FÍSICA Y QUÍMICA Solucionario CINEMÁTICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FÍSICA Y QUÍMICA Solucionario CINEMÁTICA"

Transcripción

1 FÍSICA Y QUÍMICA Solucionario CINEMÁTICA

2 1.* Indicad qué tipo o tipos de movimiento corresponden a cada afirmación. a) MRU b) MRUA c) MCU d) Caída libre e) No hay movimiento 1.1. Una piedra lanzada desde un edificio alto. b, d 1.2. Un coche que arranca al ponerse el semáforo verde. b 1.3. Las aspas de un molino de viento. c 1.4. La niña que está sentada en su silla del coche mientras su padre la lleva al colegio, respecto a su padre. e 1.5. Las maletas en la cinta transportadora de los aeropuertos. a 1.6. Una chica que está en una escalera mecánica, respecto a su acompañante de la escalera. e 1.7. La pelota en el saque inicial de un partido de baloncesto. b, d 1.8. Un satélite en órbita alrededor de nuestro planeta. c 1.9. Un avión que vuela a velocidad de crucero mientras cruza el Atlántico. a 1.10 Un coche que frena para no chocar con el camión que tiene delante. b 2.* Einstein debe coger un globo antes de que éste alcance el suelo. Para ello utiliza una cinta transportadora, pero debe asegurarse de llegar en el momento preciso. Sabiendo que el globo se encuentra a 45 metros y que caerá pasados 5 s, qué velocidad debe tener la cinta? Respuesta: Una velocidad de 9 m/s. 3.* Einstein va a recorrer en bicicleta una distancia de 128 m con una velocidad de 8 m/s. Cuántos segundos tardará en cubrir dicha distancia? Respuesta : Tardará 16 s. 4.* Queréis gastarle una broma a Einstein tirándole un globo de pintura encima. Sabiendo que la cinta sobre la que se desplaza va a una velocidad de 7 m/s y que el globo caerá pasado 8 s, a qué distancia deberíais colocarlo? Respuesta : A 56 m. 5.** Dos coches parten a la misma hora desde dos pueblos (A y B) separados por una distancia de 24 km. La velocidad del primer coche es de 50 km/h y la del segundo de 70 km/h. En qué punto del recorrido se encontrarán? Respuesta : A 10 km del pueblo A y al cabo de 0,2 h. Si ambos coches parten a las horas, a qué hora se encontrarán? Respuesta : Se encuentran a las horas. CINEMÁTICA 1

3 6.*** Un ladrón acaba de robar un banco y huye en una moto a una velocidad de 90 km/h. Un minuto y medio después sale en su persecución un coche de policía a 144 km/h. Si la huida tuvo lugar a las h, a qué hora alcanzará al ladrón la policía? Respuesta : Lo alcanzará a las horas y 40 s. Qué distancia habrá recorrido el ladrón antes de ser detenido por la policía? Respuesta : Habrá recorrido 4 km. 7.** Hoy he decidido ir a clase haciendo footing. Mi casa se encuentra en la misma calle que la escuela, exactamente a m. A qué velocidad debería correr como mínimo si son las 7.55 h y la clase empieza a las 8.00 h? (Expresad el resultado en m/s.) Respuesta: Como mínimo a una velocidad de 6 m/s. 8.*** Estoy en el aeropuerto y para llegar de una punta a la otra de la terminal, de donde sale mi avión, debo subir a una cinta transportadora sobre la que no puedo caminar porque hay mucha gente. Si la cinta se mueve a 1,5 m/s y mide 300 m de longitud, cuánto tardaré en llegar al final? (Expresad el resultado en segundos.) Respuesta: Se necesitan 200 s para llegar al final de la cinta. Si mi avión sale en 3 minutos, llegaré a tiempo? Respuesta: Tres minutos son 180 s, por lo tanto no llegará a tiempo. 9.*** Un coche de policía circula por una calle a 30 km/h. Un ladrón que acaba de robar un banco en esa misma calle, 2 km más arriba, corre sin saberlo en dirección al coche de policía a una velocidad de 10 km/h, en busca de su escondite. Si su escondite se encuentra a 600 m del banco, se topará antes con la policía?si es así, a qué distancia (en metros) del banco? Respuesta: Sí, topará con la policía cuando haya recorrido 500 m por lo tanto, aún le quedarían 100 m para llegar a su escondite. 10.* Einstein arranca un coche y sale con una aceleración de 2 m/s 2. Qué distancia habrá recorrido al cabo de 20 s? Respuesta: Habrá recorrido 400 m. Qué distancia (en metros) habría recorrido el coche si hubiese tenido una velocidad inicial de 18 km/h? Respuesta: Habría recorrido 500 m. 11.** Un avión recorre 1 km en 20 s. Sabiendo que su velocidad inicial era de 108 km/h, qué aceleración debería tener? Respuesta: Ha llevado una aceleración de 2 m/s 2. Qué tiempo (en segundos) habría tardado en recorrer m? Respuesta: Habría tardado 35 s. 12.** Un avión y un coche miden sus fuerzas en una carrera de 1,6 km. El avión tiene una velocidad inicial de 108 km/h y una aceleración de 1 m/s 2. El coche lo hace desde el reposo. Qué aceleración deberá tener el coche para llegar a la meta al mismo tiempo que el avión? Respuesta: Como mínimo una aceleración de 2,8 m/s 2. CINEMÁTICA 2

4 13.** Dos coches parten a la misma hora desde dos pueblos (A y B) separados por una distancia de 20 km. La aceleración del primer coche es de 2 m/s 2 y la del segundo de 3 m/s 2. En qué punto del recorrido se encontrarán? Respuesta: Se encontraran a una distancia de 8 km desde el primer pueblo. Si ambos coches parten a las h, a qué hora se encontrarán? (Redondead por exceso los minutos para indicar el resultado.) Respuesta: Se encontrarían a las h. 14.** Un ladrón acaba de robar un banco y huye en una moto a una velocidad de 90 km/h. 40 s después sale en su persecución un coche de policía con una aceleración de 7,5 m/s 2. Cuántos segundos transcurren hasta que alcance al ladrón? Respuesta: Transcurren un minuto y medio, 90 s. Qué distancia habrá recorrido el ladrón antes de ser detenido por la policía? Respuesta: Habrá recorrido 900 m. 15.** Einstein circula por la autopista imprudentemente a 126 km/h. De repente, ve a 80 m por delante suyo un camión que se ha detenido en medio de la calzada. Pisa inmediatamente el freno a fondo, consiguiendo una aceleración de -4 m/s 2. Podrá evitar la colisión con el camión? Respuesta: No se podrá evitar la colisión. Qué velocidad máxima debería llevar en km/h para evitar el accidente? Respuesta: Es necesario que vaya a menos de 91,1 km/h para poder evitar el accidente. 16.*** Un coche de policía circula por la autopista a 90 km/h. A las h recibe un aviso de un atraco en un banco y acelera hasta 126 km/h en 10 s. Al cabo de 5 min más, le avisan por radio de que el atraco ya ha sido controlado y puede volver a la tranquilidad. Reduce la velocidad entonces a 72 km/h en 30 s. Al cabo de 10 min ve un coche parado en el arcén, pisa el freno y se detiene en 40 s. Qué distancia ha recorrido desde las h? (Expresad el resultado en metros.) Respuesta: Ha recorrido m. 17.** Un cohete de la NASA es lanzado verticalmente con una aceleración constante de 6 m/s 2. A qué altura se encontrará al cabo de 2 m? (Expresad el resultado en metros.) Respuesta: Se encuentra a una altura de m. 18.** Un coche de F1 que va en primera posición sale de la última curva de un circuito y entonces acelera a fondo en la recta final con una aceleración constante de 4 m/s 2. Si la meta se encuentra a 402 m y tarda 6 s en llegar, a qué velocidad salió de la curva? (Expresad el resultado en km/h.) Respuesta: Sale a una velocidad de 198 km/h. 19.* Galileo lanza una bola de plomo desde una altura de 78,4 m. Cuánto tiempo tardará en alcanzar el suelo? (Considerad despreciable la resistencia del aire; g = 9,8 m/s 2.) Respuesta: Tardará 4 s. CINEMÁTICA 3

5 20.* Un helicóptero de salvamento que vuela a 400 m de altitud deja caer una caja llena de material médico. Por desgracia, el paracaídas de la caja no se abre y podemos considerar despreciable la resistencia al aire. Cuánto tardará en llegar al suelo? (g = 9,8 m/s 2 ) Con qué velocidad impactará? Respuesta: Impactará con el suelo a una velocidad de 88,5 m/s y tardará 9,04 s en llegar. 21.*** Un paracaidista debe infiltrarse en el campo enemigo y por ello debe realizar un salto abriendo el paracaídas justo en el punto de no retorno (la altura a partir de la cual resulta peligroso no haber abierto el paracaídas antes). Si salta desde los 900 m de altura (el avión vuela bajo para no ser localizado por los radares) y el punto crítico se encuentra a 410 m, cuánto tiempo deberá esperar desde que salte hasta abrir el paracaídas? (Considerad despreciable el rozamiento; g = 9,8 m/s2.) Respuesta: Tendrá que esperar 10 s. 22.** Estamos en la Luna y dejamos caer un ladrillo y una pluma a la vez desde una altura de 3,2 m. Los dos objetos tardan 2 s en tocar el suelo. Cuál es la aceleración de la gravedad en la Luna? Con qué velocidad chocan contra el suelo? (m/s) Respuesta: La aceleración de la gravedad en la luna es de 1,6 m/s 2. Los objectos tocan el suelo a 3,2 m/s. Por qué los dos objetos caen a la vez? a) Porque en la Luna la gravedad es menor que en la Tierra. b) Porque en la Luna no hay aire y por lo tanto no hay fricción. c) Porque en la Luna todas las cosas pesan lo mismo. 23.** Estamos en Marte, donde la aceleración de la gravedad es de 3,7 m/s2. Si lanzamos una piedra hacia arriba verticalmente con una velocidad de 18,5 m/s, cuánto tardará en volver a nuestra mano? A qué altura (en metros) llegará? Respuesta: Tardará 10 s y llegará a una altura de 46,25 m. Y si lanzamos la misma piedra con la misma velocidad en la Tierra (despreciando el efecto del aire), a qué altura llegaría? Respuesta: Llegaría hasta una altura de 17,46 m. 24.** Einstein lanza una piedra hacia arriba con una velocidad de 14 m/s. Qué altura alcanzará? (Considerad despreciable la resistencia del aire; g = 9,8 m/s 2.) Respuesta: Alcanzará una altura de 10 m. Cuántos segundos transcurren desde que Einstein lanza la piedra hasta que la vuelve a recoger? Respuesta: Pasarán 2,86 s. 25.*** Einstein debe lanzar una piedra hacia arriba para que la coja Galileo. Sabiendo que la altura a la que se encuentra éste es de 10 m, con qué velocidad inicial se debe lanzar la piedra para que alcance dicha altura? (Considerad despreciable la resistencia del aire; g = 9,8 m/s 2.) Respuesta: La tiene que lanzar a una velocidad de 14 m/s como mínimo. CINEMÁTICA 4

6 26.*** Un proyectil disparado verticalmente hacia arriba en un planeta que no es la Tierra describe un movimiento representado por las siguientes gráficas x(t) y v(t). a) Cuál es su velocidad inicial? 25 m/s b) Qué altura máxima alcanza? 24 m c) Cuánto tiempo tarda en alcanzar la máxima altura? 2 s d) Qué velocidad registra al cabo de 1 s tras el lanzamiento? 12,5 m/s e) Cuál es su aceleración? -12,5 m/s 2 27.*** Nos encontramos en la cima de un acantilado en el planeta Mercurio. Dejamos caer una pelota de tenis y observamos su movimiento, que queda descrito por las gráficas siguientes: a) Cuál es su velocidad inicial (m/s)? 0 m/s b) Cuánto tiempo tarda en llegar al suelo (s)? 10 s c) Qué velocidad registra justo antes de tocar el suelo (m/s)? - 37, 5 m/s d) Cuál es la aceleración de la gravedad en Mercurio (m/s 2 )? Aproximadamente de 3,75 m/s 2 28.** Un coche de F1 circula por un circuito en forma de circunferencia de radio 200 m a 180 km/h. Cuánto tarda en dar una vuelta entera? (Expresadlo en segundos.) Respuesta: Tardará 25,13 s. Cuál es su velocidad angular en rad/s? Respuesta: Se mueve a una velocidad de 0,126 rad/s. CINEMÁTICA 5

7 29.** Una rueda de radio 0,4 m gira a 2 revoluciones por s. Qué distancia recorrería en 5 s? Cuál es su velocidad angular en rad/s? Respuesta: Recorrerá 5,03 m con una velocidad angular de 12,6 rad/s. 30.*** La rueda delantera de un velocípedo tiene un radio de 0,5 m, mientras que el radio de la trasera mide 0,2 m. Si recorremos 314 m en este velocípedo, cuántas vueltas habrá dado cada rueda? Respuesta: La grande habrá dado 99,5 vueltes y la pequeña habrá dado 249,5. Si recorremos estos 314 m en 40 s, qué velocidad angular llevaba la rueda delantera? Y la trasera? (Expresadlo en rad/s.) Respuesta: La de delante se mueve a 15,7 rad/s y la de detrás a 39,25 rad/s. Qué velocidad lineal llevaba un punto cualquiera en la superficie de cada rueda? (Expresadlo en m/s.) Respuesta: Un punto de cualquiera de las dos ruedas va a 7,85 m/s. 31.** Dos coches de F1 entran a la vez en una curva con forma de media circunferencia al final de la cual se encuentra la meta. El que circula por fuera (rojo) va a 33 m/s y gira con un radio de 30 m. El que circula por dentro (azul), a 30 m/s, con un radio de 25 m. Quién ganará la carrera? Respuesta: Ganará el coche azul. Calculad las velocidades angulares de cada coche en rad/s. Cuánto tardará en llegar a la meta el ganador? (Expresadlo en segundos.) Respuesta: El coche azul va a 1,2 rad/s y el rojo a 1,1 rad/s. El ganador (azul) tardará 2,61 s en llegar a la meta desde el momento en el que entra en la última curva. 32.*** La Tierra gira sobre su propio eje dando una vuelta cada día. En el Ecuador, la distancia al eje de rotación es igual al radio del planeta: km, aproximadamente. Y en Barcelona, la distancia al eje de rotación es de unos km. A qué velocidad lineal en km/h nos desplazaríamos respecto al eje de la Tierra si estuviéramos Barcelona? Y si nos encontráramos en el Ecuador? Respuesta: En Barcelona nos desplazamos a 1.256,64 km/h y en el Ecuador a 1.667,7 km/h. 33.*** La Tierra gira alrededor del Sol describiendo una órbita prácticamente circular (para el cálculo que haréis podéis aproximarla a una circunferencia). Si la Tierra se encuentra a 150 millones de km del Sol y tarda un año aproximadamente en dar una vuelta, a qué velocidad lineal viaja la Tierra por el espacio? Expresadlo en km/h y prescindid de los decimales. Respuesta: La Tierra viaja a ,8 km/h. 34.** Indicad si las siguientes afirmaciones son verdaderas o falsas Se puede producir un movimiento que tenga t = 3s. f La aceleración en la caída libre equivale a la gravedad del planeta o lugar donde se encuentre el cuerpo. v La rapidez y la velocidad son dos palabras que definen la misma cosa. f En las gráficas x-t la línea representa la velocidad en todos los casos. f Una aceleración puede ser negativa por dos motivos: porque se frena o porque se circula hacia atrás. v En el MRUA la trayectoria siempre coincide con el desplazamiento. f En el punto más alto al que sube un objeto lanzado hacia arriba, la velocidad y la aceleración son 0. f CINEMÁTICA 6

Ejercicios de cinemática

Ejercicios de cinemática Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado

Más detalles

CINEMÁTICA I FYQ 1º BAC CC.

CINEMÁTICA I FYQ 1º BAC CC. www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula

Más detalles

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada? Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;

Más detalles

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO Estrategia a seguir para resolver los ejercicios. 1. Lea detenidamente el ejercicio las veces que necesite, hasta que tenga claro en qué consiste y qué es lo

Más detalles

Problemas de Cinemática. Movimiento rectilíneo uniforme y uniformemente variado. Cinemática

Problemas de Cinemática. Movimiento rectilíneo uniforme y uniformemente variado. Cinemática Problemas de Cinemática Movimiento rectilíneo uniforme y uniformemente variado 1.- Un móvil recorre una recta con velocidad constante. En los instantes t1= 0,5s. y t2= 4s. sus posiciones son: X1= 9,5cm.

Más detalles

Tema 1. Movimiento de una Partícula

Tema 1. Movimiento de una Partícula Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento

Más detalles

www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO:

www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO: Estes exercicios foron sacados de www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO: 1- Define brevemente los siguientes conceptos: Posición. Trayectoria. Espacio recorrido. Desplazamiento Velocidad

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS LOS MOVIMIENTOS ACELERADOS EJERCICIOS PROPUESTOS. Cuando un motorista arranca, se sabe que posee un movimiento acelerado sin necesidad de ver la gráfica s-t ni conocer su trayectoria. Por qué? Porque al

Más detalles

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j. IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

3 Estudio de diversos movimientos

3 Estudio de diversos movimientos 3 Estudio de diversos movimientos EJERCICIOS PROPUESTOS 3.1 Un excursionista, de pie ante una montaña, tarda 1,4 s en oír el eco de su voz. Sabiendo que el sonido viaja en el aire a velocidad constante

Más detalles

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos

Más detalles

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO 1) Si la velocidad de una partícula es constante Puede variar su momento angular con el tiempo? S: Si, si varía el valor del vector de posición. 2) Una

Más detalles

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)

Más detalles

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento

Más detalles

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

LANZAMIENTOS VERTICALES soluciones

LANZAMIENTOS VERTICALES soluciones LANZAMIENTOS VERTICALES soluciones 1.- Desde un puente se lanza una piedra con una velocidad inicial de 10 m/s y tarda 2 s en llegar al agua. Calcular la velocidad que lleva la piedra en el momento de

Más detalles

Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo.

Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo. 1. EL MOVIMIENTO Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo. Por ejemplo: el coche que se mueve cambia de posición respecto a unos

Más detalles

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO IAJANDO EN EL TELEFÉRICO EJERCICIO PRÁCTICO PARA APRENDER Y DIERTIRE CUADERNO DEL ALUMNO DECRIPCIÓN Un viaje tranquilo y sin sobresaltos de 2,4km de longitud a través del cielo de Madrid alcanzando una

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS Un arquero dispara una flecha que produce un fuerte ruido al chocar contra el blanco. La velocidad media de la flecha es de 150 m/s. El arquero escucha

Más detalles

CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO

CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO CINEMATICA El objetivo de este tema es describir los movimientos utilizando un lenguaje científico preciso. En la primera actividad veremos qué magnitudes se necesitan introducir para lograr este objetivo.

Más detalles

A) Posición, velocidad, desplazamiento, espacio recorrido: MRU

A) Posición, velocidad, desplazamiento, espacio recorrido: MRU A) Posición, velocidad, desplazamiento, espacio recorrido: MRU 1.- Un móvil se mueve sobre un plano horizontal de la siguiente forma: primero 5 m hacia el norte, a continuación 3 m al oeste, seguido de

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

A continuación voy a colocar las fuerzas que intervienen en nuestro problema.

A continuación voy a colocar las fuerzas que intervienen en nuestro problema. ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta

Más detalles

Campo Gravitatorio Profesor: Juan T. Valverde

Campo Gravitatorio Profesor: Juan T. Valverde 1.- Energía en el campo gravitatorio -1 http://www.youtube.com/watch?v=cec45t-uvu4&feature=relmfu 2.- Energía en el campo gravitatorio -2 http://www.youtube.com/watch?v=wlw7o3e3igm&feature=relmfu 3.- Dos

Más detalles

PRIMERA EVALUACIÓN. Física del Nivel Cero A

PRIMERA EVALUACIÓN. Física del Nivel Cero A PRIMERA EVALUACIÓN DE Física del Nivel Cero A Marzo 9 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 70 puntos, consta de 32 preguntas de opción múltiple

Más detalles

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO.

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO. COLEGIO HISPANO-INGLÉS SIMULACRO. SEMINARIO DE FÍSICA Y QUÍMICA 1.- Las ecuaciones de la trayectoria (componentes cartesianas en función de t de la posición) de una partícula son x=t 2 +2; y = 2t 2-1;

Más detalles

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco?

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? 8 ENERGÍA Y TRABAJO EJERCICIOS PROPUESTOS 8.1 Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? Parte de la energía cinética del viento se transfiere a las

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O.

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O. EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º La finalidad de este trabajo implica tres pasos: a) Leer el enunciado e intentar resolver el problema sin mirar la solución.

Más detalles

Cinemática en una dimensión

Cinemática en una dimensión Capítulo 2. Cinemática en una dimensión La meánica, la más antiüa de las ciencias físicas es el estudio del movimiento de los cuerpos. 1. Distinción entre cinemática y dinámica Cuando describimos el mvimiento

Más detalles

Tema 1: Campo gravitatorio

Tema 1: Campo gravitatorio Tema 1: Campo gravitatorio 1. Masa: Definición. Conservación. Cuantificación. 2. Teorías geocéntricas y heliocéntricas 3. Las leyes de Kepler 4. Interacción entre masas: fuerza gravitatoria La ley de la

Más detalles

Problemas de Cinemática 1 o Bachillerato

Problemas de Cinemática 1 o Bachillerato Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una

Más detalles

1. CARACTERÍSTICAS DEL MOVIMIENTO.

1. CARACTERÍSTICAS DEL MOVIMIENTO. Tema 6. Cinemática. 1 Tema 6. CINEMÁTICA. 1. CARACTERÍSTICAS DEL MOVIMIENTO. 1.- Indica por qué un motorista que conduce una moto siente viento en su cara aunque el aire esté en calma. (2.R1) 2.- Se ha

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA PAU FÍSICA LA RIOJA - CUESTIONES 1. Si un cuerpo pesa 100 N cuando está en la superficie terrestre, a qué distancia pesará la mitad? Junio 95 2. Sabiendo que M Luna = M Tierra

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas 1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad

Más detalles

Campo Gravitatorio Profesor: Juan T. Valverde

Campo Gravitatorio Profesor: Juan T. Valverde 1.- Energía en el campo gravitatorio -1 http://www.youtube.com/watch?v=cec45t-uvu4&feature=relmfu 2.- Energía en el campo gravitatorio -2 http://www.youtube.com/watch?v=wlw7o3e3igm&feature=relmfu 3.- Dos

Más detalles

Movimiento en dos y tres dimensiones. Teoría. Autor:

Movimiento en dos y tres dimensiones. Teoría. Autor: Movimiento en dos y tres dimensiones Teoría Autor: YeissonHerney Herrera Contenido 1. Introducción 1.1. actividad palabras claves unid 2. Vector posición 2.1. Explicación vector posición 2.2. Animación

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

Ejercicios resueltos de movimiento circular uniformemente acelerado

Ejercicios resueltos de movimiento circular uniformemente acelerado Ejercicios resueltos de movimiento circular uniformemente acelerado 1) Una rueda de 50cm de diámetro tarda 10 segundos en adquirir una velocidad constante de 360rpm. a) Calcula la aceleración angular del

Más detalles

Qué es una fuerza? Cómo se relaciona con el movimiento?

Qué es una fuerza? Cómo se relaciona con el movimiento? Qué es una fuerza? Cómo se relaciona con el movimiento? Prof. Bartolomé Yankovic Nola, 2012 1 Cuando pateamos una pelota o empujamos una mesa, podemos afirmar que se está ejerciendo o se ha ejercido una

Más detalles

Para revisarlos ponga cuidado en los paréntesis. No se confunda.

Para revisarlos ponga cuidado en los paréntesis. No se confunda. Ejercicios MRUA Para revisarlos ponga cuidado en los paréntesis. No se confunda. 1.- Un cuerpo se mueve, partiendo del reposo, con una aceleración constante de 8 m/s 2. Calcular: a) la velocidad que tiene

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento De las gráficas. Indica aquellas que presentan movimiento rectilíneo uniforme así como las que pertenecen al movimiento rectilíneo uniformemente acelerado Observa el diagrama del centro y determina cual

Más detalles

INTERPRETACIÓN DE GRÁFICAS

INTERPRETACIÓN DE GRÁFICAS INTERPRETACIÓN DE GRÁFICAS Ejercicio nº 1.- La siguiente gráfica representa una excursión en autobús de un grupo de estudiantes, reflejando el tiempo (en horas) y la distancia al instituto (en kilómetros):

Más detalles

ESTUDIO DEL MOVIMIENTO.

ESTUDIO DEL MOVIMIENTO. TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas

Más detalles

Ejercicios resueltos de cinemática

Ejercicios resueltos de cinemática Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

CUESTIONARIOS FÍSICA 4º ESO

CUESTIONARIOS FÍSICA 4º ESO DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 3 Fuerzas y movimientos circulares Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Cuestionarios

Más detalles

GUÍA DE PROBLEMAS Nº 1: CINEMÁTICA DE LA PARTÍCULA

GUÍA DE PROBLEMAS Nº 1: CINEMÁTICA DE LA PARTÍCULA GUÍA DE PROBLEMAS Nº 1: PROBLEMA Nº 1: Un agrimensor realiza el siguiente recorrido por un campo: Primero camina 250m hacia el este; a partir de allí, se desvía 30º al Sur del Este y camina 500m; finalmente

Más detalles

TRABAJO Y ENERGÍA - EJERCICIOS

TRABAJO Y ENERGÍA - EJERCICIOS TRABAJO Y ENERGÍA - EJERCICIOS Hallar la energía potencial gravitatoria adquirida por un alpinista de 80 kg que escala una montaña de.00 metros de altura. Epg mgh 0,5 kg 9,8 m / s 0,8 m 3,9 J Su energía

Más detalles

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS 1 DIFICULTAD BAJA 1. Qué magnitud nos mide la rapidez con la que se producen los cambios de posición durante un movimiento? Defínela. La velocidad media.

Más detalles

Aceptar las diferencias corporales. Reconocer y aceptar su identidad corporal Respetar a todos los compañeros.

Aceptar las diferencias corporales. Reconocer y aceptar su identidad corporal Respetar a todos los compañeros. MI LATERALIDAD 1.- OBJETIVOS: - Afirmar la lateralidad. - Mejorar las aptitudes perceptivo motrices de lateralidad y direccionalidad. - Desarrollar las aptitudes de lateralidad e imagen corporal ( reconocer

Más detalles

Movimiento Rectilíneo Uniforme

Movimiento Rectilíneo Uniforme Movimiento Rectilíneo Uniforme 1. Teoría La mecánica es la parte de la física encargada de estudiar el movimiento y el reposo de los cuerpos, haciendo un análisis de sus propiedades y causas. La mecánica

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando: PONTIFICIA UNIERSIA CATOLICA MARE Y MAESTA EPARTAMENTO E CIENCIAS BASICAS. INTROUCCION A LA FISICA Prof. Remigia Cabrera Unidad I. TRABAJO Y ENERGIA 1. emuestre que la energía cinética en el movimiento

Más detalles

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 3 LAS FUERZAS Y EL MOVIMIENTO EJERCICIOS PROPUESTOS 3.1 Un malabarista juega con varias pelotas lanzándolas hacia arriba y volviéndolas a coger. Indica cuándo actúan fuerzas a distancia y cuándo por contacto

Más detalles

ESPECIALIDADES : GUIA DE PROBLEMAS N 3

ESPECIALIDADES : GUIA DE PROBLEMAS N 3 ASIGNATURA : ESPECIALIDADES : Ing. CIVIL Ing. MECANICA Ing. ELECTROMECANICA Ing. ELECTRICA GUIA DE PROBLEMAS N 3 2015 1 GUIA DE PROBLEMAS N 3 PROBLEMA Nº1 Un carro de carga que tiene una masa de 12Mg es

Más detalles

RELOJ PRIMIGENIO. Un juego de apuestas, faroleo y press your luck de 3 a 5 jugadores.

RELOJ PRIMIGENIO. Un juego de apuestas, faroleo y press your luck de 3 a 5 jugadores. RELOJ PRIMIGENIO Un juego de apuestas, faroleo y press your luck de 3 a 5 jugadores. - Materiales 1 Baraja Primigenia Estas reglas o una imagen para tener las cartas de referencia con las que se forma

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales

El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales By Luis Mederos Como todos sabemos, alrededor del 21 de Diciembre se produce el solsticio de invierno (en el hemisferio norte).

Más detalles

CALENTAMIENTO. Autor/a. Aranzazu Muguruza

CALENTAMIENTO. Autor/a. Aranzazu Muguruza Autor/a Aranzazu Muguruza Calentamiento y Reconocimiento del terreno de juego DEFINICIÓN Cuando nos planteamos realizar cualquier actividad física (en este caso el baloncesto), debemos poner en marcha

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

Recordando la experiencia

Recordando la experiencia Recordando la experiencia Lanzadera Cohete En el Taller de Cohetes de Agua cada alumno, individualmente o por parejas construisteis un cohete utilizando materiales sencillos y de bajo coste (botellas d

Más detalles

TRABAJO Y ENERGIA MECANICA

TRABAJO Y ENERGIA MECANICA TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)

Más detalles

Respuestas a las preguntas conceptuales.

Respuestas a las preguntas conceptuales. Respuestas a las preguntas conceptuales. 1. Respuesta: En general es más extensa la distancia recorrida. La distancia recorrida es una medición que pasa por todos los puntos de una trayectoria, sin embargo

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

Examen de TEORIA DE MAQUINAS Junio 94 Nombre...

Examen de TEORIA DE MAQUINAS Junio 94 Nombre... Examen de TEORIA DE MAQUINAS Junio 94 Nombre... El robot plano de la figura transporta en su extremo una masa puntual de magnitud 5M a velocidad constante horizontal de valor v. Cada brazo del robot tiene

Más detalles

Con una serie de leyes muy sencillas pudo sintetizar y explicar entre otras cosas los fundamentos de la dinámica clásica. Pero: Qué es la dinámica?

Con una serie de leyes muy sencillas pudo sintetizar y explicar entre otras cosas los fundamentos de la dinámica clásica. Pero: Qué es la dinámica? 4 año secundario Leyes de Newton Isaac newton (1642-1727), es considerado por los historiadores como un verdadero revolucionario en lo que se refriere a las ciencias y en particular a las ciencias naturales.

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

Problemas resueltos. Problema 1. Problema 2. Problema 3. Problema 4. Solución. Solución. Solución.

Problemas resueltos. Problema 1. Problema 2. Problema 3. Problema 4. Solución. Solución. Solución. Problemas resueltos Problema 1. Con una llave inglesa de 25 cm de longitud, un operario aplica una fuerza de 50 N. En esa situación, cuál es el momento de torsión aplicado para apretar una tuerca? Problema

Más detalles

COLOMO R e g l a m e n t o

COLOMO R e g l a m e n t o COLOMO Reglamento C O L O M O Rojo, Naranja, amarillo, azul, púrpura Todo el mundo conoce los colores del arco iris. Estos colores son las estrellas de todos los juegos incluidos en Colomo. En estas reglas

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

PROBLEMAS CINEMÁTICA

PROBLEMAS CINEMÁTICA 1 PROBLEMAS CINEMÁTICA 1- La ecuación de movimiento de un cuerpo es, en unidades S.I., s=t 2-2t-3. Determina su posición en los instantes t=0, t=3 y t=5 s y calcula en qué instante pasa por origen de coordenadas.

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme

Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme Ejercicios resueltos de Movimiento rectilíneo uniforme 1) Pasar de unidades las siguientes velocidades: a) de 36 km/h a m/s b) de 10 m/s a km/h c) de 30 km/min a cm/s d) de 50 m/min a km/h 2) Un móvil

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

EJERCICIOS DE REPASO DE LA PRIMERA EVALUACIÓN

EJERCICIOS DE REPASO DE LA PRIMERA EVALUACIÓN EJERCICIOS DE REPASO DE LA PRIMERA EVALUACIÓN 2º ESO TEMA 1: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los alumnos de 2º A y 2º B que son 28 y 24 respectivamente van a hacer un trabajo en grupos para la clase

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.

Más detalles

Conceptos básicos: movimiento, trayectoria, y desplazamiento

Conceptos básicos: movimiento, trayectoria, y desplazamiento Conceptos básicos: movimiento, trayectoria, y desplazamiento 1. El movimiento: cambio de posición Prof. Bartolomé Yankovic Nola 1 Cómo procedemos cuando nos piden los datos de ubicación de objetos? Podemos

Más detalles

Juan de la Cruz González Férez

Juan de la Cruz González Férez Curso 0: Matemáticas y sus Aplicaciones Vectores, Bases y Distancias Aplicaciones Juan de la Cruz González Férez IES Salvador Sandoval Las Torres de Cotillas (Murcia) 2012 Composición de movimientos Los

Más detalles

x 0 1 2 3 4 y = 2x 0 2 4 6 8

x 0 1 2 3 4 y = 2x 0 2 4 6 8 Función lineal La función lineal es del tipo: y = mx Su gráfica es una línea recta que pasa por el origen de coordenadas. y = 2x x 0 1 2 3 4 y = 2x 0 2 4 6 8 1 Pendiente La pendiente es la inclinación

Más detalles

2.3 MOVIENTO CIRCULAR UNIFORME

2.3 MOVIENTO CIRCULAR UNIFORME 2.3 MOVIENTO CIRCULAR UNIFORME La trayectoria es una circunferencia. La elocidad es constante a N ω En un moimiento circular uniforme, tendremos dos tipos de elocidad: Velocidad Lineal (), que sería tangencial

Más detalles

PRUEBA POR EQUIPOS DE PRIMARIA - XVI OLIMPIADA THALES

PRUEBA POR EQUIPOS DE PRIMARIA - XVI OLIMPIADA THALES Nombre del equipo: Centro: Localidad: Juan, Antonio y María viven en el mismo bloque de pisos. Son buenos compañeros de clase, y comparten el coche de sus padres para ir al colegio todos los días Sus padres

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

INTERCAMBIO MECÁNICO (TRABAJO)

INTERCAMBIO MECÁNICO (TRABAJO) Colegio Santo Ángel de la guarda Física y Química 4º ESO Fernando Barroso Lorenzo INTERCAMBIO MECÁNICO (TRABAJO) 1. Un cuerpo de 1 kg de masa se encuentra a una altura de 2 m y posee una velocidad de 3

Más detalles