lección 2. Ley de Hooke Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García Departamento de Ciencia e Ingeniería del Terreno y de los Este tema se publica

Más detalles

Transformada de Laplace

Transformada de Laplace Transformada de Laplace Definición: La Transformada de Laplace Dada una función f (t) definida para toda t 0, la transformada de Laplace de f es la función F definida como sigue: { f } 0 st F () s = L

Más detalles

Una Versión de ACO para Problemas con Grafos de. muy Gran Extensión. Enrique Alba y Francisco Chicano. Introducción. ACOhg.

Una Versión de ACO para Problemas con Grafos de. muy Gran Extensión. Enrique Alba y Francisco Chicano. Introducción. ACOhg. 1/22 Puerto de La Cruz, Tenerife, España, 14 a 16 de Febrero de 2007 Una Versión de ACO para s con Grafos de muy Gran Extensión Enrique Alba y Francisco Chicano Puerto de La Cruz, Tenerife, España, 14

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Uiversidad Carlos III de Madrid. El mudo físico: represeació co señales y sisemas Señales: Fucioes co las que represeamos variacioes de ua magiud física Volaje, iesidad, fuerza, emperaura, posició r ()

Más detalles

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................

Más detalles

Ejercicios de Teoría de conjuntos

Ejercicios de Teoría de conjuntos Ejercicios de Teoría de conjuntos José A. Alonso Jiménez Mario J. Pérez Jiménez Sevilla, Octubre de 1992 Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla 1 Contenido

Más detalles

SOBRE LA ECUACIÓN DE ONDAS

SOBRE LA ECUACIÓN DE ONDAS Eu C í Sb uó s SOBE A ECUACIÓN DE ONDAS Eu C í -Iuó p. - suó uó s u só. -Ipó ís suó uó s. -Os Ess. 5-E Fu uó. 6- uó s ss. 7-Os sés. 8-ó uó p uó s. 9-E pp Hugs ó. -Os ss s ss. -Os gus. -Os u u gu. -Cuó

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA FCULD DE INGENIERÍ Uivrdd Nciol uóo d Méico Fculd d Igirí ális d Siss y Sñls Profsor: M.I. Elizh Fosc Chávz SERIE DE FOURIER LUMN: Sáchz Cdillo Vicori GRUPO: 6 SERIE DE FOURIER od sñl priódic s pud prsr

Más detalles

PRÁCTICA 1: Análisis en el dominio del tiempo de sistemas continuos simples

PRÁCTICA 1: Análisis en el dominio del tiempo de sistemas continuos simples Sismas Sñals Crso 4/5 Igiría Iformáia PRÁCTICA : Aálisis l omiio l impo sismas oios simpls I.- Prosamio sñal Malab Tal omo s vio l rso arior Malab rabaa o úio ipo lmos: las maris. Los ipos aos básios o

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Ejercicios de Teoría de conjuntos

Ejercicios de Teoría de conjuntos Dpto. de Álgebra, Computación, Geometría y Topología Universidad de Sevilla Ejercicios de Teoría de conjuntos José A. Alonso Jiménez (jalonso@us.es) Sevilla, 1991 Contenido 1 La teoría de conjunto de Zermelo

Más detalles

OSCILADOR ARMÓNICO SIMPLE

OSCILADOR ARMÓNICO SIMPLE OSIDOR RÓNIO SIPE 0409 1 ey e Hooe rterzón e ovmento rmóno Sme (..S.) Veo y eerón en e..s. Ejemo. Reorte en oón horzont y vert Pénuo me Pénuo fo Energ en e movmento rmóno ovmento rmóno mortguo ey e Hooe

Más detalles

Álgebra II Primer Cuatrimestre 2016

Álgebra II Primer Cuatrimestre 2016 Álgebra II Primer Cuatrimestre 2016 Práctica 3: Anillos Ejemplos construcciones 1. Probar que los siguientes conjuntos son anillos con las operaciones indicadas. Decidir en cada caso si son conmutativos,

Más detalles

Flexión de placas planas

Flexión de placas planas Método de los Elementos Finitos para Análisis Estructural Fleión de placas planas Teoría clásica Definición Dominio continuo plano (XY), espesor pequeño h. Fuerzas (F z ) y deformaciones (w) perpendiculares

Más detalles

Tema 1. Clasificación de las EDP. Características

Tema 1. Clasificación de las EDP. Características Tema 1. Clasificación de las EDP. Características 1.1. Definiciones y notación En este curso vamos a seguir y a ampliar el estudio de las Ecuaciones en Derivadas Parciales (EDP) iniciado en la asignatura

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Más detalles

Resultados de los Problemas: Práctico Nº 1

Resultados de los Problemas: Práctico Nº 1 Resultados de los Problemas: Práctico Nº 1 1. (a) 0,19 m; (b) 7,50 10 7 cl; (c) 10-3 Gbyte; (d) 1,9740 10-8 m; (e) 4500 pulsaciones/h; (f) 11,11 m/s; (g) 5,0 10 3 kg/m 3 2. 0,7 nm; 7 Å 3. (a) Dos; (b)

Más detalles

Estimación de variables no observables para la economía peruana

Estimación de variables no observables para la economía peruana Estimación de variables no observables para la economía peruana XXX Encuentro de Investigación del BCRP Ismael Ignacio Mendoza Mogollón imendoza@mef.gob.pe Octubre 2012 XXX Encuentro de Economistas (Institute)

Más detalles

Sistemas continuos. Francisco Carlos Calderón PUJ 2010

Sistemas continuos. Francisco Carlos Calderón PUJ 2010 Sistemas continuos Francisco Carlos Calderón PUJ 2010 Objetivos Definir las propiedades básicas de los sistemas continuos Analizar la respuesta en el tiempo de un SLIT continuo Definición y clasificación

Más detalles

Coordenadas geográficas

Coordenadas geográficas Cálculos de radiación sobre superficies inclinadas Coordenadas geográficas Ingenieros Industriales 1 VARIABLES DEL SISTEMA Se definen a continuación todas las variables tanto geográficas como temporales-

Más detalles

SOBRE UNIFORMIDADES DEFINIDAS POR CUBRIMIENTOS Y COMPLETADO FIBRA A FIBRA HECTOR ANTONIO RICAURTE MONCALEANO

SOBRE UNIFORMIDADES DEFINIDAS POR CUBRIMIENTOS Y COMPLETADO FIBRA A FIBRA HECTOR ANTONIO RICAURTE MONCALEANO SOBRE UNIFORMIDADES DEFINIDAS POR CUBRIMIENTOS Y COMPLETADO FIBRA A FIBRA HECTOR ANTONIO RICAURTE MONCALEANO 830219 UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICAS BOGOTÁ,

Más detalles

LISTA DE SÍMBOLOS. Bajada, movimiento que realiza el palpador al acercarse al centro de rotación de la

LISTA DE SÍMBOLOS. Bajada, movimiento que realiza el palpador al acercarse al centro de rotación de la LISTA DE SÍMBOLOS a bu ( ) B Bi n af u b i Ancho de la huella de contacto Curva de Bézier no paramétrica Bajada, movimiento que realiza el palpador al acercarse al centro de rotación de la Polinomio de

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =

Más detalles

INGENIERÍA DE SISTEMAS Y AUTOMÁTICA. Fundamentos de Regulación y Automática. Análisis de Sistemas

INGENIERÍA DE SISTEMAS Y AUTOMÁTICA. Fundamentos de Regulación y Automática. Análisis de Sistemas INGENIERÍA DE SISTEMAS Y AUTOMÁTIA Fudao d Rgulació y Auoáica Aálii d Sia FUNDAMENTOS DE REGULAIÓN AUTOMÁTIA Aálii d Sia Jua Lui Roja Ojda Igiría d Sia y Auoáica Uivridad d ádiz Spibr 00 ANEXO B : Traforada

Más detalles

Tema 5. Análisis de Fourier para Señales y Sistemas Discretos.

Tema 5. Análisis de Fourier para Señales y Sistemas Discretos. Tma 5. Aálisis d Fourir para Sñals y Sistmas Discrtos. E l tma 3 hmos hcho u studio d los sistmas discrtos l domiio tmporal. Esto os ha prmitido ralizar ua caractrizació d los mismos y hacr u studio d

Más detalles

Problemas con soluciones

Problemas con soluciones Departamento de Matemática, Universidad Técnica Federico Santa María, MAT-223. Problemas con soluciones 1) Muestre que si A es una base de una toplogía en X, entonces la topología generada por A es iqual

Más detalles

Multiplicación de Matrices Naïve

Multiplicación de Matrices Naïve Multiplicación de Matrices Naïve Carl C. Cowen IUPUI (Indiana University Purdue University Indianapolis) Universidad de Zaragoza, 6 julio 2009 Los estudiantes de álgebra lineal aprenden, para matrices

Más detalles

Métodos de Pareo FN1. Fernanda Ruiz Nuñez Noviembre, 2006 Buenos Aires

Métodos de Pareo FN1. Fernanda Ruiz Nuñez Noviembre, 2006 Buenos Aires Métodos de Pareo FN1 Fernanda Ruiz Nuñez Noviembre, 2006 Buenos Aires Slide 1 FN1 Fernanda Nunez, 11/17/2006 Asignación aleatoria vs. Selección en observables Supuesto bajo asignación aleatoria: Y (1),

Más detalles

Primera Escuela de Verano de Matemática y Física Universidad Central del Ecuador. Espacios Algebraicos de Probabilidad y Aplicaciones

Primera Escuela de Verano de Matemática y Física Universidad Central del Ecuador. Espacios Algebraicos de Probabilidad y Aplicaciones Primera Escuela de Verano de Matemática y Física Universidad Central del Ecuador Espacios Algebraicos de Probabilidad y Aplicaciones 12 de junio 2013 Sean: El conjunto Ω = {ω 1, ω 2,, ω n}, La función

Más detalles

MUNICIPIO DE MEDELLÍN GRADO 10 CONCEPTOS BÁSICOS DE TRIGONOMETRÍA

MUNICIPIO DE MEDELLÍN GRADO 10 CONCEPTOS BÁSICOS DE TRIGONOMETRÍA GUÍA DE CONCEPTOS BÁSICOS DE TRIGONOMETRÍA ÁREA MATEMÁTICAS PERÍODO 01 FECHA: 16 de enero de 2017 LOGROS: MUNICIPIO DE MEDELLÍN GRADO 10 Construir y clasificar los diferentes tipos de ángulos, expresando

Más detalles

Convolución discreta cíclica

Convolución discreta cíclica Covolució discreta cíclica Estos aputes está escritos por Darío Coutiño Aquio y Egor Maximeko. Objetivos. Defiir la covolució discreta cíclica y demostrar el teorema sobre la covolució discreta cíclica

Más detalles

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE

Más detalles

Espacio métrico 2º Bachillerato

Espacio métrico 2º Bachillerato Espacio métrico 2º Bachillerato Presentación elaborada por la profesora Ana Mª Zapatero a partir de los materiales utilizados en el centro (Editorial SM) Ángulo entre dos rectas El ángulo de dos rectas

Más detalles

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD ESTADÍSTICA, CURSO 008 009 TEMA : DISTRIBUCIONES DE PROBABILIDAD LEYES DE PROBABILIDAD. SUCESOS ALEATORIOS Experimetos aleatorios, espacio muestral. Sucesos elemetales y compuestos. Suceso imposible Ø,

Más detalles

La Recta. Hermes Pantoja Carhuavilca. Matemática I. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

La Recta. Hermes Pantoja Carhuavilca. Matemática I. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos La Recta Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matemática I Hermes Pantoja Carhuavilca 1 de 11 CONTENIDO Ecuaciones de la recta en R 2 Ecuación

Más detalles

Formulaciones equivalentes del Axioma de Elección

Formulaciones equivalentes del Axioma de Elección Formulaciones equivalentes del Axioma de Elección MARU SARAZOLA Resumen En este documento presentamos algunas formulaciones equivalentes del axioma de elección. En la primera sección, se presenta el enunciado

Más detalles

Ecuaciones fundamentales en Física general. Cinemática de una partícula

Ecuaciones fundamentales en Física general. Cinemática de una partícula Ecuacies fudametales de la Física Ecuacies fudametales e Física geeal Ciemática de ua patícula v d a dv.r.u. v cte a 0 s s + v.t.r.u.a. a cte s s + v.t + ½.a.t v v + a.t v v +.a.s vimiet cicula s φ.r dϕ

Más detalles

Curso Curso

Curso Curso Problema 98. Dos chicos juegan a partir una tableta de chocolate de m n pastillas. Cada uno de ellos parte la tableta por alguna de las ĺıneas marcadas. Pierde el que no pueda partir. Quién ganará, el

Más detalles

SISMOLOGÍA E INGENIERÍA SISMICA Tema II. Propagación de ondas sísmicas: Ondas internas.

SISMOLOGÍA E INGENIERÍA SISMICA Tema II. Propagación de ondas sísmicas: Ondas internas. SISMOLOGÍA E INGENIERÍA SISMICA Tema II. Propagación de ondas sísmicas: Ondas internas. I. Introducción II. Mecánica de un medio elástico. Ecuación del desplazamiento en un medio elástico, isótropo, homogéneo

Más detalles

Macroeconomía Dinámica

Macroeconomía Dinámica Macroeconomía Dinámica Bloque 2. El modelo básico de equilibrio general dinámico Departamento de Economía Este tema se publica bajo Licencia: Crea8ve Commons BY- NC- SA 4.0 1 Introducción 2 El hogar representativo

Más detalles

Ecuaciones diferenciales de Equilibrio

Ecuaciones diferenciales de Equilibrio Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),

Más detalles

Teoría Espectral. Stephen B. Sontz. Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico

Teoría Espectral. Stephen B. Sontz. Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico Teoría Espectral Stephen B. Sontz Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico Mini-curso impartido en Colima 29 septiembre 2016 - Tercer día Introducción Hay dos dichos populares

Más detalles

( ) C P 2. : Realizo todas las tareas solo si no estudio diariamente. : Es necesario que realice todas las tareas para que no apruebe el curso.

( ) C P 2. : Realizo todas las tareas solo si no estudio diariamente. : Es necesario que realice todas las tareas para que no apruebe el curso. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN INTENSIVO 015 PRIMERA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y

Más detalles

5 MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES

5 MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES ma 5 MCÁICA SADÍSICA CUÁICA D GASS IDALS stadística d rmi-dirac y stadística d Bos-isti. l límit clásico. Gas idal d rmi: lctros mtals. Gas idal d Bos: fotos y 4H líquido. Codsació d Bos-isti. [RI-9; HUA-8;

Más detalles

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,

Más detalles

ARMADURA DE CORTE VERIFICACION Y DIMENSIONAMIENTO. Zona a: Zona en la cual no es de esperar fisuras por flexión.

ARMADURA DE CORTE VERIFICACION Y DIMENSIONAMIENTO. Zona a: Zona en la cual no es de esperar fisuras por flexión. HORMIGÓN II 74.5 ARMADURA DE CORTE VERIFICACION Y DIMENSIONAMIENTO Definición de zonas a y b Zona a: Zona en la cual no es de esperar fisuras por flexión. Zona b: Zona en la cual las fisuras por corte

Más detalles

Ejercicios de Teoría de conjuntos

Ejercicios de Teoría de conjuntos Ejercicios de Teoría de conjuntos José A. Alonso Jiménez Mario J. Pérez Jiménez Sevilla, Octubre de 1993 Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla 1 TEORÍA DE

Más detalles

PROCESAMIENTO DIGITAL DE SEÑALES

PROCESAMIENTO DIGITAL DE SEÑALES PROCESAMIENTO DIGITAL DE SEÑALES Profsor: Mg. Ig. Rafal Bustamat Alvarz Itroducció: El procsamito digital d sñals ti su orig los años 60 co l mplo d las primras computadoras digitals. El dsarrollo d la

Más detalles

Tarea 2 de Álgebra Superior II

Tarea 2 de Álgebra Superior II Tarea 2 de Álgebra Superior II Divisibilidad 1. Sean a, b, c, d Z. Determine si los siguientes enunciados son verdaderos o falsos. Si son verdaderos, probar el resultado, y si son falsos, dar un contraejemplo.

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

Respuesta en Frecuencia de Sistemas Continuos

Respuesta en Frecuencia de Sistemas Continuos espuesta en Frecuencia e Sisteas Continuos UeC - DIE Problea Caso Ilustrar el Diagraa e Boe a partir e una F. e T. y/o e una representación {A, b, c, }. Masa suspenia. Paráetros l o :=.5 :=.5 k:= x(t k

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

TEMA 2: CINEMÁTICA Y DINÁMICA DE UNA PARTÍCULA

TEMA 2: CINEMÁTICA Y DINÁMICA DE UNA PARTÍCULA EA : CINEÁICA Y DINÁICA DE UNA PAÍCULA. Desipión del oiieno: ipos de sises de efeeni.. gniudes del oiieno: eo posiión, yeoi, eo desplzieno, eloidd, eleión. 3. Esudio de lgunos oiienos: oiienos eilíneos,

Más detalles

Un resultado de H convergencia para operadores tipo elpticos fraccionarios

Un resultado de H convergencia para operadores tipo elpticos fraccionarios Un resultado de H convergencia para operadores tipo elpticos fraccionarios Julián Fernández Bonder Universidad de Buenos Aires e IMAS-CONICET http://mate.dm.uba.ar/~jfbonder Trabajo conjunto con Antonella

Más detalles

Parte 2: Definición y ejemplos de topologías.

Parte 2: Definición y ejemplos de topologías. Parte 2: Definición y ejemplos de topologías. 22 de marzo de 2014 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto. Una familia T de subconjuntos de X es una topología de X si se cumplen:

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.

Más detalles

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones

Más detalles

Transformada Z. Ejemplos. Ejemplos de cálculo [ ] = [ ] ( ) ( ) 1. Transformada Z. α = α α α si α. α α α

Transformada Z. Ejemplos. Ejemplos de cálculo [ ] = [ ] ( ) ( ) 1. Transformada Z. α = α α α si α. α α α Trasformada Ejemplos Ejemplos de cálculo. Trasformada... Calcular la trasformada, por defiició, idicado la regió de coergecia p u [ ] h h p u cos u Solució: Para calcular la Trasformada por defiició, resulta

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

Lógica e Inteligencia Artificial: Una Historia sin Fin

Lógica e Inteligencia Artificial: Una Historia sin Fin Lógica e Inteligencia Artificial: Una Historia sin Fin UCAB / USB Detractores de Lógica L en IA... Búsqueda del del razonamiento lógico desde Aristóteles, con con su su consolidación por por Peano, Frege,

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2.

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2. Guía de Ejercicios Ejercicio El circuito RC de la figura es excitado por ua señal de ruido blaco co desidad espectral de potecia costate e igual a N /. R w(t) C v(t) Calcule y grafique la desidad espectral

Más detalles