ESTUDIO DEL PARABOLOIDE ELÍPTICO. 2 b. 1 - Estudio de la Simetría. a) Simetría respecto a los planos coordenados. Simetría respecto al plano xy.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTUDIO DEL PARABOLOIDE ELÍPTICO. 2 b. 1 - Estudio de la Simetría. a) Simetría respecto a los planos coordenados. Simetría respecto al plano xy."

Transcripción

1 86 ESTUDIO DEL PARABOLOIDE ELÍPTICO 1 - Estudi de l Simetrí ) Simetrí respect ls plns crdends Simetrí respect l pln ( ) Cm l ecución de l superficie se lter si cmims el sign de l vrile, cncluims que l superficie n es simétric respect l pln. Simetrí respect l pln ( ) Cm l ecución de l superficie n se lter si cmims el sign de l vrile, cncluims que l superficie es simétric respect l pln. Simetrí respect l pln ( ) Cm l ecución de l superficie n se lter si cmims el sign de l vrile, cncluims que l superficie es simétric respect l pln. ) Simetrí respect ls ejes crdends Simetrí respect l eje ( ) ( )

2 87 Cm l ecución de l superficie se lter si cmims el sign de ls vriles, pdems cncluir que l superficie n es simétric respect l eje. Simetrí respect l eje ( ) ( ) Cm l ecución de l superficie se lter si cmims el sign de ls vriles, pdems cncluir que l superficie n es simétric respect l eje. Simetrí respect l eje ( ) ( ) Cm l ecución de l superficie n se lter si cmims el sign de ls vriles e, pdems cncluir que l superficie es simétric respect l eje. c) Simetrí respect l rigen de crdends ( ) ( ) ( ) Cm l ecución de l superficie se lter si cmims el sign de ls 3 vriles, pdems cncluir que l superficie n es simétric respect l rigen de crdends. ) Verificr si l superficie cntiene el Origen del Sistem de Crdends Reemplnd pr el punt P(,,) en l ecución:. Se deduce que l superficie cntiene l rigen de crdends.

3 88 3) Intersección cn ls ejes crdends ) Intersección cn el eje O se que: P (,, ) (l intersección es el rigen de crdends) ) Intersección cn el eje O se que: P (,, ) (l intersección es el rigen de crdends) c) Intersección cn el eje O se que: P (,, ) (l intersección es el rigen de crdends)

4 89 4- Intersección cn ls plns crdends ) Intersección cn el pln crdend ( ) En este cs, l únic psiilidd en que es que ls vlres de ls vlres de sen igules, l lrg del eje. Pr l tnt tenems un rect cincidente cn el eje, que crtd cn el pln d cm intersección un punt de crdends P (,, ), se, el rigen d crdends.. ) Intersección cn el pln crdend ( ) Otenems un cilindr prólic de eje, que re sus rms hci ls psitivs crtd cn el pln determinn un prál de eje sre el pln crdend

5 9 c) Intersección cn el pln crdend ( ) Otenems un cilindr prólic de eje, que re sus rms hci ls psitivs, crtd cn el pln Prál de eje sre el pln crdend (pln del diuj) Ls interseccines tenids están representds en l siguiente figur:

6 91 5. Intersección cn plns prlels ls plns crdends ) Intersección cn plns prlels l pln () 1 Si Intersección crrespndiente l pln En este cs, l únic psiilidd en que es que ls vlres de ls vlres de sen igules cer es, rect que crtd cn el pln d cm intersección el punt de crdends P (,,). Si < 1 que pr vlres negtivs de n tiene slución Pr l tnt, n eiste intersección entre ls superficies. Si > 1 Otenems un cilindr elíptic crtd cn un pln prlel l pln crdend

7 9 Pr cd vlr de >, se tiene cm intersección un elipse. Ls semiejes de ls elipses tenids umentn medid que ument. gregnd ests interseccines ls nterirmente encntrds, tenems: ) Intersección cn plns prlels l pln ()

8 93 Otenems un cilindr prólic de eje, que re sus rms hci ls psitivs, crtd cn un pln prlel l pln crdend. Pr cd vlr de se tiene cm intersección un prál de eje prlel l eje c) Intersección cn plns prlels l pln () Otenems un cilindr prólic de eje, que re sus rms hci ls psitivs, crtd cn un pln prlel l pln crdend. Pr cd vlr de, independientemente de su sign, se tiene cm intersección un prál de eje prlel l eje. Actividd: relir l interpretción de est intersección. Result similr l cnstruid en ).Cmprr l figur que se teng cn l siguiente Actividd: Definir el prlide elíptic cm superficie de revlución.

a) Simetría respecto a los planos coordenados

a) Simetría respecto a los planos coordenados 53 ESTUDIO DEL ELIPSOIDE - Estudi de l Simetrí Simetrí respet ls plns rdends Simetrí respet l pln Cm l euión de l superfiie n se lter si mims el sign de l vrile, nluims que l superfiie es simétri respet

Más detalles

y a z b 2 = y a z b + c

y a z b 2 = y a z b + c 65 ESTUDIO DEL HIPERBOLOIDE DE UNA HOJA - Estudi de l Simetrí Simetrí respet ls plns rdends Simetrí respet l pln l euión de l superfiie n se lter si mims el sign de l vrile, nluims que l superfiie es simétri

Más detalles

z b 2 = z b y a + c 2 = y a z b + c

z b 2 = z b y a + c 2 = y a z b + c 47 ESTUDIO DEL CONO ELIPTICO Not: Lo diujos orrespondientes ls interseiones de este estudio tienen el mismo speto l estudio del ono irulr. Sin emrgo l interseión on plnos prlelos l plno son en este so

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO : L euión generl es de l form M N Pz donde todos los oefiientes son no nulos M N P Se puede esriir l euión nterior en l form: ± ± on Llmd form nóni de un uádri sin entro. Álger B Fultd de Ingenierí UNMdP

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

a) (1 punto) Hallar la ecuación de la recta tangente a la gráfica de f en x = 0.

a) (1 punto) Hallar la ecuación de la recta tangente a la gráfica de f en x = 0. Septiere. Ejercici B. Cliicción ái punts. Dd l unción, se pide ) ( punt) Hllr l ecución de l rect tngente l gráic de en. ) ( punt) Clculr d Slución. L ecución de l rect tngente un unción en en r punt pendiente

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

ÁLGEBRA Y GEOMETRÍA ANALÍTICA SUPERFICIES CUÁDRICAS SUPERFICIES

ÁLGEBRA Y GEOMETRÍA ANALÍTICA SUPERFICIES CUÁDRICAS SUPERFICIES SUPERFICIES En el área de estudi del electrmagnetism ns encntrams cn la guiente tuación: Ds superficies cilíndricas caxiales cuys radis sn de cm y de 3 cm respectivamente, llevan cargas eléctricas iguales

Más detalles

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE 1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *

Más detalles

Como la ecuación de la superficie no contiene a la variable z, concluimos que la superficie es simétrica respecto al plano xy.

Como la ecuación de la superficie no contiene a la variable z, concluimos que la superficie es simétrica respecto al plano xy. 5 ESTUDIO DEL CILINDRO PARABÓLICO 1 - Estudio de la Simetría a) Simetría resecto a los lanos coordenados Simetría resecto al lano Como la ecuación de la suerficie no contiene a la variable, concluimos

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z.

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z. letos Físic pr Ciencis e Ingenierí Contcto: letos@telefonicnet ρ(z) V En el espcio vcío entre dos plcs conductors plns, y, de grn extensión, seprds un distnci, hy un estrto de crg de espesor, con un densidd

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS Colegio SSCC Concepción - Depto. de Mtemátics Eje Temático: SECCIONES CONICAS Unidd de Aprendizje: Ecución de l Elipse Cpciddes/Destrez/Hbiliddes: Resolver/Construir/ Decidir/Anlizr/ Identificr/ Verificr

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS Definición: Cónic es el lugr geométrico de los puntos de un plno cu rzón de distncis un punto fijo (que llmremos foco) un rect fij (que llmremos directriz) es constnte.

Más detalles

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo. SEMESTRE 018-1 SERIE CURVAS EN EL PLANO POLAR 1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.. Determinar las coordenadas polares del punto C simétrico

Más detalles

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 )

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 ) Clse 1: Ecución de l rect Determinr l pendiente del segmento de rect que une dos puntos. Comprender ls distints representciones lgerics de l ecución de l rect. Determinr un ecución pr un rect ddos dos

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

FUNCIONES. f(x)=y. Notación: f(2)=4, si x=2, entonces y=4 Ejemplos: f(x)=x+2 g(x)=x 2-3 h(x)=-3x a) f(-2) = -2+2=0

FUNCIONES. f(x)=y. Notación: f(2)=4, si x=2, entonces y=4 Ejemplos: f(x)=x+2 g(x)=x 2-3 h(x)=-3x a) f(-2) = -2+2=0 FUNCIONES FUNCIÓN: RELACIÓN ENTRE DOS MAGNITUDES X E Y TAL QUE A CADA VALOR DE X LE CORRESPONDE UN ÚNICO VALOR DE Y X: vrible independiente Y: vrible dependiente f()= Notción: f(2)=4, si =2, entonces =4

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

Guía de estudio Modelos lineales y razones de cambio. Rectas paralelas y perpendiculares Unidad A: Clase 7

Guía de estudio Modelos lineales y razones de cambio. Rectas paralelas y perpendiculares Unidad A: Clase 7 Guí de estudio Modelos lineles y rzones de cmbio. Rects prlels y perpendiculres Unidd A: Clse 7 Cmilo Ernesto Restrepo Estrd, Lin Mrí Grjles Vnegs y Sergio Iván Restrepo Ocho. 5. Rects prlels y perpendiculres

Más detalles

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Cálculo Integrl III- Escuel de Ciencis Ects Nturles (ECEN)Profesor: Alln Gen Plm EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Un sólido de revolución es generdo l girr un

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

Formulario: Geometría Analítica

Formulario: Geometría Analítica Universidad Autónoma del Estado de México UAEM Facultad de Ingeniería Formulario: Geometría Analítica Elaborado por: Estudiante en Ingeniería en Electrónica Formulario Geometría Analítica 1. VECTORES EN

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

TEMA 1. NÚMEROS (REPASO)

TEMA 1. NÚMEROS (REPASO) TEMA. NÚMEROS (REPASO).. FACTORIZACIÓN MÚLTIPLOS: Sn múltipls de un númer tds quells que se btienen l multiplicrl pr cer pr culquier númer nturl. DIVISORES: Se dice que un númer b es divisr de tr númer,

Más detalles

CURVAS TÉCNICAS CURVAS CÓNICAS

CURVAS TÉCNICAS CURVAS CÓNICAS 2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos

Más detalles

Ecuaciones Cuadráticas (por lo menos una variable elevada al cuadrado)

Ecuaciones Cuadráticas (por lo menos una variable elevada al cuadrado) Breve Reso de Geometrí en el Plno Euión Linel (tods ls vriles están elevds l 1ª) Ret Euión Generl de l Ret: A B C = 0 = f ( ) Euión Segmentri de l Ret: = 1 Euiones Cudrátis (or lo menos un vrile elevd

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS Chí, Octubre de 015 Señores Estudintes grdos Décimos Adjunto encontrrán ls definiciones y los ejercicios que deben relizr de los dos tems pendientes pr l evlución

Más detalles

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo = π. r 360º = πrd = 400 G α º = α R = α G 360º π 400 G C = π. rdio Longitud de l Circunferenci Áre de Anillo

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1 Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

TEMA 1. CÁLCULO VECTORIAL.

TEMA 1. CÁLCULO VECTORIAL. TEMA 1. CÁLCUL VECTRIAL. MAGNITUDES FÍSICAS ESCALARES Son quells que quedn determinds por su vlor numérico y l unidd de medid. Ejemplos: ms, energí, tiempo, tempertur, etc. MAGNITUDES FÍSICAS VECTRIALES

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

, si X toma valores muy grandes positivos, f(x) se va aproximando a l. o., si X toma valores muy grandes negativos, f(x) se va aproximando a l.

, si X toma valores muy grandes positivos, f(x) se va aproximando a l. o., si X toma valores muy grandes negativos, f(x) se va aproximando a l. 3.8 Límites en el infinit En casines interesa cnsiderar el cmprtamient de una función cuand la variable independiente tiende, n a un valr cncret, sin a valres muy grandes, tant psitivs cm negativs. En

Más detalles

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del. TEMA 1. Construcciones geométricas básicas. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del. TEMA 1. Construcciones geométricas básicas. Departamento de Artes Plásticas y Dibujo DIUJO TÉNIO HILLERTO Lámins resuelts del TEM 1. nstruccines gemétrics básics. Deprtment de rtes lástics y Dibuj 75º 60º 30º Nmbre de lumn 45º Deprtment de rtes lástics urs G 01 Títul de lámin RLELS Y ERENDIULRES

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Ficha 4. Funciones lineales y cuadráticas

Ficha 4. Funciones lineales y cuadráticas Fich 4. Funciones lineles y cudrátics ) Deinición de unción linel Sen A y B dos conjuntos no vcíos y un unción deinid de A hci B ( : A B ), entonces se le llm un unción linel si su criterio es de l orm

Más detalles

Laboratorio de Física Universitaria 2: Lentes de aire delgadas junio 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero.

Laboratorio de Física Universitaria 2: Lentes de aire delgadas junio 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero. Lortorio de Físic Universitri : Lentes de ire delgds junio 006 LENTES DE AIRE DELGADAS: DISTANCIA FOCAL Y RADIOS DE CURVATURA OBJETIVO GENERAL: Entender el concepto de distnci ocl. Entender los conceptos

Más detalles

Laboratorio de Física Universitaria 2: Lentes de vidrio delgadas mayo 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero.

Laboratorio de Física Universitaria 2: Lentes de vidrio delgadas mayo 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero. Enrique Sánchez y Aguiler. Rodolo Estrd Guerrero. LENTES DE VIDRIO DELGADAS: DISTANCIA FOCAL Y RADIOS DE CURVATURA OBJETIVO GENERAL: Entender el concepto de distnci ocl. Entender los conceptos de convergenci

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vris Vriles 08- Ingenierí Mtemátic Universidd de Chile Guí Semn 4 Grdiente. Sen Ω Ê N un ierto, f

Más detalles

CIRCUNFERENCIA. x 2 + y 2 + mx + p = 0 Circunferencia centrada en el eje OY. C(0,b)

CIRCUNFERENCIA. x 2 + y 2 + mx + p = 0 Circunferencia centrada en el eje OY. C(0,b) CIRCUNFERENCIA Definición. Lugar gemétric de ls punts del plan que equidistan de un punt fij denminad centr. Circunferencia de centr el punt (a, b) y de radi R. (x a)² + (y b)² =R² Desarrlland y rdenand

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo =. r 360º = Rd = 400 G º = R = G 360º 400 G Longitud de l Circunferenci C =. rdio Áre de Anillo o Coron Circulr

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

y v 0, 0, 1 y v 1, 0, 1 se tiene la ecuación

y v 0, 0, 1 y v 1, 0, 1 se tiene la ecuación SUPERFICIES Mostraremos varios métodos para generar superficies y encontrar sus ecuaciones. 1. Superficies cilíndricas Dada una curva en el plano de ecuación y un vector con Γ 0, es decir, no horizontal,

Más detalles

RECTAS Y PLANOS EN EL ESPACIO. donde OP y OP

RECTAS Y PLANOS EN EL ESPACIO. donde OP y OP RECTAS Y ANOS EN E ESACIO A RECTA EN R Ecacines de la recta En el espaci R se determina na recta si se cnce n pnt de ella dirección representada pr n ectr n nl Figra a Recta en R Cm se bsera en la Figra

Más detalles

Ejemplo: En este ejemplo veremos cómo podemos utilizar un coaxial slotted line para calcular la impedancia de carga Z L.

Ejemplo: En este ejemplo veremos cómo podemos utilizar un coaxial slotted line para calcular la impedancia de carga Z L. 91 Ejempl: En este ejempl verems cóm pdems utilizar un caxial sltted line para calcular la impedancia de carga. Un caxial sltted line tiene una pequeña abertura lngitudinal (i.e. slit) en su cnductr exterir.

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM ENRICH CREUS CARNICERO Nivel Unidad Anexo Superficies en 3D 01 Anexo de la Unidad : Superficies en 3D Anexo 1: valor absoluto o módulo El valor absoluto o módulo de un número a, que se anota a, es la

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso

SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso ÁLGEBRA LINEAL Y GEOMETRÍA Eamen Ordinario : 6--7 Grado en Matemáticas Curso 6-7 SOLUCIONES Dados tres puntos distintos alineados A, A, A A R, al número real r tal que A A = r A A lo llamaremos raón simple

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito

Más detalles

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio.

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio. Ls cónics responden l ecución generl del tipo F, ) 0 L ecución generl de un cónic es: A B C D E F 0 I) tér min oc cudráti cos tér min os lineles tér min o independiente B término rectngulr, cundo prece

Más detalles

FUNCIONES DE VARIAS VARIABLES

FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLES Deinición: Si D es un conjunto de n-uplas de números reales... n una unción de valores reales sobre es una regla que asigna un número real w... n a cada elemento de D donde

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

1 CUÁDRICAS Cuádricas. Estudio particular. 1 x y z. 1 x y z. a 00 a 01 a 02 a 03 a 10 a 11 a 12 a 13 a 20 a 21 a 22 a 23 a 30 a 31 a 32 a 33

1 CUÁDRICAS Cuádricas. Estudio particular. 1 x y z. 1 x y z. a 00 a 01 a 02 a 03 a 10 a 11 a 12 a 13 a 20 a 21 a 22 a 23 a 30 a 31 a 32 a 33 CUÁDRICAS. CUÁDRICAS.. Cuádricas. Estudio particular. Una cuádrica se dene como el lugar geométrico de los puntos del espacio euclídeo que, respecto de una referencia cartesiana rectangular, satisfacen

Más detalles

DERIVADA DE UNA FUNCIÓN REAL

DERIVADA DE UNA FUNCIÓN REAL Unidad didáctica 7 Funcines reales de variable real Autras: Glria Jarne, Esperanza Minguillón, Trinidad Zabal DERIVADA DE UNA FUNCIÓN REAL CONCEPTOS BÁSICOS Dada una función real y f( ) y un punt D en

Más detalles

FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre:

FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre: Nomre: FÍSICA APLICADA. EXAMEN A. ABRIL 03. MODELO A TEORÍA (.5 p) A) Teorem de Guss. Enuncido y explicción reve. B) Un crg de C se encuentr en el centro de un cuo de m de ldo. Cmirá el flujo eléctrico

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31)

Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31) Dibujo Trazado de Curvas cónicas Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31) Fig. 31 Una superficie cónica de revolución es

Más detalles

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA MAESTRÍA EN ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES CURSO: ENSEÑANZA DE LA FÍSICA MECÁNICA- MÓDULO # 3: MOVIMIENTO

Más detalles

UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS

UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS RAZONES Y PROPORCIONES DEFINICIONES RAZÓN: L rzón entre dos números reles y, (0), es el cociente entre y, es decir. Tmién se escrie: /,, :. PROPIEDADES

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales CAPÍTULO 3 Sistemas de ecuacines lineales 3.1 SISTEMAS DE ECUACIONES CON DOS VARIABLES 3.2 MÉTODO DE ELIMINACIÓN DE GAUSS 3.3 SISTEMAS CON n VARIABLES, n 3 3.4 APLICACIONES SELECTAS 3.5 NOTAS FINALES Términs

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

b) En qué se diferencia la gráfica de un elipsoide que tiene un par semiejes iguales, con la de otro elipsoide cuyos semiejes son todos distintos?

b) En qué se diferencia la gráfica de un elipsoide que tiene un par semiejes iguales, con la de otro elipsoide cuyos semiejes son todos distintos? Unidad Trabajo Práctico Superficies en 3D 01 CONOCIMIENTOS PREVIOS PARA SUPERFICIES Es necesario que sepas: - operar con expresiones algebraicas - resolver sistemas de ecuaciones e interpretar sus soluciones

Más detalles

ANÁLISIS DE CIRCUITOS

ANÁLISIS DE CIRCUITOS ANÁLISIS DE CIRCITOS GRADO EN ELECTRÓNICA Y ATOMÁTICA INDSTRIAL CRSO 2011-12 TEMA 3. SISTEMAS TRIFÁSICOS PARTE I Prfesr: Frnis J. Cell Allá Desph: S333 Emil: fjvier.ell@uh.es 1 TEMA 3. SISTEMAS TRIFÁSICOS

Más detalles

Nombre: Nº. Ejercicio nº 1.- Traza la mediatriz de estos segmentos y responde: Qué tienen en común todos los puntos de esa recta que has trazado?

Nombre: Nº. Ejercicio nº 1.- Traza la mediatriz de estos segmentos y responde: Qué tienen en común todos los puntos de esa recta que has trazado? Nmbre: Nº Ejercici nº 1.- Traza la mediatriz de ests segments y respnde: Qué tienen en cmún tds ls punts de esa recta que has trazad? Ejercici nº 2.- Ejercici nº 3.- Tiene algún eje de simetría esta figura?

Más detalles

Números complejos ACTIVIDADES. a) a = = 3 b = 0 b) a = 0 4a 2b = 2 b = 1. a) y = 0 b) x = 0 c) x 0, y 0

Números complejos ACTIVIDADES. a) a = = 3 b = 0 b) a = 0 4a 2b = 2 b = 1. a) y = 0 b) x = 0 c) x 0, y 0 Númers cmplejs ACTIVIDADES a) a = + = b = 0 b) a = 0 a b = b = a) y = 0 b) x = 0 c) x 0, y 0 a) Opuest: + i Cnjugad: + i e) Opuest: i Cnjugad: i b) Opuest: + i Cnjugad: + i f) Opuest: 7 Cnjugad: 7 c) Opuest:

Más detalles

geometria proyectiva primer cuatrimestre 2003 Práctica 5

geometria proyectiva primer cuatrimestre 2003 Práctica 5 geometri proyectiv primer cutrimestre 2003 Práctic 5 1. Encontrr un curv prmetrizd α cuy trz se el círculo x 2 + y 2 = 1, que lo recorr en el sentido de ls gujs del reloj y tl que α(0) = (0, 1). 2. Se

Más detalles

Respuestas ejercicios edición 2007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1

Respuestas ejercicios edición 2007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1 Editorial Mc Graw Hill. Edición 007 Respuestas ejercicios edición 007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1 a) Simetría respecto de ambos ejes y respecto del origen. b) Simetría respecto

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES Unidad didáctica 7. Funcines reales de variable real Autras: Glria Jarne, Esperanza Minguillón, Trinidad Zabal REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES CRECIMIENTO Y DECRECIMIENTO Dada una función real

Más detalles