SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA
|
|
- Concepción Acuña Quintero
- hace 5 años
- Vistas:
Transcripción
1 AuldeMte.com SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA Breve reseñ históric: Los pitgóricos llmb trigulres los úmeros 3, 6, 0,,... e cosoci co l costrucció que prece e l figur. Se trt de u primer ejemplo de progresió ritmétic. Por otr prte, Euclides, e el libro IX de su obr Los Elemetos hbl de mgitudes "sucesivmete proporcioles" y os dice que ddo u cojuto de úmeros, b, c, d... so sucesivmete proporcioles si : b b c c d... L portció de Euclides ls progresioes geométrics cosiste e u defiició idirect de ells y l obteció de u expresió pr hllr l sum de sus térmios.
2 AuldeMte.com Defiició de sucesió: Sucesió: se llm sucesió de úmeros reles u cojuto de térmios ordedos, de tl mer que cumple u regl determid. Se ombr co u letr y u subídice Térmio Geerl: se llm térmio geerl l regl que sigue l sucesió. Ídice: se llm ídice de u térmio l posició que ocup e l sucesió. Represetció e el plo: Pr represetr u sucesió e el plo vmos poer los ídices e el eje X y los térmios e el eje Y, es decir, los putos serí (, ) Progresió ritmétic: U progresió ritmétic es u cso prticulr de ls sucesioes e l que l difereci etre dos térmios cosecutivos es costte. d + d( ) Si coocemos dos térmios culesquier de u progresió ritmétic podemos ecotrr todos los demás de l siguiete mer: + ( k k ) d Iterpolr medios difereciles: iterclr u úmero m de térmios etre dos coocidos, de modo que todos ellos forme u progresió ritmétic se llm iterpolr; y los m térmios iterpoldos se les llm medios difereciles. d m + Se puede clculr l sum de los primeros térmios de u progresió ritmétic co l siguiete formul: S ( + ) 2
3 AuldeMte.com Progresió geométric: U progresió geométric es otro cso prticulr de ls sucesioes e l que el cociete o l rzó etre dos térmios cosecutivos es costte. r r Si coocemos dos térmios culesquier de u progresió geométric podemos ecotrr todos los demás de l siguiete mer: k r k Iterpolr medios proporcioles: Iterclr u úmero m de térmios etre dos coocidos, de modo que todos ellos forme u progresió geométric se llm iterpolr; y los m térmios iterpoldos se les llm medios proporcioles. r m+ Sum de los primeros térmios de u sucesió geométric: S r r Producto de los primeros térmios de u sucesió geométric: P ( ) E ls progresioes geométrics co - < r <, podemos clculr l sum de ifiitos térmios y que éstos lleg hcerse t pequeños que so prácticmete cero. S r
4 AuldeMte.com Sucesió de Fibocci Leordo de Pis coocido por Fibocci, hijo de Bocci, podo de su pdre, er itlio y vivió etre los s. XII y XIII,, 2, 3,, 8,... Imgi u prej especil de liebres que puede reproducirse cudo tiee 2 meses pero o tes. Imgi que cd mes, desde que so mduros ( los 2 meses), tiee u prej de hijos siempre mcho y hembr. Si prtiérmos de u sól prej de liebres jóvees, cuáts prejs tedremos l comiezo de cd uo de los meses siguietes? Propieddes: Si dividimos cd úmero de l sucesió etre el terior cd vez se prece más l + úmero de oro φ 2 L sucesió de Fibocci es muy frecuete e l Nturlez: por ejemplo, tiee tedeci precer cudo cotmos ls espirles que form ls escms de l piñ cudo l mirs por bjo, ls pips de girsol tmbié gir e espirles cuyo úmero es uo de los de Fibocci. L sucesió de Fibocci tmbié prece e el rte: costruyedo rectágulos como e l esce (ver pliccioes iterctivs), se costruye u espirl que es muy precid l espirl áure o logrítmic. Los rectágulos que se v costruyedo se prece cd vez más l u rectágulo áureo. E "el hombre idel", Leordo d Vici estbleció lo que cosideró ls proporcioes hums más perfects. L relció etre lgus de ls medids priciples del cuerpo humo es l áure.
5 AuldeMte.com Apliccioes: Clculr l frcció geertriz de úmeros decimles periódicos: Periódicos puros. 0, 0,... 0, + 0,0 + 0, Sum de u progresió geométric co y r 0 0 S Periódicos mixtos ,234 0, , , , Sum de u progresió geométric co y r S ,
6 AuldeMte.com Iterés simple y compuesto: Dispoemos de u cpitl C y lo depositmos e u bco que le d u tto por cierto ul de itereses y podemos optr por l cpitlizció o o de los itereses. Iterés simple: Al cbo de u ño el cpitl será C + CI Al cbo de dos ños será C + CI +CI C + 2CI... Al cbo de ños será C + CI Por tto se trt de u sucesió ritmétic de primer térmio C y rzó CI C + CI + ( ) CI C + CI Iterés compuesto: Al cbo de u ño el cpitl será C + CI C( + I) Al cbo de dos ños será C( + I) C( + I) + C( + I)I C( + I) 2... Al cbo de ños será C( + I) Por tto se trt de u sucesió geométric de primer térmio C( + I) y rzó ( + I) C( + I )( + I ) C( + I)
7 AuldeMte.com Límite de sucesioes U sucesió tiee límite, si sus térmios v tomdo vlores cd vez más próximos u ciert ctidd que llmmos límite de l sucesió. lim ε > 0 < ε 0 / 0 Sucesioes o covergetes ( pr culquier vlor de oscil etre - y ) 3 crece idefiidmete
Progresiones. Antes de empezar. Para empezar, te propongo un juego sencillo, se trata de averiguar la ficha de dominó que falta en cada caso.
Progresioes Ates de empezr? Pr empezr, te propogo u juego secillo, se trt de verigur l fich de domió que flt e cd cso. MATEMÁTICAS 3º ESO 73 Progresioes. Sucesioes Defiició. U sucesió es u cojuto ordedo
TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n
TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l
Sucesiones de Números Reales
Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u
Tema 3: Progresiones.
Tem : Progresioes. Ejercicio. Los dos primeros térmios de u progresió geométric so 50 y 00. Clculr r, 6 y. Solució: 00 r 00 50 r r, 50 50, 00, 60, 4 4, 58, 5 4 ; 6, 08 6 TÉRMINO GENERAL: 50, - Ahor lo
SUCESIONES DE NÚMEROS REALES
SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N
Sucesiones de números reales
Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5
APUNTE: Introducción a las Sucesiones y Series Numéricas
APUNTE: Itroducció ls Sucesioes y Series Numérics UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Admiistrció Lic. e Turismo Lic. e Hotelerí Profesor: Prof. Mbel Chresti Semestre: do
Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.
Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,
Profesorado de Informática - Ciencias de la Computación - INET DFPD Matemática II 2010 Sucesiones
Profesordo de Iformátic - Ciecis de l Computció - INET DFPD Mtemátic II Sucesioes Sucesioes Tems: Límites de sucesioes. Sucesioes moótos y sus límites. Pres de sucesioes moótos covergetes. Número e. Opercioes
Progresiones aritméticas y geométricas
Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto
Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales
SUCESIONES DE NÚMEROS REALES. LÍMITE DE SUCESIONES. INTRODUCCIÓN.- Relció - Relció es tod propiedd que comuic los elemetos de dos cojutos o bie comuic etre sí los elemetos de u mismo cojuto. E geerl u
Introducción a las SUCESIONES y a las SERIES NUMERICAS
Itroducció ls SUCESIONES y ls SERIES NUMERICAS UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Ecoomí Profesor: Prof. Mbel Chresti Semestre: ero Año: 0 Sucesioes Numérics Defiició U
Sucesiones de números reales
Tem 5 Sucesioes de úmeros reles Defiició 5.1 Llmremos sucesió de úmeros reles culquier plicció f: IN IR y l represetremos por { } =1, dode = f(. Por comodidd, diremos tmbié que l sucesió es el cojuto ordedo
PROGRESIONES. y el término general de la progresión es: a1 an Obtención del término general en función de otro cualquiera.
I.E.S. Rmó Girlo PROGRESIONES. PROGRESIONES ARITMÉTICAS.. Defiició U progresió ritmétic (oriri) es u serie e úmeros e form que c uo e ellos se obtiee el terior sumáole u cti costte que llmmos ifereci,
Podemos decir que: Sucesión es una secuencia ordenada de números u otras cantidades
Sucesioes Uidd 5 Cocepto Leordo Fibocci (70-50), posiblemete el mejor mtemático de l Edd Medi, icluye el siguiete problem e su fmoso escrito Liber Abci. Cuáts prejs de coejos se puede crir prtir de u sol
S U C E S I O N E S N U M É R I C A S
S U C E S I O N E S N U M É R I C A S. S U C E S I O N E S D E N Ú M E R O S R E A L E S Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,... Los elemetos
8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1
E.T.S.I. Idustriles y Telecomuicció Curso 00-0 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem : Sucesioes y Series Numérics. Series de Potecis. Ejercicios resueltos Estudir l mootoí de
PROBLEMAS Y EJERCICIOS RESUELTOS
PROGRESIONES 3º ESO PÁGINA EJERCICIOS RESUELTOS DE PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS UN POCO DE HISTORIA: UN NIÑO LLAMADO GAUSS Hce poco más de dos siglos, u mestro lemá que querí pz y trquilidd e
Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1
Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...
el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES
el log de mte de id. NÚMEROS REALES 4º ESO pág. NÚMEROS REALES Expresió deciml de los úmeros rcioles. Pr psr u úmero rciol de form frcciori form deciml st dividir el umerdor por el deomidor. Como l hcer
COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES
VALORES ABSOLUTOS Defiició: si 0 =, si < 0 = Por lo tto 0 R Teorem 2 = 2 Demostrció: si 0 2 = 2, si < 0 2 = ( ) 2 = 2 PROPIEDADES. =. = + + (desiguldd trigulr) = Teorem x x Demostrció: x x 2 2 x 2 2 x
3 Sucesiones. y progresiones. 1. Sucesiones. Sigue las series siguientes: a) b) Solución: a) b)
Sucesioes y progresioes. Sucesioes Sigue ls series siguietes: ) b) 6 9 P I E N S A Y C A L C U L A ) b) Hll los diez primeros térmios de ls siguietes sucesioes: ), 8,, 8 b) 8,, 0, c),,, d) /, /, /6, /8
LÍMITES DE SUCESIONES. EL NÚMERO e
www.mtesxrod.et José A. Jiméez Nieto LÍMITES DE SUCESIONES. EL NÚMERO e. LÍMITE DE UNA SUCESIÓN... Aproximció l cocepto de límite. Vmos cercros l cocepto de límite hlldo lguos térmios de distits sucesioes
Sucesiones de funciones
Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci
1. Completa las sucesiones, e indica la regla de formación que corresponda en cada caso. a) 20; 24; 28; 32;
MATEMÁTICA JRC El que o estudi e su juvetud se lmetrá e ls ocsioes e que deb hcer uso del coocimieto.. Complet ls sucesioes, e idic l regl de formció que correspod e cd cso. ) 0; 4; 8; ; b) 00; 98; 96;
Unidad 7: Sucesiones. Solución a los ejercicios
Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio
E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación RESUMEN TEMA SUCESIONES
E.T.S.I. Idustriles y Telecomuicció Curso 22-23 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I DEFINICIONES BÁSICAS Existe muchos feómeos que o se comport de mer cotiu, sio que ecesit u determido
el blog de mate de aida CSI: sistemas de ecuaciones. pág
el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i
Tema IV. Sucesiones y Series
00 Tem IV. Sucesioes y Series Σ Gil Sdro Gómez Stos UASD 03/04/00 Tem IV. Sucesioes y Series Ídice Sucesió... 4 Límite de u sucesió... 4 Teorem 4.. Límite de u sucesió... 5 Teorem 4.. Leyes de límites
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos
3 Sucesiones. y progresiones. 1. Sucesiones. Sigue las series siguientes: a) b) Solución: a) b)
Sucesioes y progresioes. Sucesioes Sigue ls series siguietes: ) b) 6 9 P I E N S A Y C A L C U L A ) b) Hll los diez primeros térmios de ls siguietes sucesioes: ), 8,, 8 b) 8,, 0, c),,, d) /, /, /6, /8
Repaso general de matemáticas básicas
Repso geerl de mtemátics básics Expoetes y rdicles Regl de l multiplicció: Cudo dos ctiddes co l mism bse se multiplic, su producto se obtiee sumdo lgebricmete los expoetes. m m Expoete egtivo U térmio
1.-INTEGRAL DEFINIDA.
INTEGRAL DEFINIDA .-INTEGRAL DEFINIDA. e y ƒ( u fució cotiu e u itervlo [, ]. Not.- Pr simplificr l demostrció se cosider positiv, ƒ( > 0, e todo puto del itervlo. e divide el itervlo [, ] e "" suitervlos
Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino
i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto
MATEMÁTICA FINANCIERA. Préstamos Comerciales
Préstmos MATEMÁTICA FINANCIERA PRÉSTAMOS Luis Alclá UNSL Segudo Cutrimeste 2016 Defiició Se llm préstmo l operció ficier cosistete e l etreg de u ctidd dd de diero (C 0 ), el pricipl (o deud), por prte
Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2.
Biomio de Newto Teorem del biomio de Newto Teorem: Se, b dos úmeros reles o ulos, y se N u úmero turl. Etoces: b b b b b b L expresió l derech se deomi el desrrollo biomil de b. Observmos que este desrrollo
MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero
ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los
La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:
SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,
SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:
SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce
EJERCICIOS DE APLICACIÓN
EJERCICIOS DE APLICACIÓN Uidd. Añde tres térmios cd serie. ; ; ; 9; 6;... b. 7; 7,7;,7;,7;... c. ; ; 0; ; 6;... d. 0; ; 6; ; 0;... e. ; ; ; ;... f. ; 6 ; ; ; ; ;.... Escribe térmios más de l sucesió. ;
Capítulo 3. Potencias de números enteros
Cpítulo. Potecis de úmeros eteros U poteci es u epresió de l form, dode es l bse de l poteci y el epoete. Se lee: elevdo. U poteci es el producto de l bse por sí mism tts veces como idic el epoete. se
( ) (término. a n. 1,..., es una: Sesión 1. Unidad I Progresiones y series. A. Sucesiones y series. B. Progresión Aritmética.
esió Uidd I Progresioes y series. A. ucesioes y series..- Los primeros 4 térmios de l sucesió = y = + (térmio recurrete) so: A),,, B),,, C),,, D),,, E),,,.- Escribe los cutro primeros térmios de l sucesió
1.1 Secuencia de las operaciones
1 Uiversidd Ctólic Lo Ágeles 1. FUNDAMENTOS MATEMATICOS BASICOS 1.1 Secueci de ls opercioes Ls opercioes mtemátics tiee u orde de ejecució, de mer que es ecesrio teer presete l secueci lógic de ls opercioes,
Tema 1: Números reales.
Tem : Números reles. REALES se utiliz pr Medir mgitudes se obtiee Ctiddes todos so Números Errores viee fectds de errores Aproximcioes clses se represet Rect rel Aproximcioes decimles Redodeos Trucmieto
SERIES NUMÉRICAS. Estudiar el carácter de las series de término general a n. n n n n n = 3. Solución: Converge. 1.- a
Escuel de Igeieros de Bilbo Deprtmeto Mtemátic Aplicd EIE NUMÉICA Estudir el crácter de ls series de térmio geerl :.-! Es u serie de térmios positivos. Podemos hcerlo de dos mers: ) Aplicdo el criterio
z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente
UNIDAD.- LOGARIMOS. APLICACIONES (tem del libro). LOGARIMO DE UN NÚMERO Cosideremos l ecució: 8. Como vemos l icógit está e el epoete, lo que l hce diferete todos los tipos vistos hst hor. es el epoete
Guía ejercicios resueltos Sumatoria y Binomio de Newton
Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d) Auilir: Igcio Domigo Trujillo Silv
Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes
TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES
TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES SUCESIÓN NUMÉRICA: es u fució cuyo domiio es el cojuto de los úmeros turles (o u subcojuto de él) y l imge está icluid e el cojuto de los Reles ( ) SUCESIÓN ARITMÉTICA:
CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS
Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,
Algoritmos generales de convergencia y sumación. Teorema 1. Si una matriz infinita de números reales o complejos =
Este rtículo form rte de Nots l Cítulo V del gotdo Tomo I de Aálisis Mtemático de Julio Rey Pstor, Pi Cllej y Césr A Trejo, 330 y ss E est rimer etreg se itroduce ls mtrices de Toelitz y se muestr l eorme
POTENCIA DE UN NÚMERO NATURAL. a, es igual al producto de n veces el número Natural
LICEO DE CERVANTES PP. AGUSTINOS BOGOTÁ ÁREA DE MATEMÁTICAS ASIGNATURA: Mtemátics DOCENTE: Elky F. Ortiz GRADO: QUINTO FECHA: CALIFICACIÓN DESCRIPCIÓN: Guí - Tller de potecició, Rdicció y logritmció. ESTUDIANTE:
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos.
Tem 1: Números Reles 1.0 Símbolos Mtemáticos Distito Aproximdo Meor o igul Myor o igul Uió Itersecció Cojuto vcío Existe No existe Perteece No perteece Subcojuto Implic Equivlete 1.1 Cojuto de los úmeros
ESQUEMA DE LOS CONJUNTOS NUMÉRICOS
Miisterio de Educció Uiversidd Tecológic Nciol Fcultd Regiol Treque Luque ESQUEMA DE LOS CONJUNTOS NUMÉRICOS NÚMEROS NATURALES De cuerdo l esquem terior, existe cojutos chicos y grdes, y lguos de ellos
Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1 3º ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS. Simplificar la fracción, si es posible N = 50
Mtemátics B º E.S.O. Tem 1 Los úmeros Reles 1 TEMA 1 LOS NÚMEROS REALES 1.0 INTRODUCCIÓN º 1.0.1 ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS º RACIONALES(Q)???????? NO RACIONALES NATURALES(N) 0 ; ; ; 81...
Aproximación al área bajo una curva.
Aproimció l áre jo u curv. Por: Miguel Solís Esquic Profesor de tiempo completo Uiversidd Autóom de Cips Clculr cd u de ls áres de los rectágulos que lle l regió cotd pr lczr el vlor del áre ecesrimete
PAIEP. Sumas de Riemann
Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m
Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede
Conjunto de números dispuestos uno a continuación de otro: a 1, a 2, a 3,..., a n. Sucesión inversible o invertible. a n 1 a n.
Sucesioes Tema 8.- Sucesioes y Límites Cojuto de úmeros dispuestos uo a cotiuació de otro: a, a, a 3,..., a Operacioes a =a, a, a 3,..., a b =b, b, b 3,..., b Suma Diferecia (a )+(b )=(a +b )= a +b, a
FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.
PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,
El primero es la sucesión de los números primos: no se conoce ninguna regla que establezca qué número primo p
Tem Sucesioes de úmeros reles. Itroducció: Cocepto de sucesió uméric U sucesió uméric es u fmili orded de úmeros reles. Los úmeros que l compoe se especific siguiedo el orde de los úmeros turles. Por tto,
Prácticas Matlab. Para calcular la suma entre dos valores de una expresión simbólica. Práctica 7: Convergencia Series de Términos Positivos.
PRÁCTICA SERIES Práctics Mtlb Objetivos Práctic 7: Covergeci Series de Térmios Positivos Estudir l covergeci o divergeci de u serie de térmios positivos utilizdo distitos criterios combido ls coclusioes
CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION
CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició es u operció
2) En cualquier intervalo de la recta real hay infinitos número racionales, por ello se dice que el conjunto Q es denso.
TEMA : NÚMEROS REALES. Clsificció de los úeros reles.. Itervlos y seirrects.. Vlor bsoluto de u úero rel.. Potecis y rdicles. Propieddes.. Clsificció de los úeros reles. No olvideos: ) Los úeros rcioles
EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS:
Mtemátic II do Mgisterio IFD Celoes XPRSIÓN DCIMAL D LOS NÚMROS RACIONALS ABSOLUTOS: Vmos clsificr los úmeros rcioles solutos e dos cojutos disjutos D y D P ( D D φ ). P D Q D P Se / el represette cóico
Potencias y radicales
Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de
RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014)
NOMBRE DEL ESTUDIANTE:: RAÍCES Y SUS PROPIEDADES Guí pr el predizje (Presetr el dí mrtes 9 de ril 0) CURSO: RADICALES Se llm ríz -ésim de u úmero, se escrie, u úmero que elevdo de. 9, porque 9 7, porque.0,
SISTEMA DE ECUACIONES LINEALES
SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls
a) Falsa. Los números decimales no periódicos no se pueden poner como fracción.
Boque I. Aritmétic áger Mtemátics I Autoevució Pági 00 Epic si es verdder o fs cd u de ests frses: Todo úmero decim se puede epresr como frcció. L sum de dos úmeros irrcioes es irrcio. c H úmeros irrcioes
NÚMEROS REALES NEGATIVOS (Z - ) 0 POSITIVOS (Z + )
LOS NÚMEROS REALES Sistem de úmeros reles Vlor soluto COMPENTECIA: Utilizr rgumetos de l teorí de úmeros pr justificr relcioes que ivolucr los úmeros turles NÚMEROS REALES Recuerde que: REALES (R) IRRACIONALES
Ecuaciones de recurrencia
Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,
1 Áreas de regiones planas.
Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].
Práctica 6. Calcular la suma de los primeros K números naturales y k k. . 2 Calcular la suma de los cuadrados de los primeros k números
PRÁCTICA SERIES NUMÉRICAS Práctics Mtlb Objetivos Práctic 6 Estudir l covergeci o divergeci de u serie de térmios positivos utilizdo distitos criterios combido ls coclusioes experimetles (el ordedor) co
Material interactivo con teoría y ejercicios resueltos. Para acceder a ello deberá pulsar sobre los siguientes enlaces una vez dentro de la asignatura
INGENIERÍA DE TELECOMUNICACIÓN BLOQUE E el Aul Virtul se ecuetr dispoible: Mteril iterctivo co teorí y ejercicios resueltos. Pr cceder ello deberá pulsr sobre los siguietes elces u vez detro de l sigtur
GUÍA DE TRABAJO Nº3 RAÍCES 2017 Nombre:. Fecha:..
GUÍA DE TRABAJO Nº RAÍCES 017 Nomre:. Fech:.. Coteidos Ríz eésim e el cojuto de los úmeros reles. DEFINICIÓN: E geerl, si es u úmero turl myor que 1 y es u úmero rel, decimos que x x, etoces x es l ríz
2. CONJUNTOS NUMÉRICOS
1. TEORÍA DE CONJUNTOS CONCEPTO DE PERTENENCIA: " " Se el cojuto A {, b} A b A c A CONCEPTO DE SUBCONJUNTO: " " A B [ x A x B, x ] A, A A A, A CONJUNTOS ESPECIALES Cojuto Vcío: { } { } {0} Cojuto Uiverso:
SISTEMAS DE ECUACIONES
. Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.
Matemáticas 1 EJERCICIOS RESUELTOS:
Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l
PROPIEDAD FUNDAMENTAL DE LOS RADICALES
Mtemátics Aplicds ls Ciecis Sociles I DEFINICIÓN DE RAÍZ ENÉSIMA Llmremos ríz eésim de "" y lo represetremos sí que cumpl l codició de que elevdo "" se igul "": x / x Al úmero "" se le llm ídice de l ríz.
1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4.
Amplició potecis y rdicles º ESO Curso 06_07. ESTIMACIÓN DE RADICALES Llmremos estimr u ríz dr u proimció de ell. or ejemplo, 78. Ríz de 78 proimdmete es.. RADICALES EN FORMA DE OTENCIA El vlor de u ríz
LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente.
LAS POTENCIAS Y SUS PROPIEDADES Defiició de poteci y sigos de est. Multiplicció y divisió de potecis de igul bse. Poteci de poteci. Poteci de u producto y de u cuociete. Multiplicció y divisió de potecis
CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA CASTAÑEDA GUIA N 4: POTENCIACION
CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA CASTAÑEDA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició
PROCESOS INFINITOS Y LA NOCIÓN DE LÍMITE
UNIDAD PROCEO INFINITO Y LA NOCIÓN DE LÍMITE Propósitos Explorr diversos problems que ivolucre procesos ifiitos trvés de l mipulció tbulr, gráfic y simbólic pr propicir u cercmieto l cocepto de límite
SUCESIONES DE NÚMEROS REALES. PROGRESIONES
www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos
Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)
FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos
Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.
III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:
TEMA 1 LOS NÚMEROS REALES
TEMA 1 LOS NÚMEROS REALES 1.1. Números rcioles. Los úmeros reles. 1.1.1. Sucesivs mlicioes el cmo umérico. LOS NÚMEROS NATURALES. N= {1,2,,4,...} LOS NÚMEROS ENTEROS. Z ={...,-4,-,-2,-1,0,1,2,,4,...} LOS
COL LEGI INTERNACIONAL SEK-CATALUNYA ÁMBITO CIENTIFICO TÉCNICO MATEMÁTICAS 3ESO 2015/2016 S E K - C A T A LUNYA SISTEMA EDUCATIU SEK.
MATEMÁTICAS ESO 0/06 S E K - C A T A LUNYA C OL LEGI INTERNACIONAL SISTEMA EDUCATIU SEK Aul INTEL LIGENT AUTOEVALUACIÓN DE SUCESIONES I Ámbito Cietífico Técico Curso: ESO Mteri: Mtemátics PAI Alumo MATEMÁTICAS
Capítulo 2 Integral Definida Versión Beta 1.0
Cpítulo Itegrl Defiid Versió Bet 1.0 www.mthspce.jimdo.com.1. Sums y otció sigm Notció: L sum de los térmios 1,, 3,, se deot por: i = 1 + + 3 + + Dode i se llm ídice de l sum, i es el i ésimo térmio de
los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2
CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis se escrie
Cálculo del ph de disoluciones de ácidos
álculo del ph de disolucioes de ácidos Si se disuelve e gu u ácido H, de cocetrció y costte : H H H O H OH Pr clculr ls cocetrcioes de ls especies e el equilibrio, pltemos:.m. [.. [ [OH L expresió de l
POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:
POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,
TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN
TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis
UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5
UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...
MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS
NÚMEOROS COMPLEJOS Defcó: El cojuto de los úmeros complejos es C R R {(, / R y b R} C está formdo por todos los pres ordedos de úmeros reles etre los que defmos u relcó, l guldd, y dos opercoes brs que
En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.
Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de
INSTRUCTIVO PARA TUTORÍAS
INSTRUCTIVO PARA TUTORÍAS Ls tutorís correspode los espcios cdémicos e los que el estudite del Politécico Los Alpes puede profudizr y reforzr sus coocimietos e diferetes tems de cr l eme de dmisió de l
Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8
º BACHILLERATO (LOMCE) MATEMÁTICAS CC SS TEMA.- NÚMEROS- PROFESOR: RAFAEL NÚÑEZ NOGALES.- FRACCIONES Y DECIMALES Opercioes comids co frccioes Pr relizr vris opercioes se reliz primero los prétesis y se
Capítulo 7. Series Numéricas y Series de Potencias.
Cpítulo Series Numérics y Series de Potecis.. Itroducció. E este cpítulo le dremos setido l cocepto de sum ifiit de úmeros ó serie uméric, es decir, diremos que sigific sumr u ifiidd de úmeros... 4 El