Funciones de varias variables: continuidad derivadas parciales y optimización

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Funciones de varias variables: continuidad derivadas parciales y optimización"

Transcripción

1 Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio de las siguientes funciones de dos variables reales y calcular el límite de cada una de ellas en (0, 0) : 1. f (x, y) = x2 y 2 2. f (x, y) = x y 3. f (x, y) = x 2 y 2 x 2 y 2 + (x y) 2 ; 4. f (x, y) = x2 y x 4 + y 2 ; 5. f (x, y) = x sen 1 y. 6. f (x, y) = (x + y 2 )sen ( 1 xy ); 7. f (x, y) = y x + 2y ; 8. f (x, y) = 2xy2 9. f (x, y) = x3 y f (x, y) = 11. f (x, y) = x 2 + y 2 x2 + y ; x y x2 + y 2 ; 12. f (x, y) = x2 x + y, (x, y) R2, x = y. 1

2 Cálculo. Relación 4 2 Problema 2. Estudiar la continuidad y la diferenciabilidad de las siguientes funciones: 1. f (x, y) = x3 y 3 x 2 + y 2, 2. f (x, y) = x y x2 y 2 x 2 + y 2. Problema 3. Estudiar la continuidad y la diferenciabilidad de la función f : R 2 R 2 definida por: f (x, y) = ( ) x 2 y, sen (xy), (x, y) = (0, 0) x 2 +y 2 (0, 0), (x, y) = (0, 0) Problema 4. Calcular las derivadas parciales de primer y segundo orden de los campos escalares: a) f (x, y, z) = x y+z, b) g(x, y, z) = (x + y) z, c) h(x, y) = sen ( x sen y ) Problema 5. Decimos que una función f es armónica en un abierto Ω R 2 si 2 f x 2 (x, y) + 2 f (x, y) = 0 y2 en todo punto (x, y) Ω. Son armónicas las siguientes funciones? a) f (x, y) = arc tg(x/y), Ω = R 2 \ {y = 0}. b) g(x, y) = e x cos y + e y cos x, Ω = R 2. c) h(x, y) = ex+y x 2 + y 2, Ω = R2 \ {(0, 0)}. Problema 6. Sea r = x 2 + y 2 + z 2. Comprobar que 2 r x r y r z 2 = 2 r Problema 7. De entre todas las direcciones u R 3 calcular aquella en la que la derivada direccional de la función f (x, y, z) = xy 2 + yz + z 2 x 2 en el punto (1, 2, 1) sea máxima. Problema 8. Calcular el plano tangente a las siguientes superficies en el punto que se indica: a) z = log(1 + x 2 + y 2 ) en (0, 0, 0). b) z 2 + 3x x 2 y 2 = 2 en (1, 1, 1).

3 Cálculo. Relación 4 3 Problema 9. Determinar las ecuaciones de los planos tangentes al elipsoide x 2 + 3y 2 + 5z 2 = 1 que son paralelos al plano tangente a la superficie z = xy en el punto (1, 1, 1). Problema 10. Sean a, b R dos parámetros, y f : R 2 R una función real de dos variables reales dada por f (x, y) = x 2 + y 2 2ax 2by. Estudiar la existencia de extremos relativos de f en función de los parámetros a y b. Problema 11. Calcular y clasificar los puntos críticos de los siguientes campos escalares: 1. f (x, y) = x 3 + 3xy 2 15x 12y. 2. f (x, y) = sen x + sen y + cos(x + y), 0 < x < 2π, 0 < y < 2π. 3. f (x, y) = x 4 + 2x 2 y x 2 + 3y f (x, y) = x 4 + y 4 4a 2 xy (a > 0) 5. f (x, y) = (x 2 + 2y 2 ) e (x2 +y 2). 6. f (x, y, z) = x 2 + y 2 + 3z 2 + yz + 2xz xy. 7. f (x, y, z) = (x + z 2 ) e x(y2 +z 2 +1). Problema 12. En una tienda de bebidas se vende vino de mesa de la marca A y de la marca B. El propietario de la tienda puede obtener ambos vinos a un coste de 200 ptas por botella; su hijo, que es estadístico, ha estimado que si el vino A se vende a x ptas el litro y el vino B a y ptas el litro, entonces se venderá aproximadamente 40 50x + 40y botellas de la marca A y x 70y botellas de la marca B. Qué precio deberá ponerse a cada marca de vino para maximizar el beneficio?. Problema 13. Sea f : R R derivable. Si z = z(x, y) = f (x 2 y), comprobar que x z x = 2y z y Problema 14. Sea z(x, y) = f (x 2 + 2yz, y 2 + 2xz) con f (u, v) diferenciable. Comprobar que: (y 2 xz) z x + (x2 yz) z y + (z2 xy) z z = 0 Problema 15. Calcular F x y F y de la función F(u, v) = u2 + 3uv + 4u 2, siendo u = 2 2xy 2 y v = 1 + x: a) Mediante la regla de la cadena.

4 Cálculo. Relación 4 4 b) Sustituyendo u y v por sus valores. Problema 16. Sean las funciones f (x, y, z) = (e x +y 2, k e z +y) (donde k R es un parámetro), g(u, v) = v 2 + log u si u > 0. Qué valor debe tomar k para que la derivada direccional máxima de (g f ) en (0, 0, 0) sea igual a 1? Problema 17. Sean f y g dos funciones de R en R, derivables en todo R. Se define la función de dos variables z(x, y) = x 2 y f (u) + xy 2 g(v), con u = x y, v = y z z x. Calcular x (x, y) + y (x, y). x y Problema 18. Sea F : R 2 R 2 dada por F(x, y) = (e xy, sen(x 2 + y 2 )). Calcular la matriz jacobiana de la función inversa de F en el punto F(1, 1). Problema 19. Comprobar que en las siguientes ecuaciones se verifican las condiciones del Teorema de la Función Implícita en el punto indicado y obtener y (x) en los casos (i) a (iii) y z x, z en los otros. y (i) x y + 3x 2 2y 2 2y = 0, (1, 1) (ii) sen x + cos y + 2y π = 0, (0, π/2) (iii) y log(x 2 + y 2 ) 2xy = 0, (0, 1) (iv) x log(1 + y) + z e 4z = 0, (0, 0, 0) (v) z arc tg(1 z 2 ) + 3x + 5z 8y 3 = 0, (1, 1, 1) (vi) x y z e z logz 3x + 3y = 0, (1, 1, 1) Problema 20. Determinar la derivada de la función z = z(x, y) definida implícitamente por la ecuación x tg y z e z = 0 en el punto (0, π/4, 0) en la dirección del vector (2, 1). Problema 21. Calcular y clasificar los puntos críticos de la función z = z(x, y) definida implícitamente por 2x 2 + 2y 2 + z 2 + 8xz z + 8 = 0. Problema 22. Calcular y clasificar los puntos críticos de la función z = z(x, y) definida implícitamente por 5x 2 + 5y 2 + 5z 2 2xy 2xz 2yz 72 = 0. Problema 23. Calcúlense los máximos y mínimos absolutos de las siguientes funciones en los dominios dados: a) D(x, y) = x 2 xy + y en la placa triangular cerrada acotada por las rectas x = 0, y = 4, y = x. b) h(x, y) = x 2 y 2 en todo R 2.

5 Cálculo. Relación 4 5 Problema 24. Una placa plana tiene la forma del círculo de centro (0, 0) y radio 1. La placa, incluyendo el borde, se calienta de manera que la temperatura en un punto (x, y) es T(x, y) = x 2 + 2y 2 x. Determinar los puntos con mayor y menor temperatura de la placa, así como la temperatura en cada uno de ellos. Problema 25. Determínese el punto P(x, y, z) en el plano 2x + y z = 5 que está más cerca del origen. Problema 26. Calcúlese la distancia mínima del origen a la superficie de R 3 dada por la ecuación x 2 z 2 1 = 0. Problema 27. Determínese el rectángulo de mayor área que se puede inscribir en la elipse x 2 a 2 + y2 = 1, donde a, b son reales positivos. b2 Problema 28. Encontrar los puntos donde la función f : A R definida como f (x, y) = x 2 + y 2 xy x y ((x, y) R 2 ) alcanza sus extremos absolutos siendo A = {(x, y) R 2 : x, y 0, x + y 3}. Problema 29. Estudiar los extremos de la función f : (R + ) 3 R, f (x, y, z) = log(x y z) en la esfera x 2 + y 2 + z 2 = 5π. Problema 30. Hallar la mínima distancia entre la recta x + y = 4 y la circunferencia x 2 + y 2 = 1. Problema 31. Calcular la distancia mínima entre la recta x y = 2 y la parábola y = x 2. Problema 32. El área de una caja rectangular sin tapa es de 108u 2. Hallar que dimensiones debe tener para conseguir el máximo volumen. Problema 33. Hallar el volumen máximo de una caja rectangular situada sobre el plano XY que tiene un vértice en el origen y el vértice opuesto pertenece al paraboloide z + x 2 + 4y 2 = 4. Problema 34. Calcular el volumen de la caja rectangular más grande, de caras paralelas a los planos coordenados y cuyos vértices están sobre el elipsoide 9x y 2 + 4z 2 = 36. Problema 35. Calcula los puntos de la superficie xy 2 z 3 = 2 que están más cerca del origen. Problema 36. Calcular los valores máximo y mínimo de la función f (x, y, z) = xyz cuando (x, y, z) pertenece a la curva definida por la intersección del plano x + y + z = 0 y la esfera x 2 + y 2 + z 2 1 = 0.

6 Cálculo. Relación 4 6 Problema 37. El plano x + y + z = 24 corta al paraboloide z = x 2 + y 2 en una elipse. Calcula los puntos más altos y más bajos de dicha elipse. Problema 38. Encontrar el mínimo de la función f (x, y) = 2y en el conjunto 3x 2 5y 5 = 0. Por qué no funciona el método de los multiplicadores de Lagrange?

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

CALCULO DIFERENCIAL. GRUPO D

CALCULO DIFERENCIAL. GRUPO D CALCULO DIFERENCIAL. GRUPO D HOJA DE PROBLEMAS 1 1. En este ejercicio se trata de dibujar el siguiente subconjunto de R 3 llamado hiperboloide de una hoja (a, b, c > 0): } V = (x, y, z) R 3 : x a + y b

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

SERIE # 1 CÁLCULO VECTORIAL

SERIE # 1 CÁLCULO VECTORIAL SERIE # 1 CÁLCULO VECTORIAL Página 1) Determinar la naturaleza de los puntos críticos de la función f x, y = x y x y. P 1 0,0 máximo relativo, P 1, 1 punto silla, P 1, 1 punto silla, 4 1, 1 silla, P5 1,

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52 TALLER : Regla de la cadena, derivadas direccionales y vector gradiente Cálculo en varias variables Universidad Nacional de Colombia - Sede Medellín Escuela de matemáticas 1. Use la regla de la cadena

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES Sergio Stive Solano Sabié 1 Mayo de 2013 1 Visita http://sergiosolanosabie.wikispaces.com VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

2 Estudio local de funciones de varias variables.

2 Estudio local de funciones de varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 2 Estudio local de funciones de varias variables. 2.1 Derivadas de orden superior. Problema 2.1 Sea

Más detalles

ALGUNOS EJERCICIOS DE C. DIF.

ALGUNOS EJERCICIOS DE C. DIF. 1 ALGUNOS EJERCICIOS DE C. DIF. 1.-Concepto de función Algunos ejercicios 1.1==En una circunferencia de radio 10 m, se inscribe un rectangulo. Expresar el area del rectangulo en funcion del lado x de la

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL (Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL En numerosas aplicaciones de la ingeniería se presentan problemas de optimización,

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización Calificación: FECHA: 1/06/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Más detalles

Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3 puntos).

Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3 puntos). PAU. CASTILLA Y LEON - 1998 a x + y z = z PR-1. Dado el sistema x + ay + z = x 3x + 3y + z = y Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1 1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

(1-mx)(2x+3) x 2 +4 = 6. x > -1

(1-mx)(2x+3) x 2 +4 = 6. x > -1 . [04] [EXT-A] Sea la función f(x) = e x +ax+b a) Calcular a y b para que f(x) tenga un extremo en el punto (,). b) Calcular los extremos de la función f(x) cuando a = 0 y b = 0.. [04] [EXT-B] En la figura

Más detalles

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal PROGRAMA DE CURSO Código MA1003 Nombre del Curso Cálculo en varias variables Unidades Docentes Cátedra Auxiliares Trabajo Personal 10 3 2 5 Requisitos Requisitos específicos Carácter del curso MA1002,

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

x-y+2 = 0 z = [2014] [JUN-A] Sea el plano que pasa por los puntos A(1,-1,1), B(2,3,2), C(3,1,0) y r la recta dada por r x-7 2 = y+6

x-y+2 = 0 z = [2014] [JUN-A] Sea el plano que pasa por los puntos A(1,-1,1), B(2,3,2), C(3,1,0) y r la recta dada por r x-7 2 = y+6 1. [014] [EXT-A] Sea el punto A(1,1,) y la recta de ecuación r a) Calcular el plano perpendicular a la recta r que pase por A. b) Calcular la distancia del punto A a la recta r. x-y+ = 0 z =.. [014] [EXT-B]

Más detalles

Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada

Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 6 Aplicaciones de la derivada José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Problemas de exámenes de Geometría

Problemas de exámenes de Geometría 1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 7 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor es el estudio de los extremos relativos de una función escalar. Aunque la analogía con el caso de una variable es total,

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

x+3y = 8 4y+z = 10 ; s: x 7 = y a-4 = z+6 5a-6 b) Para el valor del parámetro a = 4, determine, si es posible, el punto de corte de ambas rectas.

x+3y = 8 4y+z = 10 ; s: x 7 = y a-4 = z+6 5a-6 b) Para el valor del parámetro a = 4, determine, si es posible, el punto de corte de ambas rectas. [04] [EXT-A] a) Estudie la posición relativa de las rectas r y s en función del parámetro a: r: x+y = 8 4y+z = 0 ; s: x = y a-4 = z+ 5a- b) Para el valor del parámetro a = 4, determine, si es posible,

Más detalles

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima.

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima. Facultad de Ingeniería - IMERL Cálculo - Curso. Práctico 8. Integrales paramétricas e integrales iteradas dobles y triples. Integrales múltiples. Cambio de variables, áreas, volúmenes, sumas de Riemann

Más detalles

Problemas tipo examen

Problemas tipo examen Problemas tipo examen La división en temas no es exhaustiva. Las referencias (H n- m) indican el problema m de la hoja n y las referencias (A- cd), con A en números romanos indican un examen del mes A

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS MODELO 2000: OPCIÓN A: a. Calcúlense p y q de modo que la curva y = x $ + px + q contenga al punto ( 2, 1) y presente un mínimo

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 5 Derivación de funciones de una y varias variables José Barrios García Departamento de Análisis Matemático Universidad de La

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 000 Primera parte Ejercicio 1. Entre todos los rectángulos del plano YOZ,inscritos en la parábola z = a y (siendo a>0) yconbaseenelejeoy

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que

Más detalles

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales Derivadas parciales y direccionales 1 Derivadas parciales 2 Derivadas direccionales 3 Derivadas parciales de orden superior Derivadas parciales (de campos escalares de dos variables) Sea A = [a 1, b 1

Más detalles

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx =

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx = Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables 1. Hallar las derivadas parciales primera y segunda de las siguientes funciones: (a) z

Más detalles

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy 1 Es aplicable el teorema de Rolle a la función f(x) = x 1 en el intervalo [0, 2]? 2 Estudiar si la función f(x) = x x 3 satisface las

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

FUNCIONES DE DOS VARIABLES

FUNCIONES DE DOS VARIABLES FUNCIONES DE DOS VARIABLES - Funciones de dos variables reales - Límites 3- Continuidad de funciones de dos variables 4- Derivabilidad de funciones de dos variables 5- Diferenciabilidad de funciones de

Más detalles

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5).

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5). 74 MÉTOOS NUMÉRICOS Informática de Sistemas - curso 9/1 Hojas de problemas Tema I - Cálculo diferencial e integral en varias variables I.1 Representación de funciones de dos variables 1. ibuja el plano

Más detalles

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

1 Cálculo diferencial en varias variables.

1 Cálculo diferencial en varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 1 Cálculo diferencial en varias variables. 1.1 Funciones de varias variables. Límites y continuidad.

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

1. Sea g(x, y) =. Determine, la Derivada Direccional de la función compuesta g(g(x, y),g(x, y)) en el punto (2,1) en la dirección tangente a la curva C definida implícitamente por g(x, y)=0 en el punto

Más detalles

Ejercicios de Matemáticas I Relación 1: Funciones reales de variable real. Continuidad y límite funcional

Ejercicios de Matemáticas I Relación 1: Funciones reales de variable real. Continuidad y límite funcional Ejercicios de Relación : Funciones reales de variable real. Continuidad y límite funcional. Estúdiese la continuidad y el comportamiento en + y en de la función f : R R definida por a) f (x) = x, x R.

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

ANÁLISIS MATEMÁTICO I (2012)

ANÁLISIS MATEMÁTICO I (2012) ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Función lineal y cuadrática. Curvas de primer y segundo grado.

Función lineal y cuadrática. Curvas de primer y segundo grado. Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F

Más detalles

x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1

x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1 1. [ANDA] [JUN-A] Considera el punto P(2,0,1) y la recta r a) Halla la ecuación del plano que contiene a P y a r. b) Calcula el punto simétrico de P respecto de la recta r. x+2y = 6 z = 2. 2. [ANDA] [SEP-A]

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 3 (DERIVADAS) Profesora: Yulimar Matute Febrero 2012 DERIVADAS POR DEFINICIÓN

Más detalles

Derivadas Parciales. Aplicaciones.

Derivadas Parciales. Aplicaciones. RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.

Más detalles

Lección 26: Extremos relativos condicionados: Multiplicadores de Lagrange. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 26: Extremos relativos condicionados: Multiplicadores de Lagrange. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 6: Extremos relativos condicionados: Multiplicadores de Lagrange Introducción al Cálculo Infinitesimal I.T.I. Gestión Ligaduras y extremos condicionados f : R n R función de varias variables Buscaremos

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca 1. Hallar f(x, y) si f(x + y, x y) = xy + y. Sean u = x + y y v = x y. Resolviendo este sistema se obtiene Luego, x = u + v f(u, v) = u + v u v e y = u v. ( ) u v + = u uv. Finalmente, volviendo a las

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

RESUMEN TEORIA MATEMATICAS 5

RESUMEN TEORIA MATEMATICAS 5 RESUMEN TEORIA MATEMATICAS 5 LIMITES Definición. Sea :, lim,,, Significa que cuando, esta cerca de, entonces, esta cerca de L. De otra forma se dice que, pertenece a una bola centrada en, por otro lado,

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Funciones implícitas y su derivada

Funciones implícitas y su derivada Funciones implícitas su derivada 4 Al considerar la función con ecuación x 3x 5x f, es posible determinar f ( x ) con los teoremas enunciados anteriormente, a que f es una función dada implícitamente en

Más detalles

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3).

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3). CAMPOS SUPERFICIES Hallar un vector unitario normal a la superficie x 2 y + 2xz 4 en el punto (2, 2,3). Solución I.T.I. 98, I.T.T. 99, 02 En primer lugar deberíamos verificar que el punto (2, 2,3) pertenece

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía ETSI de Topografía, Geodesia Cartografía LÍMITES, CONTINUIDAD Y DIFERENCIABILIDAD DE FUNCIONES DE VARIAS VARIABLES REALES Prueba de Evaluación Continua Grupo ºA 3-Octubre-04.- Sea la función 5 si (,) 4

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

Problemas de Geometría Proyectiva

Problemas de Geometría Proyectiva Problemas de Geometría Proyectiva José M. Sánchez Abril José M. Rodríguez-Sanjurjo, Jesús M. Ruiz 1995 * I. VARIEDADES PROYECTIVAS Número 1. Se consideran en el plano proyectivo P 2 los cuatro puntos a

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

DERIVADAS. Problemas con Solución.

DERIVADAS. Problemas con Solución. DERIVADAS. Problemas con Solución. Aplica la definición de derivada como un límite, para calcular f siendo fx = x + x +. 4. Sea la función fx = x/x, halla la derivada de f en el punto de abcisa usando

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

4 Superficies regulares

4 Superficies regulares 4 Superficies regulares Una superficie en R 3 se puede decir que es, de forma intuitiva, un subconjunto en R 3 donde en cada punto podemos encontrar una porcin de plano que ha sido deformada de forma suave.

Más detalles