PRIMERA PRÁCTICA SONIDO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRIMERA PRÁCTICA SONIDO"

Transcripción

1 PRIMERA PRÁCTICA SONIDO 1. Objtivo gnral: El objtivo d sta práctica s qu l alumno s familiaric con los concptos d amplitud y frcuncia y los llgu a dominar, así como l fcto qu tin la variación d stos parámtros sobr l sonido rsultant. Rango d frcuncias audibls. Rspusta n frcuncia dl oído. Sonidos gravs, mdios y agudos. Scuncias d sonido d distintas frcuncias, amplituds y duracions (mlodía). Ccombinación d sonidos simultános con frcuncias distintas ntr sí (armonía). PARTE 1: RANGO DE FRECUENCIAS AUDIBLES Y RESPUESTA EN FRECUENCIA DEL OÍDO. Objtivos: Con sta práctica s trata d qu l alumno sa conscint d la rspusta auditiva d su propio oído y d la rlación qu xist ntr volumn, amplitud y frcuncia. Al mismo timpo db concrtar sus ida d frcuncias bajas, mdias y altas a rangos dtrminados por la frcuncia. Las curvas isofónicas (d igual sonoridad) mustran la dpndncia qu xist ntr amplitud y frcuncia. Es dcir, prcibimos distinto volumn no sólo dbido a difrncia n amplitud, sino también a difrncias n frcuncia. Esta curva rprsnta la rspusta n frcuncia dl oído. Como parámtro stándar s l volumn prcibido d cualquir sonido con l volumn al qu s prcib un tono d 1 Khz d frcuncia. Si la curva nos indica qu ncsitamos muchos más dciblios qu l tono patrón para qu s scuch al mismo volumn, sto indica qu a nustro oído l custa dtctar los sonidos con dicha frcuncia. Tara: Copia l siguint fichro con un nombr acabado n.csd o dscarga l fichro audiodb.csd d la página moodl d la asignatura. <CsoundSynthsizr> <CsOptions > ;salida a un archivo WAV d nombr audiciondb.wav -o audiciondb.wav </CsOptions > <CsInstrumnts> ;sampl rat sr = 44100

2 ;control rat ksmps = 1 ;numbr of channls nchnls = 1 ;dfinición dl instrumnto 1 instr 1 ;asignamos a la variabl iamplitud l valor d p4 iamplitud = p4 iampdb=ampdb(iamplitud) ;asignamos a la variabl ifrquncy l valor d p5 ifrquncy = p5 ;asignamos a la variabl iphas l valor 0 iphas = 0 ;asignamos a la variabl asound la salida dl opcod oscili asound oscils iampdb, ifrquncy, iphas ;nviamos asound a la salida d audio out asound ;fin d la dfinición dl instrumnto 1 ndin </CsInstrumnts> <CsScor> ;l valor d p1 indica qu la nota s crará con l instrumnto 1 ;l valor d p2 indica qu la nota mpzará para timpo=0 ;l valor d p3 indica qu la nota durará 5 sgundos ;l valor d p4 indica la amplitud n db ;l valor d p5 indica la frcuncia d la nota i i i i i i i i i i ; indica fin d la partitura </CsScor> </CsoundSynthsizr> El parámtro p1 indica l instrumnto a utilizar, l parámtro p2, indica l instant d cominzo n sgundos, l parámtro p3 indica la duración, p4 la amplitud n dciblios (db) y p5 la frcuncia d la nota. En clas: Gnrar una curva isofónica a partir dl fichro jmplo. Para llo hay qu jcutar l programa cambiando las amplituds hasta qu l alumno scuch todas las notas con l mismo volumn. En casa: 1. modificar l fichro para incluir al mnos l dobl d frcuncias a mdir y hacrlo n cuatro situacions, sgún la intnsidad dl tono d 1024 Hz valga: 20, 40, 60 y 80 db. 2. Ejcutar dicho programa (con las nuvas frcuncias) y ajustar los valors d la amplitud para qu todas las notas s scuchn al mismo volumn. Es dcir, hay qu gnrar cuatro

3 curvas difrnts. 3. Construir una gráfica con octav qu rprsnt la amplitud d cada una d las cuatro curvas obtnidas n db frnt a la frcuncia. 4. Indicar cuals son las frcuncias bajas, mdias y altas, sgún tu prcpción. Indicar qu frcuncias scuchas a un nivl muy bajo tanto por l lado d las frcuncias altas como por l lado d las frcuncias bajas. PARTE 2: DURACIÓN Y RITMO Objtivo: El alumno db comprndr l fcto qu la duración d un sonido tin n su prcpción dl mismo. Las notas s clasifican por su duración. En primr lugar s db fijar una duración d una nota d rfrncia. Por jmplo, la duración d la nota d rfrncia s 1 sgundo. Esto gnra qu las posibls notas más rápidas durn: 0.5 s., 0.25 s., s, s.,la duración d las notas más lntas sría d 2 y 4 sgundos. Si cambiamos l timpo d la nota d rfrncia a 0.75 s., por jmplo, dbrá cambiar también l d sus múltiplos y submúltiplos. Tngamos n cunta qu l caso mas rápido prsntado n st jmplo prmitiría jcutar 16 notas por sgundo. Esta clasificación s pud aplicar también a sonidos gnrados artificialmnt. No obstant, n st caso, l autor tin librtad total para dcidir la duración d los mismos. Tara: Ahora vamos a utilizar una scala linal d amplituds, por lo qu dbmos tnr n cunta las siguints línas: instr 1 ;asignamos a la variabl iamplitud l valor d p4 iamplitud = p4 ;asignamos a la variabl asound la salida dl opcod oscili asound oscils iamplitud, ifrquncy, iphas Partindo dl fichro antrior, (o dl fichro duracion.csd) modificar la partitura dl fichro d la siguint manra. <CsScor> ;l valor d p1 indica qu la nota s crará con l instrumnto 1 ;l valor d p2 indica qu la nota mpzará para timpo=0 ;l valor d p3 indica qu la nota durará 5 sgundos ;l valor d p4 s la amplitud (n scala linal) ;l valor d p5 s la frcuncia d la nota

4 i i i ; indica fin d la partitura </CsScor> </CsoundSynthsizr> Construir varios fichros, tal qu las duracions y frcuncias d cada una d las notas san variabls siguindo algún patrón dtrminado por l alumno. PARTE 2: ESCALA MUSICAL Objtivo: A través d sta práctica l alumno db comprndr qu la sparación ntr dos sonidos corrspondints al mismo tono no s constant sino qu aumnta con la frcuncia. Por otro lado, l conociminto d las frcuncias fundamntals d la scala cromática y l conociminto d las frcuncias utilizadas n las cuatro octavas más comuns l prmitirá tnr critrios a la hora d podr gnrar sonidos más compljos. En la imagn prcdnt podmos vr una scala d 12 notas. Para gnrar la siguint scala mas aguda s ncsario multiplicar la frcuncia d cada nota por 2, y para gnrar una octava más grav, dividir la frcuncia d la nota por 2. Tara: Utilizando l fichro scala.csd gnrar cuatro scalas, la antrior a la dada n la imagn, y las trs postriors. Situar cada una d las scalas n las curvas isofónicas obtnidas y dcir n cuál d las trs rgions n qu s pud dividir la rspusta s ncuntra cada una d llas. PARTE 4: Composición d sonidos compljos (armonía)

5 Objtivo: El objtivo d sta práctica s qu l alumno comprnda qué sonidos pud combinar ntr sí para producir sonidos agradabls o poco agradabls al oído. S xplorarán trs casos: Frcuncias crcanas ntr sí, frcuncias sin ninguna rlación d multipliciadad ntr llas y frcuncias múltiplos ntr sí (armónicas). Taras: Problma d tonos con frcuncias próximas: Utilizando l fichro armo1.csd comprobar si dos notas con frcuncias muy crcanas s scuchan bin o s pud rconocr algún tipo d fcto no dsabl n las mismas. Hacrlo para frcuncias n l ntorno d 200, n l ntorno d 800 y n l ntorno d 3400 Hz). Ocurr l mismo fnómno simpr?. Con los valors d las frcuncias utilizadas componr una sñal d 600 puntos n octav y rprsntarla gráficamnt. S obsrva alguna pauta qu prmita xplicar l fcto?. La partitura db modificars d la siguint manra. <CsScor> ;l valor d p1 indica qu la nota s crará con l instrumnto 1 ;l valor d p2 indica qu la nota mpzará para timpo=0 ;l valor d p3 indica qu la nota durará 5 sgundos ;l valor d p4 s la amplitud d la nota n scala linal ;l valor d p5 s frcuncia d la nota i i ; indica fin d la partitura </CsScor> </CsoundSynthsizr> Problma d tonos con frcuncias qu no guardn rlación d multiplicidad ntr sí: Utilizando l fichro armo2.csd comprobar con l siguint programa qu ocurr si las frcuncias no guardan ninguna rlación d multiplicidad ntr sí (al dividir la frcuncia mayor por la mnor l númro rsultant no s ntro). Hacrlo para varios conjuntos d frcuncia difrnts ( Qu conclusión sacas?). La partitura db modificars como sigu:

6 <CsScor> ;l valor d p1 indica qu la nota s crará con l instrumnto 1 ;l valor d p2 indica qu la nota mpzará para timpo=0 ;l valor d p3 indica qu la nota durará 5 sgundos ;l valor d p4 s ;l valor d p5 s 440 i i Problma d tonos con frcuncias qu no guardn rlación d multiplicidad ntr sí: Utilizando l fichro armo3.csd modificar la partitura para qu cr un conjunto d tonos qu s van a jcutar progrsivamnt pro qu acaban todos a la vz. La caractrística más important s qu la frcuncia d todos los tonos añadidos db sr múltiplo d la primra d llas. Mjora l sonido al añadir armónicos? <CsScor> ;l valor d p1 indica l instrumnto con l qu s crará la nota ;l valor d p2 indica l instant d cominzo ;l valor d p3 indica qu la duración d la nota ;l valor d p4 s la amplitud n scala linal ;l valor d p5 s la frcuncia d la nota. i i i i i ; indica fin d la partitura </CsScor> </CsoundSynthsizr> Obsérvs qu la amplitud d los armónicos d mayor frcuncia s bastant mnor qu la d los armónicos d baja frcuncia. Crar un sonido nuvo modificando l númro d armónicos y sus amplituds. La primra d las frcuncias tal qu todas las dmás son múltiplos d lla s dnomina fundamntal y también pud sr cambiada por l alumno.

7 PARTE 5: Combinación d tonos compljos con distintas amplituds Objtivo: A partir dl concpto d armónico d la práctica antrior l alumno db comprndr qu la amplitud d cada armónico tin una importancia primordial sobr l sonido gnrado y qu d hcho, la variación d las amplituds d los armónicos modifica l timbr dl sonido. Tara: A partir d los fichros antriors (jmplo fichro aditiva.csd) gnrar un fichro nuvo qu gnr una mlodía. El fichro.csd s pud gnrar a partir d los antriors con la siguint modificación: ;primr parcial o fundamntal apartial1 oscils iamplitud, ifrquncy, iphas ;sgundo parcial, frcuncia dobl, amplitud 0.8 dl parcial 1 apartial2 oscils iamplitud * 0.8, ifrquncy * 2, iphas ;añadimos pquñas dsafinacions apartial3 oscils iamplitud * 0.5, ifrquncy * 4, iphas apartial4 oscils iamplitud * 0.7, ifrquncy * 8, iphas apartial5 oscils iamplitud * 0.4, ifrquncy * 16, iphas asound = apartial1 + apartial2 + apartial3 + apartial4 + apartial5 D sta manra, cada vz qu jcutmos una nota, s jcutará un sonido con una frcuncia fundamntal y 4 armónicos. Cambiando l valor d ifrquncy, cambiarmos la tonalidad d cada nota. Implmntar la mlodía crada para l apartado 2 con un programa crado a partir d sta modificación. El alumno tin librtad total para modificar las amplituds (factor qu multiplica a iamplitud) y las frcuncias (factor qu multiplica a ifrquncy) d cada nota.

CSound: software libre de síntesis sonora

CSound: software libre de síntesis sonora Binvnidos a sta introducción al lnguaj d síntsis sonora CSound. El objtivos d st documnto s facilitar los primros pasos con un lnguaj muy ficaz para la gnración y l procsado digital d sonido. Con st lnguaj

Más detalles

Solución a la práctica 6 con Eviews

Solución a la práctica 6 con Eviews Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Representación esquemática de un sistema con tres fases

Representación esquemática de un sistema con tres fases 6 APLICACIONES 6.1 Sistma con varias fass Una vz consguido l modlo para simular una mmbrana, s planta su uso para simular procsos con más d una. Uno d stos procsos podría sr un sistma con varias fass.

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

EXAMEN DE FUNDAMENTOS DE SONIDO E IMAGEN PARTE 1 APELLIDOS, NOMBRE:

EXAMEN DE FUNDAMENTOS DE SONIDO E IMAGEN PARTE 1 APELLIDOS, NOMBRE: DEPARTAMENTO DE INGENIERÍA AUDIOVISUAL Y COMUNICACIONES ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE MADRID EXAMEN DE FUNDAMENTOS DE SONIDO E IMAGEN PARTE

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico qu dispon d una sñal d ntrada, gnralmnt dnominada disparo, al activars sta ntrada n la salida dl circuito (Q s obtin un pulso

Más detalles

Una onda es una perturbación que se propaga y transporta energía.

Una onda es una perturbación que se propaga y transporta energía. Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico capaz d gnrar un pulso lógico n alto o n bajo a través d su salida (Q. El timpo d duración dl pulso w, stá dtrminado por

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD FÓRMULA AT07 NOMBREdlINDICADOR Porcntaj d población n la scula con un avanc rgular por dad. FÓRMULAdCÁLCULO PPR = PPR A + inf A

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

EJERCICIOS RESUELTOS TEMA 1: PARTE 3

EJERCICIOS RESUELTOS TEMA 1: PARTE 3 Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:

Más detalles

MATERIA: Matemáticas VI, AREA III y IV CICLO ESCOLAR PROFESOR Víctor Manuel Armendáriz González

MATERIA: Matemáticas VI, AREA III y IV CICLO ESCOLAR PROFESOR Víctor Manuel Armendáriz González Ciudad d Méico Fundadora y Dirctora Gnral: Profra. Alina Mirya Sánchz Martínz MATERIA: Matmáticas VI, AREA III y IV CICLO ESCOLAR 014-015 PROFESOR Víctor Manul Armndáriz Gonzálz Progrsions Rsulv los siguints

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : LÍMITES Y CONTINUIDAD DE FUNCIONES REALES Comptncias Utilizar técnicas d aproimación n procsos numéricos infinitos

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo

CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo CAPITULO 3 TENSIONES Y DEFORMACIONES. REVISIÓN DE PRINCIPIOS FÍSICOS CASO DE ESTUDIO N 3 Aplicacions d los concptos d intrfrncia y trmolasticidad para ncajar un j a un núclo 1. Introducción En la Figura

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1 CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

105 EJERCICIOS de DERIVABILIDAD 2º BACH.

105 EJERCICIOS de DERIVABILIDAD 2º BACH. 105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda .- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

Considere la antena Yagi de la figura, formada por un dipolo doblado y un dipolo parásito, ambos de longitud λ/2, y separados una distancia d = λ/4.

Considere la antena Yagi de la figura, formada por un dipolo doblado y un dipolo parásito, ambos de longitud λ/2, y separados una distancia d = λ/4. Problmas capitulo 5 Antna Yagi Considr la antna Yagi d la figura, formada por un dipolo doblado un dipolo parásito, ambos d longitud λ/, sparados una distancia d = λ/4. a) Calcul la impdancia d ntrada

Más detalles

168 Termoquímica y Cinética. Aspectos Teóricos

168 Termoquímica y Cinética. Aspectos Teóricos 168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin

Más detalles

La función gamma. en la disciplina Matemática para las carreras de ingeniería

La función gamma. en la disciplina Matemática para las carreras de ingeniería La función gamma n la disciplina Matmática para las carrras d ingniría Antonio Mazón Ávila INTRODUCCIÓN Por todos s conocido qu la formación Matmática s bas part sncial n la formación dl ingniro, d sto

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

Espacios vectoriales euclídeos.

Espacios vectoriales euclídeos. Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 4/5 PRÁCTICA Nº 6 Espacios vctorials uclídos. En sta práctica vamos a vr cómo introducir un producto scalar y trabajar con él n Mathmatica

Más detalles

Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente

Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl El paso alatorio X t = c + X t 1 + a t no s stacionario. Sin mbargo, l procso difrnciado rgularmnt s stacionario. X t X t 1 = c +

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions d ordn suprior Ecuacions homogénas d sgundo ordn con coficints constants Caso. Raícs rals distintas 6 Caso. Raícs compljas conjugadas 6 Caso. Raícs rals iguals 7 Rsumn

Más detalles

= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño.

= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño. F F a) La lnt s convrgnt l objto stá situado ants dl foco objto: β = = = 4 ; = 4 s ; s + = 6 ; -s -4 s = 6 ; s= -, m s, 4,8 ; ; = = = s f 4,8. f, 4,8 f f =0,96 m. La imagn s ral, invrtida rspcto dl objto

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83 TEMA. ECUACIONES SOLUCIONES DE LAS ACTIVIDADES Págs. 6 a 8 Página 6. a) mcm (, ) ( ) + ( ) + 7 + / mcm (6, 0) 0 ( + ) ( ) 0 + 8 0 / c) mcm (7, ) 8 ( ) 7 ( + ) 8 (9 ) 8 97 / 9 d) mcm (8, ) 8 6 (0 ) 8 Página

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Límite Idea intuitiva del significado Representación gráfica

Límite Idea intuitiva del significado Representación gráfica LÍÍMIITES DE FUNCIIONES ((rrsumn)) LÍMITE DE UNA FUNCIÓN f() k s : ímit d a función f() cuando tind a k Límit Ida intuitiva d significado Rprsntación gráfica Cuando f() A aumntar, os vaors d f() s van

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017 Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012 Rutas críticas trabajo d titulación n las difrnts modalidads. Ruta Crítica d la Modalidad: Inform d Prácticas Profsionals smana y mdia smana y mdia 2 Smanas Analizar con dtall los documntos normativos

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

- Se trata en el fondo, de la misma manera de medir la asociación entre X y M.

- Se trata en el fondo, de la misma manera de medir la asociación entre X y M. BOLETÍN EPIDEMIOLÓGICO DE CASTILLA-LA MANCHA FEBRERO 2007/ Vol.19 /Nº 10 LA REGRESIÓN LOGÍSTICA EN EPIDEMIOLOGÍA II (*) A.- VARIABLE X CUALITATIVA CON DOS CATEGÍAS (DICOTÓMICA) X rprsnta, por jmplo, l

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matemáticas II EXAMEN FINAL Junio 2011 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matemáticas II EXAMEN FINAL Junio 2011 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matmáticas II EXAMEN FINAL Junio APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE % Las rspustas rrónas rstan puntos. Dbn rljars

Más detalles

GUIA DE ACTIVIDADES Y TRABAJO PRACTICO Nº 20

GUIA DE ACTIVIDADES Y TRABAJO PRACTICO Nº 20 GUIA DE TRABAJO PRACTICO º PAGIA º OBJETIVOS: GUIA DE ACTIVIDADES Y TRABAJO PRACTICO º Lograr qu l Alumno: Distinga tipos d cuacions difrncials ordinarias Rsulva Ecuacions difrncials ordinarias Rsulva

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones 8 Límits d sucsions y d funcions ACTIVIDADES INICIALES 8.I. Calcula l término gnral, l término qu ocupa l octavo lugar y la suma d los ocho primros términos para las sucsions siguints., 6, 0, 4,..., 6,

Más detalles

VI.1 GENERADOR DE SISTEMAS COMO NÚCLEO DE UN SISTEMA EVOLUTIVO

VI.1 GENERADOR DE SISTEMAS COMO NÚCLEO DE UN SISTEMA EVOLUTIVO VI.1 GENERDOR DE SISTEMS COMO NÚCLEO DE UN SISTEM EVOLUTIVO Frnando Galindo Soria* INTRODUCCIÓN En st trabajo s prsnta l procso para construir y usar una hrraminta para l dsarrollo industrial d sistmas

Más detalles

Representación de Funciones.

Representación de Funciones. T 5 Rprsntación d Funcions EJERCICIOS DE DESARROLLO 1- Elmntos Fundamntals para la Construcción d Curvas 1 Halla l dominio d stas funcions: a 5 + 7 + b d y g + 5 5 + = ln + + 1 ln +1 = y ( ) f ( ) Halla

Más detalles

V V V { r r ry [ - r r. José Gutierrez Abascal, Madrid. Tfn (91) FAX (91) Figura 2a. Figural. Figura 2b. ...,1 o...,.

V V V { r r ry [ - r r. José Gutierrez Abascal, Madrid. Tfn (91) FAX (91) Figura 2a. Figural. Figura 2b. ...,1 o...,. APUCACIONDEUNEJERCICIODEPRAcriCASDECALCULODINAMICOALPROYECTODEPUENTES AJarcón, E.; Hurta, M C.; Gómz Lra M- S. Cátdra d Estructuras (E. T.5...). Univrsidad Politécnica d Madrid. José Gutirrz Abascal,.

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

2º BACHILLERATO CINETICA QUÍMICA

2º BACHILLERATO CINETICA QUÍMICA VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

Método de Sustitución

Método de Sustitución Método d Sustitución El cálculo d una intgral complicada rquir, n muchos casos, d algunos cambios d variabl qu transformn la intgral n otra más simpl, dond s puda idntificar rápidamnt una antidrivada.

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

LECTURA 09: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO

LECTURA 09: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO Univrsidad Los Ángls d Chimbot LECTURA 9: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO 1. INTRODUCCION: La pruba d indpndncia chi cuadrado s un procdiminto d contrastación

Más detalles

CAPÍTULO 4 ETAPAS DE SALIDA. La etapa de salida de un amplificador debe tener un cierto número de atributos. Tal

CAPÍTULO 4 ETAPAS DE SALIDA. La etapa de salida de un amplificador debe tener un cierto número de atributos. Tal CAPÍTULO 4 ETAPAS DE SALIDA La tapa d salida d un amplificador d tnr un cirto númro d atriutos. Tal vz l más important d llos s qu ntrgu un nivl a la carga con nivls acptals d distorsión. Otro d los rqurimintos

Más detalles

Guía de Pupitres Módulo de Inventario Séneca v1

Guía de Pupitres Módulo de Inventario Séneca v1 Guía d s Módulo d Invntario Sénca v 27/03/5 d 3 Índic d contnido Antcdnts...3 2Datos ncsarios para idntificar los pupitrs... 3 3Tipos d pupitrs...4 4Sllado d los pupitrs... 8 5Otros mobiliarios d aula...9

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

Trabajador por cuenta ajena y autónomo a la vez. Es posible?

Trabajador por cuenta ajena y autónomo a la vez. Es posible? Trabajador por cunta ajna y autónomo a la vz. Es posibl? ES POSIBLE SER TRABAJADOR POR CUENTA AJENA Y AUTÓNOMO A LA VEZ? MERECE LA PENA ESPERAR A ENERO 2018? QUÉ OPCIONES TENGO? PUEDO ACOGERME A LA TARIFA

Más detalles

Ejercicios para aprender a integrar

Ejercicios para aprender a integrar Ejrcicios para aprndr a intgrar Propidads d las intgrals: af ) d = a f d b f ) d = Rglas d intgración: ad = a ( f ± g( ) d = f d ± g( ) d a a b [ F( ) ] = F( b) F( ) ( f d = a b Polinomios y sris d potncias

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación Química TEM 3 º d achillrato Trmoquímica. La ntalpía d combustión dl butano s d º 875,8 /mol. Si qurmos calntar l air d una habitación d xx3 m con una stua d butano, dsd º hasta 5º, qué masa d butano dbrmos

Más detalles

tiene por límite L cuando la variable independiente x tiende a x

tiene por límite L cuando la variable independiente x tiende a x UNIDAD (Continuación).- Funcions rals. Límits y continuidad 9. LÍMITES. LÍMITES LATERALES Rcordamos dl año antrior qu una función y f () tin por it L cuando la variabl indpndint tind a, y s notaba por

Más detalles

Cuánto tarda una pelota en dejar de botar?

Cuánto tarda una pelota en dejar de botar? Cuánto tarda una plota n djar d botar? Dr. Guillrmo Bcrra Córdoa Unirsidad Autónoma Chapino Dpto. d Prparatoria Arícola Ára d Física Profsor-Instiador 59595500 xt. 59 E-mail: llrmbcrra@yahoo.com Km. 8.5

Más detalles

Facultad de Ingeniería Matemática intermedia 1. Proyecto 2

Facultad de Ingeniería Matemática intermedia 1. Proyecto 2 Univrsidad d San Carlos d Guatmala Dpartamnto d matmática Facultad d Ingniría Matmática intrmdia 1 Introducción: Proycto Fcha d ntrga: luns 16 d abril d 018 El dsarrollo d proyctos s important n la formación

Más detalles

ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt)

ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt) Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 04/5 PRÁCTICA Nº ESPACIOS VECTORIALES EUCLÍDEOS: Procso d ortonormalización (Gram-Schmidt) En sta práctica vamos a vr como podmos calcular

Más detalles