Martingalas. Es decir, condicionando al pasado, la ganancia neta esperada luego del turno siguiente es cero. Esto es, el juego es justo.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Martingalas. Es decir, condicionando al pasado, la ganancia neta esperada luego del turno siguiente es cero. Esto es, el juego es justo."

Transcripción

1 Martingalas Vamos a estudiar una clase de procesos que pueden verse como la fortuna de un jugador que juega repetidamente un juego justo. Así que pensemos que M n es la fortuna del jugador luego de jugar n turnos del juego. Decimos que M 0, M 1,... es una martingala si para cualquier n 0 1 E M n < 2 para cualquier sucesión de posibles valores m 0, m 1,..., m n E[M n+1 M 0 = m 0, M 1 = m 1,..., M n = m n ] = m n La segunda propiedad es equivalente a E[M n+1 M n M 0 = m 0, M 1 = m 1,..., M n = m n ] = 0. Es decir, condicionando al pasado, la ganancia neta esperada luego del turno siguiente es cero. Esto es, el juego es justo. Raúl Jiménez y Rosario Romera (UC3M) Procesos Estocásticos Diciembre / 11

2 Esperanza condicional Martingalas Como el estudio de martingalas recae fuertemente en el concepto de esperanza condicional es conveniente extenderla en un sentido más general. En los cursos introductorios de probabilidad, si X, Y son variables aleatorias, la esperanza de X dado Y = y se entiende como el valor esperado de la distribución de X dado Y = y, { E[X Y = y] = x x P(X = x Y = y) caso discreto x fx Y =y (x)dx caso continuo Sea ψ tal que, para cada posible valor y de Y se tiene ψ(y) = E[X Y = y] La variable aleatoria ψ(y ) es llamada esperanza condicional de X dado Y y se denota por E[X Y ]. Raúl Jiménez y Rosario Romera (UC3M) Procesos Estocásticos Diciembre / 11

3 Definición Usando el concepto revisado de esperanza condicional, volvemos a la definición de martingala: Decimos que M 0, M 1,... es una martingala si para cualquier n 0 1 E M n < 2 E[M n+1 M 0, M 1,..., M n ] = M n Si en vez de la igualdad en 2 tenemos lo que ocurre en la mayoría de los juegos de casino E(M n+1 M 0, M 1,..., M n ) M n decimos entonces que {M n } es una supermartingala. Si por el contrario, el juego es a favor del jugador y decimos que es una submartingala. E[M n+1 M 0, M 1,..., M n ] M n Raúl Jiménez y Rosario Romera (UC3M) Procesos Estocásticos Diciembre / 11

4 Ejemplos Paseos aleatorios. Sean X 1, X 2,... variables aleatorias independientes y M n = M 0 + X X n. Ya que E[M n+1 M n M 0, M 1,..., M n ] = E[X n+1 ], M n es una supermartingala si E[X i ] 0, una martingala si E[X i ] = 0 y una submartingala si E[X i ] 0. Black-Scholes discreto. Sean Z 1, Z 2,... variables aleatorias independientes normales N(µ, σ 2 ) y definamos M n = M 0 e Z 1... e Zn. Entonces, E[M n+1 M 0, M 1,..., M n ] = M n E[e Z n+1 ], Así que M n es una supermartingala si E[e Z i ] 1, un martingala si E[e Z i ] = 1 y una submartingala si E[e Z i ] 1. Raúl Jiménez y Rosario Romera (UC3M) Procesos Estocásticos Diciembre / 11

5 Modelo Binomial de precios de acciones Sean Z 1, Z 2,... variables aleatorias independientes, con ( ) ( ) (1 + t) 1 P Z i = e r = p y P Z i = (1 + t)e r = 1 p, y definamos los precios por M n+1 = M 0 Z 1 Z n, n 1. La constante r es la tasa de interés (descontamos por no ganar intereses) y el factor (1 + t) y 1/(1 + t) modela las variaciones del mercado y garantiza que el precio tiene la forma M 0 (1 + t) z e nr, con z n. La volatilidad está asociada a p. Entonces, E[M n+1 M 0, M 1,..., M n ] = M n E[Z n+1 ], Así que M n es una supermartingala si E[Z i ] 1, un martingala si E[Z i ] = 1 y una submartingala si E[Z i ] 1. Raúl Jiménez y Rosario Romera (UC3M) Procesos Estocásticos Diciembre / 11

6 Martingalas respecto a CM Decimos que M 0, M 1,... es una martingala respecto a X 0, X 1,... si para cualquier n 0, E M n < y E[M n+1 M n X 0, X 1,..., X n ] = 0 Esta nueva definición no es un simple capricho matemático, se justificará cuando enunciemos el teorema de muestreo opcional. Por ahora, mencionamos que en la mayoría de los ejemplos {X n } es una CM y M n = g(x n, n) para alguna función g. Teorema 1 Sea {X n } una CM con espacio de estados S y matriz de probabilidades de transición P. Sea g : S N R tal que g(i, n) = j S p(i, j)g(j, n + 1) Entonces M n = g(x n, n) es una martingala. Raúl Jiménez y Rosario Romera (UC3M) Procesos Estocásticos Diciembre / 11

7 Ejemplos Martingalas Martingala cuadrática. Sean X 1, X 2,... variables aleatorias independientes con E[X i ] = 0 y E[Xi 2 ] = σ 2. Considere el paseo S n = S 0 + X X n, con S 0 constante, y M n = g(s n, n) = S 2 n nσ 2 Entonces M n es una martingala con respecto a S 0, S 1,.... Martingala exponencial. Sean Z 1, Z 2,... variables aleatorias independientes con función generatriz de momentos ψ(α) = E[exp(αZ i )]. Definamos S n = S 0 + X X n, con S 0 constante. Entonces M n = g(s n, n) = eαsn ψ n (α) es una martingala con respecto a S 0, S 1,.... Raúl Jiménez y Rosario Romera (UC3M) Procesos Estocásticos Diciembre / 11

8 Propiedades elementales Antes de discutir los resultados centrales de la teoría de martingalas, es conveniente aclarar algunos resultados elementales: 1 Si {X n } es una martingala (super-martingala) con respecto a {Y n } entonces E[X n+k Y 0,..., Y n ] = X n ( ) para todo k 0. 2 Si {X n } es una martingala (supermartingala) con respecto a {Y n } entonces para 0 k n se satisface E[X n ] = E[X k ] (resp. E[X n ] E[X k ]) 3 Si {X n } es una martingala con respecto a {Y n } y φ es una función convexa entonces {φ(x n )} es una submartingala con respecto a {Y n }. Raúl Jiménez y Rosario Romera (UC3M) Procesos Estocásticos Diciembre / 11

9 Tiempos de parada Martingalas Decimos que la variable aleatoria T es un tiempo de parada para el proceso {X n } si la ocurrencia o no del evento {T = n} (que se entiende como paramos el proceso en el instante n) puede ser determinado conociendo sólo los valores X 0, X 1,..., X n (no se requiere conocer ni X n+1, ni X n+2,... ). Ejemplo. Si X n es una CM que representa nuestro capital en euros luego de jugar n veces, el instante (aleatorio) T en el que por primera vez tenemos m euros es un tiempo de parada: {T = n} = {X 0 m,..., X n 1 m, X n = m} Podríamos pensar en enriquecernos apostando en un casino y parando de jugar cuando alcancemos la suma deseada. Veamos que dice el resultado central de la teoría de martingalas. Raúl Jiménez y Rosario Romera (UC3M) Procesos Estocásticos Diciembre / 11

10 Teorema del muestreo opcional Teorema 2. Si M n es una martingala respecto a {X n } y T es un tiempo de parada (también respecto a {X n }) entonces el proceso parado en T, a saber {M min(t,n), n 0}, es también una martingala respecto a {X n }. Si adicionalmente, P(T < ) = 1 y existe una c R + tal que M min(t,n) c para todo n entonces E[M T ] = M 0 La versión del teorema anterior para súper y submartingalas es: Teorema 3. Si M n es una supermartingala respecto a {X n } (respectivamente submartingala) y T es un tiempo de parada (también respecto a {X n }) entonces el proceso parado en T es una supermartingala respecto a {X n } (respectivamente submartingala). Raúl Jiménez y Rosario Romera (UC3M) Procesos Estocásticos Diciembre / 11

11 Comportamiento asintótico Teorema 4. Si {M n } es una martingala tal que para todo n se satisface E M n c, para algún c <, entonces lim n M n existe y es una variable aleatoria finita con probabilidad 1. Corolario. Si {M n } es una martingala no negativa entonces lim n M n existe casi siempre y es finito. Teorema 5. Sea {M n } una martingala con incrementos acotados, es decir, para todo n, M n+1 M n < c para algún c <. Sea σ 2 n = E[(M n+1 M n ) 2 M 0, M 1..., M n ] y definamos n(s) = min { n : n i=1 σ2 i s }. Entonces M n(s) lim N (0, 1) s s Raúl Jiménez y Rosario Romera (UC3M) Procesos Estocásticos Diciembre / 11

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Procesos Estocásticos II

Procesos Estocásticos II Procesos Estocásticos II Capacitación técnica especializada en el nuevo marco de Solvencia Gerónimo Uribe Bravo Instituto de Matemáticas Universidad Nacional Autónoma de México CAPÍTULO 1 Martingalas

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M. PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios

III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios Esta lista contiene ejercicios y problemas tanto teóricos como de modelación. El objetivo

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

Unidad II: Fundamentos de la teoría de probabilidad

Unidad II: Fundamentos de la teoría de probabilidad Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica

Más detalles

Procesos estocásticos. Definición

Procesos estocásticos. Definición Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier

Más detalles

Notas sobre el teorema minimax

Notas sobre el teorema minimax Notas sobre el teorema mini Antonio Martinón Abril de 2012 1 Teoremas mini Sean X e Y dos conjuntos no vacíos y consideremos una función Se verifica sup inf efectivamente, dado x X resulta claro que f

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Teoría de la decisión

Teoría de la decisión Teoría de la decisión Repaso de Estadística Unidad 1. Conceptos básicos. Teoría de. Espacio muestral. Funciones de distribución. Esperanza matemática. Probabilidad condicional 1 Teoría de la decisión Teoría

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

El sistema de Hilbert: Lógica de Primer Orden

El sistema de Hilbert: Lógica de Primer Orden El sistema de Hilbert: Lógica de Primer Orden El sistema de deducción de Hilbert para la lógica de primer orden consta de los siguientes elementos: IIC2213 Lógica de Primer Orden 55 / 65 El sistema de

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

EXPERIMENTO ALEATORIO

EXPERIMENTO ALEATORIO EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,

Más detalles

CAPITULO 1: PERSPECTIVE GENERAL DE LA

CAPITULO 1: PERSPECTIVE GENERAL DE LA CONTENIDO CAPITULO 1: PERSPECTIVE GENERAL DE LA INVESTIGACION DE OPERACIONES 1 1.1 Modelos matemáticos de investigación de operaciones. 1 1.2 Técnicas de investigación de operaciones 3 1.3 Modelado de

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 10 11 1. Los números reales 1. Desigualdades. 2. Representación 2. Propiedades. 3. Densidad de los números racionales 4. Propiedades

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta

Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,... Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme

Más detalles

6.1. Esperanza Matemática de Variables Aleatorias Discretas.

6.1. Esperanza Matemática de Variables Aleatorias Discretas. Capítulo 6 Esperanza Matemática 6 Esperanza Matemática de Variables Aleatorias Discretas Recordemos que una variable aleatoria X es discreta, si existe una sucesión (x n ) n de números reales tales que

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Esperanza Condicional y Martingalas

Esperanza Condicional y Martingalas Capítulo 4 Esperanza Condicional y Martingalas 4.1. Preliminares Comenzamos recordando algunos conceptos fundamentales sobre Espacios de Hilbert. Definición 4.1 Sea V un espacio vectorial real. Una función,

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Distribuciones de probabilidad multivariadas

Distribuciones de probabilidad multivariadas Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Aplicación del Problema de la Ruina del Jugador en Opciones Financieras. Susana Carvajal Martínez

Aplicación del Problema de la Ruina del Jugador en Opciones Financieras. Susana Carvajal Martínez Aplicación del Problema de la Ruina del Jugador en Opciones Financieras Susana Carvajal Martínez 18 de julio de 2008 Índice general Índice general 1 1. INTRODUCCIÓN 3 2. CADENAS DE MARKOV 5 2.1. De niciones

Más detalles

X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo?

X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo? Ejemplo: el valor esperado y los juegos justos. En los juegos de azar es importante la variable aleatoria X = beneficio del jugador = (ganancia neta) (recursos invertidos) El juego consiste en una caja

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 2.1. Variables aleatorias: funciones de distribución,

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1 Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS PROBABILIDAD Área a la que pertenece: Área Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0056 Asignaturas antecedentes y subsecuentes PRESENTACIÓN

Más detalles

Objetivo: Entender la diferencia entre una desviación y una distribución. Reconocer los tipos de desviaciones y distribuciones.

Objetivo: Entender la diferencia entre una desviación y una distribución. Reconocer los tipos de desviaciones y distribuciones. PROBABILIDAD Y ESTADÍSTICA Sesión 2 2 MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS DISCRETOS 2.1 Definición de variable aleatoria discreta 2.2Función de probabilidad y de distribución 2.3 Valor esperado

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Capítulo 6: Variable Aleatoria Bidimensional

Capítulo 6: Variable Aleatoria Bidimensional Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el

Más detalles

Unidad III Variables Aleatorias Unidimensionales

Unidad III Variables Aleatorias Unidimensionales Unidad III Variables Aleatorias Unidimensionales En el capítulo anterior se examinaron los conceptos básicos de probabilidad con respecto a eventos que se encuentran en un espacio muestral. Los experimentos

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

Una invitación al estudio de las cadenas de Markov

Una invitación al estudio de las cadenas de Markov Una invitación al estudio de las cadenas de Markov Víctor RIVERO Centro de Investigación en Matemáticas A. C. Taller de solución de problemas de probabilidad, 21-25 de Enero de 2008. 1/ 1 Introducción

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS SUCESIONES DE FUNCIONES En primer curso estudiamos el concepto de convergencia de una sucesión de números. Decíamos que dada una sucesión de números reales (x n ) n=1 R, ésta

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

1. Convergencia en medida

1. Convergencia en medida FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre

Más detalles

MÉTODOS ESTADÍSTICOS APLICADOS

MÉTODOS ESTADÍSTICOS APLICADOS Pedro Sánchez Algarra (autor y coordinador) Xavier Baraza Sánchez Ferran Reverter Comas Esteban Vegas Lozano Departament d Estadística TEXTOS DOCENTS 3 MÉTODOS ESTADÍSTICOS APLICADOS Pedro Sánchez Algarra

Más detalles

EN FINANZAS. Ernesto Mordecki. Primer Encuentro Regional de. Probabilidad y Estadística Matemática

EN FINANZAS. Ernesto Mordecki. Primer Encuentro Regional de. Probabilidad y Estadística Matemática MODELOS ESTOCÁSTICOS EN FINANZAS Ernesto Mordecki http://www.cmat.edu.uy/ mordecki mordecki@cmat.edu.uy Facultad de Ciencias Montevideo, Uruguay. Primer Encuentro Regional de Probabilidad y Estadística

Más detalles

Definición de la integral de Riemann (Esto forma parte del Tema 1)

Definición de la integral de Riemann (Esto forma parte del Tema 1) de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de

Más detalles

Análisis de Algoritmos

Análisis de Algoritmos Análisis de Algoritmos Amalia Duch Barcelona, marzo de 2007 Índice 1. Costes en tiempo y en espacio 1 2. Coste en los casos mejor, promedio y peor 3 3. Notación asintótica 4 4. Coste de los algoritmos

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial.

Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial. La distribución geométrica Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial. Consideramos otro experimento relacionado. Vamos a

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 3 Variables aleatorias Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%. Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,

Más detalles

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................

Más detalles

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno para S.D.O. Lineales 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV

TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV DESCRIPCIÓN: En el siguiente trabajo se mostrarán algunos métodos para encontrar

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Sea T R y (Ω, F, P ) un espacio de probabilidad. Un proceso aleatorio es una función

Sea T R y (Ω, F, P ) un espacio de probabilidad. Un proceso aleatorio es una función Capítulo 2 Cadenas de Markov 21 Introducción Sea T R y (Ω, F, P ) un espacio de probabilidad Un proceso aleatorio es una función X : T Ω R tal que para cada t T, X(t, ) es una variable aleatoria Si fijamos

Más detalles

Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría

Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Ernesto Barrios Zamudio 1 José Ángel García Pérez2 Departamento Académico de Estadística Instituto

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

03 Variables aleatorias y distribuciones de probabilidad. Contenido. Variable aleatoria

03 Variables aleatorias y distribuciones de probabilidad. Contenido. Variable aleatoria 03 Variables aleatorias y distribuciones de probabilidad Contenido Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Variable aleatoria Sea Ω un espacio muestral.

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Variables aleatorias múltiples

Variables aleatorias múltiples Chapter 4 Variables aleatorias múltiples 4.. Distribución conjunta y marginal Definición 4.. Un vector aleatorio n-dimensional es una función que va de un espacio muestral S a un espacio euclediano n-dimensional

Más detalles

Divergencia de sucesiones

Divergencia de sucesiones Tema 7 Divergencia de sucesiones Nuestro próximo objetivo es prestar atención a ciertas sucesiones no acotadas de números reales, ue llamaremos sucesiones divergentes. Estudiaremos su relación con los

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UCM Función de distribución y función de densidad Ejercicio. Sea X una variable aleatoria con función de distribución dada

Más detalles

La Ecuación de Schrödinger

La Ecuación de Schrödinger La Ecuación de Schrödinger Dr. Héctor René VEGA CARRILLO Notas del curso de Física Moderna Unidad Académica de Ingeniería Eléctrica Universidad Autónoma de Zacatecas Buzón electrónico: fermineutron@yahoo.com

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

HOJA DE TRABAJO UNIDAD 3

HOJA DE TRABAJO UNIDAD 3 HOJA DE TRABAJO UNIDAD 3 1. Defina que es probabilidad Es el estudio de experimentos aleatorios o libres de determinación, el resultado es al azar. Se refiere al estudio de la aleatoriedad y a la incertidumbre.

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL ASIGNATURA: ESTADÍSTICA I CODIGO : 5B0067 I.- DATOS GENERALES SILABO

Más detalles

03 Variables aleatorias y distribuciones de probabilidad

03 Variables aleatorias y distribuciones de probabilidad 03 Variables aleatorias y distribuciones de probabilidad Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Variables aleatorias discretas: función

Más detalles

Modelos de colas exponenciales

Modelos de colas exponenciales Tema 6 Modelos de colas exponenciales 6.1. La distribución exponencial y los procesos de Poisson 6.1.1. Distribución exponencial El análisis de los distintos modelos de colas está determinado en gran parte

Más detalles

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.

Más detalles