Microchip Tips & Tricks...
|
|
|
- María del Rosario Villanueva Campos
- hace 9 años
- Vistas:
Transcripción
1 ARTICULO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de EduDevices. Soluciones para aplicaciones de 3V Introducción: Uno de las consecuencias de la creciente necesidad de velocidad de procesamiento es la continua reducción en el tamaño de los transistores usados para construir los microcontroladores. La integración a bajo costo tambien lleva a la necesidad de geometrías más pequeñas. Con tamaños reducidos vienen las reducciones en la tensión de ruptura de los transistores, y últimamente, una reducción en la tensión de la fuente de alimentación cuando la tensión de ruptura cae debajo de la tensión de alimentación. Entonces, a medida que la velocidad aumenta, también lo hace la complejidad, es inevitable entonces que las fuentes de tensión caigan desde 5V a 3.3V, o aún menores como 1.8V para dispositivos de muy alta densidad. Los microcontroladores de Microchip han llegado a un nivel suficiente de velocidad y complejidad que obligan a la transición a tensiones sub-5v. El desafío entonces es que muchos de los dispositivos de interface siguen siendo diseñados para sistemas de 5V. Esto significa que los diseñadores tienen que afrontar la tarea de adaptar sistemas de 3.3V y 5V. Además, la tarea no sólo incluye un nivel lógico sino tambien de alimentar sistemas de 3.3V y el traslado de señales analógicas por sobre la barrera 3.3V/5V. Esta serie de artículos enfrentan este desafío con una colección de tips constructivos de fuentes de alimentación, tips de adaptacion de niveles digitales y además bloques de adaptación analógica. A lo largo de los artículos, se presentan multiples opciones para cada traslado. Se presentan todos los tips necesarios para un diseñador para manejar el desafío de los 3.3V.
2 Fuentes de Alimentación Uno de los primeros desafíos de los 3.3V es generar una fuente de alimentación de 3.3V. Dado que se discute la interfaz entre sistemas de 5V y 3.3V, se asume que nuestra Vdc es de 5V. Esta serie de artículos presenta soluciones para reguladores de tensión diseñados para el traslado de 5V a 3.3V. Un diseño con un modesto requerimiento de corriente puede usar un simple regulador lineal. Corrientes mayores pueden requerir de una solución con fuentes del tipo "switching". Aplicaciones sensibles al costo pueden necesitar la simplicidad de un regulador discreto de diodo. Ejemplos de cada una de estas areas se incluyen aquí, con la información necesaria para adaptar una gran variedad de aplicaciones. Tabla 1: Comparación Fuentes de Alimentación Tip Energizando un sistema de 3.3V desde 5V con un regulador lineal LDO. La tensión que cae entre terminales de un regulador lineal estándar de 3 terminales es típicamente 2.0 a 3.0V. Esto lo imposibilita de ser usado para convertir 5V a 3.3V de forma segura. Reguladores del tipo "Low Dropout" (LDO) con una salida en el rango unos pocos cientos de milli volts, son útiles para este tipo de aplicaciones. La Figura 1-1 contiene un diagrama en bloques de un sistema básico LDO con los elementos de corrientes apropiados. De esta figura se puede ver que el LDO consiste de 4 elementos principales: 1. Transistor de paso 2. Referencia "bandgap" 3. Amplificador operacional 4. Feedback de divisor resistivo
3 Cuando se selecciona un LDO, es importante saber qué distingue un LDO de otro. La corriente de inactividad (sleep), el tamaño y el tipo son parámetros importantes. Evaluar cada parametro para una aplicación específica lleva a un diseño óptimo. Figura 112-1: Regulador de Tensión tipo LDO La corriente de inactividad o reposo, Iq, es la corriente de tierra, Ignd, mientras el dispositivo está operando sin carga. Ignd es la corriente usada por el LDO para llevar a cabo la regulación. La eficiencia del LDO puede ser aproximada como la tensión de salida dividida por la tensión de entrada cuando Iout>>Iq. Sin embargo, cuando la carga es alta, el Iq debe ser tenido en cuento cuando se calcula la eficiencia. Un LDO con menor Iq va a tener una mayor eficiencia con poca carga. Este es un efecto negativo en la eficiencia del LDO. Mayor corrientes de reposo del LDO son capaces de responder de manera más rapida a cambios repentinos de la linea y la carga.
4 Tip 113 Altenativa de Bajo costo utilizando un Diodo Zener Un regulador de 3.3V simple de bajo costo puede ser construído a partir de un diodo Zener y una resistencia como se muestra en la Figura En muchas aplicaciones, este circuito puede ser una alternativa de buen precio a usar un regulador LDO. Sin embargo, este regulador es más sensible a la carga que el regulador LDO. Además, es menos eficiente, ya que siempre se disipa potencia en R1 y D1. R1 limita la corriente de D1 y la del PIC MCU de manera que Vdd se mantenga dentro de un rango permitido. Como la tensión de reversa del Zener varía con la corriente que pasa por él, el valor de R1 debe ser cuidadosamente elegido. R1 debe ser elegido de manera que a máxima carga, generalmente cuando el PIC MCU esta corriendo y su salidas están en "high", la caída de tensión en R1 es lo suficientemente baja para que el PIC MCU tenga suficiente potencia para operar. Ademas, R1 tiene que ser elegida para que a mínima carga, generalmente cuando el PIC MCU esta en "Reset", la Vdd no exceda el valor del diodo de Zener ni el máximo Vdd del PIC MCU. Figura 113-1: Alimentación con Zener Tip 114 Altenativa de Bajo costo utilizando tres Diodos rectificadores Se puede usar tambien la caída directa de una serie de diodos para reducir la tensión que le llega al PIC MCU. Esto puede ser aún mas efectivo con el costo que el regulador con Zener. La corriente entregada por este diseño es menor que usando el circuito con Zener.
5 El número de diodos necesarios varía segun la tensión de directa de los diodos elegidos. La caída entre los diodos D1-D3 es función de la corriente que fluye por ellos. R1 esta presente para prevenir que la tension de Vdd del pin del PIC MCU exceda el máximo Vdd a cargas mínimas. Dependiendo del circuito conectado a Vdd, esta resistencia puede tener que ser incrementada o posiblemente eliminada. Los diodos D1-D3 deben elegirse de manera que a máxima carga, la caída de tensión en D1-D3 sea lo su.cientemente baja para cumplir con los requerimientos del mínimo tolerado por los PIC MCUs. Figura 114-1: Alimentación con diodo Tip 115 Alimentando un sistema con 3.3V desde 5V utilizando una fuente Switching. Un regulador "buck switching", mostrado en la Figura 115-1, es un conversor basado en un inductor usado para bajar la tensión de entrada a una magnitud menor de salida. La regulación de la salida se consigue controlando el tiempo de ON del MOSFET Q1. Como el MOSFET esta en estado de "lower resistive" o "high resistive" (ON o OFF respectivamente), una alta tensión puede ser convertida a una menor salida muy eficientemente. La relación entre la entrada y la salida puede ser establecida balanceando el "volt-time" del inductor durante los dos estados de Q1. Ecuación 115-1
6 Entonces cumple que el MOSFET Q1: Ecuación Cuando se elija el valor del inductor, un buen punto de comienzo es seleccionar el valor para producir una corriente máxima pico a pico de ripple en el inductor igual al 10% de la máxima corriente en la carga. Ecuación Cuando se elija un valor para el capacitor de salida, un buen punto de comienzo es setear la impedancia característica del filtro igual a la resistencia de la carga. Esto produce un "overshoot" aceptable cuando se opere con la carga y se remueva abruptamente. Ecuación Cuando se elija el diodo D1, elija un dispositivo que pueda manejar la corriente del inductor durante el ciclo de descarga. Figura 115-1: Regulador Buck
7 Interface Digital Cuando se hace una interface entre dos dispositivos que operan en diferentes voltajes, es importante saber los umbrales de salida y entrada de los dos dispositivos. Una vez que se sepan estos valores, se puede seleccionar una técnica para hacer la interface basada en los otros requerimientos de la aplicación. La Tabla contiene los umbrales de entrada y salida que van a ser usados a lo largo de este documento. Cuando se diseñe una interface, asegurese de referirse a los "datasheets" del fabricante correspondiente para averiguar los umbrales. Tabla 115-1: Umbrales Entrada/Salida Tip 116 Conección Directa 3.3V a 5V La manera más simple y deseada de conectar una salida de 3.3V a una entrada de 5V es por medio de una conexión directa. Esto puede ser llevado a cabo sólo si se cumplen los siguientes 2 requerimientos: El valor de Voh de la salida de 3.3V es mayor que el valor Vih de la entrada de 5V. El valor de Vol de la salida de 3.3V es menor que el valor de Vil de la entrada de 5V. Un ejemplo de cuando usar esta técnica puede ser cuando se hace una interface entre una salida 3.3V LVCMOS y una entrada 5V TTL. De los valores que figuran en la Tabla 115-1, se puede ver claramente que se cumplen los 2 requerimientos.
8 El Voh de 3.3V LVCMOS de 3.0V es mayor que el Vih de 5V TTL de 2.0V, y El Vol de 3.3V LVCMOS de 0.5V es menor que el Vil de 5V TTL de 0.8V. Cuandos ambos de los requerimientos no se cumplen, se necesita de un circuito adicional para hacer de interface entre las dos partes. Ya se verán en los próximos tips #117, #118 #119 y #124 para posibles soluciones. Continuará...
Microchip Tips & Tricks...
ARTICULO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de EduDevices. Soluciones para aplicaciones de 3V Tip 117 Conversor de nivel de +3V3 a +5V con un MOSFET Para manejar cualquier
Microchip Tips & Tricks...
ARTICULO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de EduDevices. Soluciones y Diseños de Fuentes Inteligentes Tip 95 Utilizando un MCU PIC como fuente de reloj para un generador
Microchip Tips & Tricks...
ARTICULO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de EduDevices. TIP Nº 21 TIMER 1 de Bajo Consumo (Low Power). Las aplicaciones que requieran que el Timer1 tenga un cristal
Microchip Tips & Tricks...
ARTICULO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de EduDevices. Soluciones y Diseños de Fuentes Inteligentes Tip 104 Control de velocidad de motor DC sin escobillas para Ventiladores.
1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE
UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo
Microchip Tips & Tricks...
ARTICULO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de EduDevices. Soluciones y Diseños de Fuentes Inteligentes Tip 107 Detección de error y reinciacilización de un controlador.
Microchip Tips & Tricks...
ARTICULO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de EduDevices. PWM Tips & Tricks Estimados lectores, en los artículos anteriores de Microchip Tips & Tricks se presentaron
Reguladores de voltaje
Reguladores de voltaje Comenzamos con un voltaje de ca y obtenemos un voltaje de cd constante al rectificar el voltaje de ca y luego filtrarlo para obtener un nivel de cd, y, por último, lo regulamos para
Microchip Tips & Tricks...
ARTICULO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de EduDevices. Soluciones de Control de Motores en DC. Introducción: Cada circuito para controlar un motor puede ser dividido
Instrumental y Dispositivos Electrónicos
Instrumental y Dispositivos Electrónicos DepartamentoAcadémico Electrónica Facultad de Ingeniería 2014 Diagrama de bloques de una fuente de alimentación lineal RED 220 V TRANSFORMACIÓN RECTIFICACIÓN FILTRADO
Nota Técnica /0009-2012 Microchip Tips & Tricks
Nota Técnica /0009-2012 Microchip Tips & Tricks Por el Departamento de Ingeniería de Electrónica Elemon S.A. Soluciones y Diseños de Fuentes Inteligentes. Tip 99 Control remoto Infrarrojo para activación
EL3004-Circutios Electrónicos Analógicos
EL3004-Circutios Electrónicos Analógicos Clase No. 7: Operación del diodo Marcos Diaz Departamento de Ingeniería Eléctrica (DIE) Universidad de Chile Septiembre, 2011 Marcos Diaz (DIE, U. Chile) EL3004-Circuitos
INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos
Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos INDICE Circuitos discretos e integrados Señales analógicas y digitales Notación 3 Resumen
Funcionamiento del circuito integrado LM 317
1 1) Concepto de realimentación Funcionamiento del circuito integrado LM 317 En muchas circunstancias es necesario que un sistema trate de mantener alguna magnitud constante por sí mismo. Por ejemplo el
Electrónica 1. Práctico 10 Familias Lógicas
Electrónica 1 Práctico 10 Familias Lógicas Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
DATOS DE IDENTIFICACIÓN DEL CURSO
DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: ELECTRÓNICA ACADEMIA A LA QUE Electrónica Analógica Básica PERTENECE: NOMBRE DE LA MATERIA: Laboratorio de Electrónica 1 CLAVE DE LA MATERIA: ET 204 CARÁCTER
GENERADORES DE ONDA ESCALERA
GENERADORES DE ONDA ESCALERA Se podría decir que dentro de los generadores escalera, que por no decir son muchos los circuitos que pueden generarlos, existen en tanto como son los de amplificadores de
Electrónica 1. Práctico 10 Familias Lógicas
Electrónica 1 Práctico 10 Familias Lógicas Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
Fuentes de alimentación
Fuentes de alimentación Electrocomponentes SA Temario Reguladores lineales Descripción de bloques Parámetros de selección Tipos de reguladores Productos y aplicaciones Reguladores switching Principio de
CONVERTIDOR ELEVADOR Y CONVERTIDOR REDUCTOR
CAPITUO 2 CONVERTIDOR EEVADOR Y CONVERTIDOR REDUCTOR 2.1 Introducción os convertidores de CD-CD son circuitos electrónicos de potencia que transforman un voltaje de corriente continua en otro nivel de
TELECONTROL Y AUTOMATISMOS
TELECONTROL Y AUTOMATISMOS ACONDIDIONADORES DE SEÑAL 4. Acondicionamiento de Señal. La señal de salida de un sistema de medición en general se debe procesar de una forma adecuada para la siguiente etapa
TEMA 5. FAMILIAS LÓGICAS INTEGRADAS
TEMA 5. FAMILIAS LÓGICAS INTEGRADAS 5.1. Parámetros característicos de los circuitos digitales 5.2. Tecnologías: Bipolar (TTL) y MOSFET (CMOS) 5.3. Comparación de prestaciones y compatibilidad Introducción
Capítulo 1 Introducción Mecatrónica Sistemas de medición Ejemplos de diseño... 5
ÍNDICE Listas... ix Figuras... ix Tablas... xv Temas para discusión en clase... xvi Ejemplos... xviii Ejemplos de diseño... xix Ejemplos de diseño encadenado... xx Prefacio... xxi Capítulo 1 Introducción...
Tabla 4.1 Pines de conector DB50 de Scorbot-ER V Plus Motores Eje Motor Número de Pin Interfaz de Potencia 1 2Y (1) 2 3Y (1) 3 2Y (2) 4 4Y (2) 5
DISEÑO DE LA INTERFAZ ELECTRÓNICA.. CONFIGURACIÓN DEL CONECTOR DB0. El Scorbot viene provisto de fábrica de un conector DB0 el cual contiene el cableado hacia los elementos electrónicos del robot, en la
Contenido. Capítulo 2 Semiconductores 26
ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión
Electrónica 2. Práctico 2 Osciladores
Electrónica 2 Práctico 2 Osciladores Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,
Filtros pasivos. Practica 1 de diseño con electrónica integrada:
Filtros pasivos Practica 1 de diseño con electrónica integrada: Cualquier combinación de elementos pasivos (R, L y C) diseñados para dejar pasar una serie de frecuencias se denominan un filtro. En los
6.071 Prácticas de laboratorio 4 Amplificadores operacionales
6.071 Prácticas de laboratorio 4 Amplificadores operacionales 29 de abril de 2002 1 Ejercicios previos AVISO: en las anteriores prácticas de laboratorio, se han presentado numerosos estudiantes sin los
FUENTES DE ALIMENTACION CONMUTADA INSTRUCTOR RAUL ROJAS REATEGUI
FUENTES DE ALIMENTACION CONMUTADA INSTRUCTOR RAUL ROJAS REATEGUI CLASIFICACIÓN 1. SEGÚN LA TECNOLOGIA UTILIZADA a. Fuente Lineal. Utilizan un transformador para disminuir el voltaje de línea (120 o 220V).
Técnicas para reducir el Ruido en sistemas con circuitos ADC.
Comentario Técnico Técnicas para reducir el Ruido en sistemas con circuitos ADC. Por el Departamento de Ingeniería de EduDevices. Generalmente puede parecer que el diseño para un sistema con un bajo nivel
V cc t. Fuente de Alimentación
Fuente de Alimentación de Tensión Fuente de alimentación: dispositivo que convierte la tensión alterna de la red de suministro (0 ), en una o varias tensiones, prácticamente continuas, que alimentan a
Ilustración 76 Fuente de Alimentación para Iluminación
Capítulo 4 4 101 IMPLEMENTACIÓN DEL CONTROL DE ILUMINACIÓN. 4.1 Implementación. Para efectuar la implementación se tiene el conjunto de diseños descritos anteriormente, una fuente de alimentación de tensión
GRADO EN INGENIERÍA MECÁNICA ELECTRÓNICA BÁSICA
2016-07-01 08:28:39 GRADO EN INGENIERÍA MECÁNICA 101214 - ELECTRÓNICA BÁSICA Información general Tipo de asignatura : Obligatoria Coordinador : Albert Monté Armenteros Curso: Segundo Trimestre: 1 Créditos:
TRABAJO PRÁCTICO Nº 4 FUENTES
TRABAJO PRÁCTICO Nº 4 FUENTES 4.1 Rectificadores Todo método que se utilice para generar una tensión continua a partir de la tensión de línea de 220V debe empezar por obtener una tensión de valor medio
Los rangos de salidas esperados varían normalmente entre 0 y 0.4V para una salida baja y de 2.4 a 5V para una salida alta.
FAMILIAS LOGICAS DE CIRCUITOS INTEGRADOS Una familia lógica es el conjunto de circuitos integrados (CI s) los cuales pueden ser interconectados entre si sin ningún tipo de Interface o aditamento, es decir,
Manual de prácticas del Laboratorio de Dispositivos de Almacenamiento y de Entrada/Salida
Secretaría/División: Área/Departamento: Manual de prácticas del Laboratorio de Dispositivos de Almacenamiento y de Entrada/Salida División de Ingeniería Eléctrica Departamento de Computación Control de
FUENTES DE ALIMENTACIÓN CONMUTADAS
FUENTE ALIMENTACIÓN LINEAL FUENTE DE ALIMENTACIÓN CONMUTADA Las fuentes conmutadas son de circuitos relativamente complejos, pero podemos siempre diferenciar cuatro bloques constructivos básicos: 1) En
1. PRESENTANDO A LOS PROTAGONISTAS...
Contenido Parte 1. PRESENTANDO A LOS PROTAGONISTAS... 1 1. Un primer contacto con la instrumentación... 3 1.1 Introducción... 3 1.2 Conceptos de tierra y masa. Riesgos eléctricos... 4 1.2.1 La conexión
CAPITULO IV FAMILIAS LÓGICAS
FAMILIAS LÓGICAS CAPITULO IV FAMILIAS LÓGICAS FAMILIAS LÓGICAS Una familia lógica es un grupo de dispositivos digitales que comparten una tecnología común de fabricación y tienen estandarizadas sus características
ELECTRONICA GENERAL. Tema 3. Circuitos con Diodos.
Tema 3. Circuitos con Diodos. 1.- En los rectificadores con filtrado de condensador, se obtiene mejor factor de ondulación cuando a) la capacidad del filtro y la resistencia de carga son altas b) la capacidad
CIRCUITO DE AYUDA A LA CONMUTACIÓN DE TRANSISTORES
CIRCUITO DE AYUDA A LA CONMUTACIÓN DE TRANSISTORES Las redes de ayuda a la conmutación sirven para proteger a los transistores mediante la mejora de su trayectoria de conmutación. Hay tres tipos básicos
Instituto Tecnológico de Puebla Ingeniería Electrónica Control Digital
Instituto Tecnológico de Puebla Ingeniería Electrónica Control Digital Actividad 5 CONVERTIDOR ANALÓGICO DIGITAL INTEGRADO Objetivos Comprobar experimentalmente el funcionamiento del convertidor analógico
Práctica 2, Circuito de Airbag
ELETÓNIA DEL AUTOMÓVIL Práctica, ircuito de Airbag Práctica ircuito de Airbag Objetivos Estudio de las características de los reguladores de baja caída de tensión Aplicaciones de los acelerómetros de estado
Microchip Tips & Tricks...
ARTICULO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de EduDevices. Analog Comparators Tips & Tricks. Estimados lectores, en los próximos Tips continuaremos con en el uso de los
CAPITULO 3 IMPLEMENTACIÓN DEL INVERSOR ELEVADOR. En el presente capítulo se muestran, de manera general, la etapa de potencia y de
CAPITULO 3 IMPLEMENTACIÓN DEL INVERSOR ELEVADOR MONO - ETAPA 3.1 Introducción En el presente capítulo se muestran, de manera general, la etapa de potencia y de control de conmutación implementadas. Se
Comprobar la funcionalidad de un lista determinada de circuitos integrados existentes en el laboratorio de digitales, a través de microcontroladores,
Comprobar la funcionalidad de un lista determinada de circuitos integrados existentes en el laboratorio de digitales, a través de microcontroladores, una pantalla GLCD para presentación de menús y resultados
Anexo I: Familias lógicas: Compatibilidad y adaptación de niveles lógicos
Anexo I: Familias lógicas: Compatibilidad y adaptación de niveles lógicos 1. Introducción La correcta elección de las familia lógicas empleadas en nuestro proyecto es un aspecto crítico y depende de la
DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA CARRERA DE INGENIERÍA ELECTRÓNICA E INSTRUMENTACIÓN
DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA CARRERA DE INGENIERÍA ELECTRÓNICA E INSTRUMENTACIÓN PROYECTO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN ELECTRÓNICA E INSTRUMENTACIÓN CHICAISA
Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.
Electrónica Tema 2 Diodos Contenido Ideas básicas Aproximaciones Resistencia interna y Resistencia en continua Rectas de carga Diodo zener Dispositivos optoelectrónicos Diodo Schottky 2 Diodo Es un dispositivo
Práctica 2. El Circuito Integrado NE555 como oscilador astable y como detector de pulsos fallidos. 7 El Circuito Integrado NE555: Introducción Teórica
P-2 7 El Circuito Integrado NE555: Introducción Teórica 1. Objetivo de la práctica El objetivo de esta práctica es introducir al alumno en el uso y configuración del CI NE555. Este dispositivo electrónico
6. Amplificadores Operacionales
9//0. Amplificadores Operacionales F. Hugo Ramírez Leyva Cubículo Instituto de Electrónica y Mecatrónica [email protected] Octubre 0 Amplificadores Operacionales El A.O. ideal tiene: Ganancia infinita
INFORME DE MONTAJE Y PRUEBAS DEL CIRCUITO ELECTRÓNICO PARA ADQUIRIR LOS POTENCIALES EVOCADOS AUDITIVOS
INFORME DE MONTAJE Y PRUEBAS DEL CIRCUITO ELECTRÓNICO PARA ADQUIRIR LOS POTENCIALES EVOCADOS AUDITIVOS ACTIVIDADES: A02-2: Diseño de los circuitos electrónicos A02-3: Montaje y pruebas en protoboard de
Verificación de un Oscilador Controlado por Tensión (VCO)
Verificación de un Oscilador Controlado por Tensión (VCO) 1.1 Descripción En el presente trabajo se propone un método de verificación de un circuito integrado, basado en la utilización de un PCB diseñado
Práctica 1 Conversión Analógica Digital
Práctica 1 Conversión Analógica Digital Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 4, Primer Semestre 2017 OBJETIVOS Comprender
ACT 11: EVALUACIÓN FINAL POR PROYECTO
ACT 11: EVALUACIÓN FINAL POR PROYECTO Periodo Académico: 2014-2 Nombre de curso: Electrónica Básica 201419. Temáticas revisadas: Voltaje, Corriente, Rectificadores, Filtro con capacitor de entrada, Regulador
sistema RAGNVALD funciona correctamente, así como para encontrar posibles mejoras
Capítulo 8 Pruebas y Resultados En este capítulo se detallan las pruebas que se realizaron para asegurar que el sistema RAGNVALD funciona correctamente, así como para encontrar posibles mejoras para el
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 4 LABORATORIO DE NOMBRE DE LA
AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL
AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL Tensión de red baja (V1) Tensión de red alta (V1) Cable de red en circuito abierto Fusible de entrada o c.a. en circuito abierto Interruptor en circuito abierto
Práctica 4 Detector de ventana
Práctica 4 Detector de ventana Objetivo de la práctica Analizar el comportamiento de un detector de ventana Al terminar esta práctica, el discente será capaz de: Comprender el funcionamiento de un circuito
Elemento de Control. Elemento de Muetreo. Figura 1 Estructura Básica Regulador de Voltaje
INTRODUCCIÓN: La región activa de un transistor es la región de operación intermedia entre corte y saturación y por lo tanto dependiendo de las polarizaciones el transistor se comportará como un amplificador.
Cálculo y Diseño de condiciones de Operación para Amplificador Valvular de RF
Cálculo y Diseño de condiciones de Operación para Amplificador Valvular de RF Estos simples cálculos podrán ser utilizados para determinar las condiciones y régimen óptimo de funcionamiento bajo cualquier
Electrónica 1. Práctico 3 Diodos 1
Electrónica 1 Práctico 3 Diodos 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,
Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom
Tema 07: Acondicionamiento M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected] @edfrancom edgardoadrianfrancom 1 Contenido Acondicionamiento de una señal Caracterización del
Realimentación. Electrónica Analógica II. Bioingeniería
Realimentación Electrónica Analógica II. Bioingeniería Concepto: La realimentación consiste en devolver parte de la salida de un sistema a la entrada. La realimentación es la técnica habitual en los sistemas
Electrónica 1. Práctico 2 Amplificadores operacionales 2
Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
PRÁCTICA # 2 APLICACIONES DE DIODO SEMICONDUCTOR ALUMNOS:
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA LABORATORIO DE DISPOSITIVOS Y CIRCUITOS ELECTRÓNICOS PRÁCTICA # 2 APLICACIONES DE DIODO SEMICONDUCTOR ALUMNOS: Objetivo El alumno conocerá
En el presente capítulo, se tratará lo referente a los circuitos necesarios para la
Capítulo 3. Adquisición de Señales En el presente capítulo, se tratará lo referente a los circuitos necesarios para la captura de las señales de los signos vitales y su envío al equipo de cómputo donde
TECNOLOGÍA DE LOS SISTEMAS DIGITALES
TECNOLOGÍA DE LOS SISTEMAS DIGITALES ESCALAS DE INTEGRACIÓN TECNOLOGÍAS SOPORTES FAMILIAS LÓGICAS FAMILIAS LÓGICAS BIPOLAR MOS BICMOS GaAs TTL ECL CMOS NMOS TRANSMISIÓN DINÁMICOS PARÁMETROS CARACTERÍSTICOS
INVERSORES RESONANTES
3 INVERSORES RESONANTES 3.1 INTRODUCCIÓN Los convertidores de CD a CA se conocen como inversores. La función de un inversor es cambiar un voltaje de entrada en CD a un voltaje simétrico de salida en CA,
Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. Recta de carga. 3- Tipos especiales de diodos
Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. ecta de carga. 3- Tipos especiales de diodos Zener Schottky Emisor de luz (LED) 4- Circuitos con diodos ecortadores ó
MÓDULO Nº9 AMPLIFICADORES OPERACIONALES. Explicar que es un amplificador operacional. Entender el funcionamiento de los circuitos básicos con OP AMP.
MÓDULO Nº9 AMPLIFICADORES OPERACIONALES UNIDAD: CONVERTIDORES TEMAS: Introducción a los Amplificadores Operacionales. Definición, funcionamiento y simbología. Parámetros Principales. Circuitos Básicos.
CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR
CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR Un diodo es un dispositivo semiconductor. Los dispositivos semiconductores varían sus propiedades al variar la temperatura (son sensibles a la temperatura).
MÓDULO COMPARADOR Y REFERENCIA DE TENSIÓN PARA LA COMPARACIÓN
MÓDULO COMPARADOR Y REFERENCIA DE TENSIÓN PARA LA COMPARACIÓN - + Fernando Nuño García 1 Estos dos módulos existen en la versión de los PIC16F87xA pero NO en la versión PIC16F87x PIC16F877 PIC16F877A 2
UNIVERSIDAD AUTONOMA DE QUERETARO Facultad de Informática
ELECTRÓNICA ANALÓGICA(1302). ÁREA DE CONOCIMIENTO: ARQUITECTURA DE LAS COMPUTADORAS CRÉDITOS: 7 HORAS TEÓRICAS ASIGNADAS A LA SEMANA: 2 HORAS PRÁCTICAS ASIGNADAS A LA SEMANA: 2 PROGRAMAS EDUCATIVOS EN
6.2. Curva de transferencia La curva de transferencia muestra la forma de variación de la tensión de salida en función de la tensión de entrada.
6. Características operacionales y parámetros básicos 6.1. Niveles lógicos Los niveles lógicos vienen determinados por los parámetros definidos en el apartado anterior. Valores orientativos son: TTL: V
MOTORES DE C.A. TRIFÁSICOS CORRIENTE EN AMPERES A PLENA CARGA
www.viakon.com MOTORES DE C.A. TRIFÁSICOS CORRIENTE EN AMPERES A PLENA CARGA HP MOTOR DE INDUCCIÓN JAULA DE ARDILLA Y ROTOR DEVANADO V 0V V 7 V 00V MOTOR SÍNCRONO DE FACTOR DE POTENCIA UNITARIO* V V V
REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Fuente de tensión continua regulada
REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Cátedra de Dispositivos Electrónicos Departamento de Electricidad, Electrónica y Computación (DEEC) FACET - UNT Fuente de tensión continua regulada R S
CAPITULO XIII RECTIFICADORES CON FILTROS
CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:
La circuitería interna del 555 según National Semiconductors, es la siguiente:
LABORATORIO DE CIRCUITOS DIGITALES II OPERACIÓN DEL 555 COMO ASTABLE INTRODUCCION El 555 es un integrado muy útil, pudiendo ser configurado en varias modalidades. Una de estas modalidades es la del multivibrador
Plan de Estudios. b) El manejo correcto de estos Dispositivos en el armado de los circuitos que se diseñen;
76 Plan de Estudios 1.- Descripción Carrera : Ingeniería Electrónica Asignatura : Laboratorio 2 Clave : IEE - 449 Créditos : 3 (tres) Pre Requisitos : IEE 354 Circuitos Electrónicos IEE 340 Laboratorio
Amplificador en Emisor Seguidor con Autopolarización
Practica 3 Amplificador en Emisor Seguidor con Autopolarización Objetivo El objetivo de la práctica es el diseño y análisis de un amplificador colector común (emisor seguidor). Además se aplicara una señal
Conceptos preliminares
Página1 OBJETIVO: Reconocer e interpretar las partes que componen una fuente de alimentación regulada y observar las características de tensión y corriente. Conceptos preliminares Al considerar una fuente
Nota de aplicación: Como Sintonizar un Duplexor usando el R8100 de Freedom Communication Technologies
: Como Sintonizar un Duplexor usando el R8100 de Freedom Communication Technologies FCT-1005A (Spanish) January 2018 Introducción Los duplexores aíslan los transmisores y receptores de RF que están conectados
AUTORES: RICAURTE CORREA NÉSTOR ANDRÉS SARZOSA ANTE DAVID DE JESÚS
DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DIDÁCTICO DE INVERSOR MULTINIVEL EN CASCADA, MONOFÁSICO DE TRES ETAPAS PARA EL LABORATORIO DE CONTROL ELÉCTRICO ESPE LATACUNGA AUTORES: RICAURTE CORREA NÉSTOR ANDRÉS
DRIVER IGBT 3073 DATOS DESTACABLES CARACTERISTICAS 1/6
DATOS DESTACABLES Driver para -s dobles de gama media, dentro de un rango de trabajo de 1200-1700V. Este Driver por si solo es capaz de controlar una rama branch (TOP y BOTTOM). Esta tarjeta a diferencia
Soluciones de Iluminación con LED
ARTICULO TECNICO Soluciones de Iluminación con LED Por el Depto. de Ingeniería de EduDevices. Introducción. Iluminación con LED Los LEDs, desarrollados en la década de los 70 s, ya no solo son utilizados
EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA
EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA Rev: 1.0 (Mayo/2016) Autor: Unai Hernández ([email protected]) Contenido 1. Circuitos con resistencias... 3 1.1 Experimentar con asociaciones de
intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.
1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga
INSTRUMENTOS Y HERRAMIENTAS DE PROPÓSITO GENERAL
INSTRUMENTOS Y HERRAMIENTAS DE PROPÓSITO GENERAL EL CIRCUITO INTEGRADO 555: 1. Introducción 2. Estructura interna 3. Funcionamiento del C.I 555 3 B ELECTRÓNICA 1. INTRODUCCIÓN El circuito integrado 55
FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA AMPLIFICADORES OPERACIONALES PRÁCTICA 1 AMPLIFICADOR INVERSOR
AMPLIFICADORES OPERACIONALES PRÁCTICA 1 AMPLIFICADOR INVERSOR Prof. Carlos Navarro Morín 2010 practicas del manual de (Opamps) Haciendo uso del amplificador operacional LM741 determinar el voltaje de salida
Fuentes Reguladas Lineales
Fuentes Reguladas ineales 1 Fuentes Reguladas Clasificaciones. Fuentes reguladas Discretas Fuentes reguladas ntegradas Reguladores Series Reguladores en paralelo 2 1 Fuentes Reguladas Diagrama en bloque
Parcial_1_Curso.2012_2013. Nota:
Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.
Microchip Tips & Tricks...
COMENTARIO TECNICO Microchip Tips & Tricks... Por el Departamento de Ingeniería de Electrónica Elemon S.A. N. de R: La presente serie de artículos técnicos tiene por objetivo proponer consejos y trucos
MÓDULO Nº10 CONVERTIDORES DIGITAL ANALÓGICO
MÓDULO Nº0 CONVERTIDORES DIGITAL ANALÓGICO UNIDAD: CONVERTIDORES TEMAS: Introducción al tratamiento digital de señales. Definición y Funcionamiento. Parámetros Principales. DAC00 y circuitos básicos. OBJETIVOS:
MODULO DE 8 RELEVADORES
MODULO DE 8 RELEVADORES Modulo ideal para el control de cargas de corriente directa o alterna que puede ser utilizado con un microcontrolador, circuitos digitales o amplificadores operacionales Tabla de
