Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos"

Transcripción

1 Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Curso

2 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable Aleatoria 5 Teoremas Asintóticos

3 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable Aleatoria 5 Teoremas Asintóticos

4 Función de una Variable Aleatoria Definición Motivación: Sistema cuya entrada es una v.a. X Salida v.a. Y Que podemos decir sobre la salida? Podemos calcular F Y (y), f Y (y)? Nos debemos conformar con estadísticos (media, varianza,...)? Definición: Consideremos un espacio probabilístico < Ω, F, P > y una v.a. X ligados a ε. Entonces, dada g(x) una función de R en R, la expresión Y = g(x) es una nueva v.a. definida como: Y : Ω R ω Ω g [X(ω)] R Ω ω 1 Y ω 2 X g(x) x 1 x 2 R y 2 y 1 R Ω X Ω Y

5 Cálculo de la Función Distribución Función Distribución de una función de Variable Aleatoria Caracterización de una función de v.a.: Trataremos de caracterizar la v.a Y a partir del conocimiento estadístico de la v.a. X y de la función de transformación y = g(x). X F X(x) f X(x) η X σ X g( ) Y F Y(y) f Y(y) η Y σ Y? Cálculo de la Función Distribución: F Y (y) a partir de F X(x) y g(x). F Y (y) = P (Y y) = P (X B X) B X = {x R g(x) y} }{{} Necesitamos obtener estas regiones g(x) x 1 x 2 x 3 x 4 R y R

6 Cálculo de la Función Distribución Cálculo de la Función Distribución 1 X continua, g(x) monótona creciente (continua en Ω X) x 2 > x 1 g(x 2) > g(x 1) F Y (y) = P (Y y) = P (X B X) = P (X g 1 (y)) = F X(g 1 (y)) Ejemplo: y = g(x) = ax + b, con a > 0 x = g 1 (y) = y b a F Y (y) = F X ( y b a ) Supongamos X v.a. exponencial con c > 0 { { 1 e cx x 0 F X (x) = F 0 x < 0 Y (y) = y b c 1 e a y b 0 y < b 2 X continua, g(x) monótona decreciente (continua en Ω X) x 2 > x 1 g(x 2) < g(x 1) F Y (y) = P (Y y) = P (X B X) = P (X g 1 (y)) = 1 F X(g 1 (y))

7 Cálculo de la Función Distribución Cálculo de la Función Distribución 3 X continua, g(x) no monótona, no constante en ningún intervalo La región B X viene dada por la unión de intervalos del tipo B X = [, x 1] [x 2, x 3]... donde x i son las raíces de y = g(x). Ejemplo: y = g(x) = x 2 F Y (y) = F X(x 1) + F X(x 3) F X(x 2) +... Obtenemos las raíces: y < 0 y = x 2 no tiene solución y 0 y = x 2 x 1, x 2 = ± y Supongamos X v.a. uniforme en [ 1/2, 1/2] 0 x y 0 F X(x) = x < x 1 F Y (y) = 2 y 0 y 1 1 x > y > 1 2 4

8 Cálculo de la Función Distribución Cálculo de la Función Distribución 4 X continua, g(x) constante en algún intervalo de Ω X Y mixta Ejemplo: Saturador Saturador b y=g(x) 0 b b 0 b x B X = (, y] (, ) y < b b y < b b y F Y (y) = 0 y < b F X (y) b y < b F X ( ) = 1 b y

9 Cálculo de la Función Distribución Cálculo de la Función Distribución 4 X continua, g(x) constante en algún intervalo de Ω X Y mixta Ejemplo: Saturador. Supongamos X N (0, b) Ω X = R = (, ) Ω Y = [ b, b] F X (x) F Y (y) b b 0 b 2b x 0 2b b 0 b 2b y

10 Cálculo de la Función Distribución Cálculo de la Función Distribución 5 X continua, g(x) escalonada Y discreta Ejemplo: Función escalón (cuantificador) { 1 x 0 g(x) = u(x) = 0 resto Supongamos X N (0, σ) Rango de entrada Ω X = (, ) Rango de salida Ω Y = {0, 1} Y v.a. Bernoulli P (Y = 0) = P (X < 0) = F X (0) = G(0) = 1 2 P (Y = 1) = P (X 0) = 1 F X (0) = 1 2

11 Cálculo de la Función Distribución Cálculo de la Función Distribución 6 X discreta Y discreta Ω X = {x 1, x 2,..., x n} Ω Y = {y 1, y 2,..., y k } P (Y = y k ) = i P (X = x i) con g(x i) = y k Ejemplo: y = g(x) = x 2 Supongamos Ω X = { 2, 1, 0, 1, 2} P (X = k) = 1 5 k = 2,..., 2 Entonces: Ω Y = {0, 1, 4} P (Y = 0) = P (X = 0) = 1 5 P (Y = 1) = P (X = 1) + P (X = 1) = 2 5 P (Y = 4) = P (X = 2) + P (X = 2) = 2 5

12 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable Aleatoria 5 Teoremas Asintóticos

13 Cálculo de la fdp Teorema Fundamental Teorema: Sea X una v.a. continua y g(x) una función no constante en ningún intervalo de Ω X. Entonces la fdp de la variable aleatoria Y = g(x) viene dada por f Y (y) = g (x) es la derivada de g(x) x i son las raíces de y = g(x) n i=1 f X(x i) g (x i) g(x 1) = g(x 2) =... = g(x n) = y Si no existen raíces de y = g(x) entonces f Y (y) = 0 Generalización: Si g(x) es constante, de valor y 0, en alguna región C Ω X entonces P (Y = y 0) = f X(x)dx 0 Función δ(y y 0) en f Y (y) C

14 Cálculo de la fdp Teorema Fundamental. Ejemplos 1 y 2 X v.a. exponencial y g(x) = ax + b con a 0 Obtención de las raíces: x 1 = (y b)/a (solución única) Derivada: g (x) = a f Y (y) = fx(x1) g (x = fx( y b ) { y b c a e c a x = a 1 0 1) a 0 x 1 < 0 Para a > 0: Para a < 0: f Y (y) = f Y (y) = { { y b c e c a a y b 0 y < b c y b e c a a y b 0 y > b

15 Cálculo de la fdp Teorema Fundamental. Ejemplos 3 X v.a. uniforme en [ 1/2, 1/2] y g(x) = x 2 Obtención de las raíces: y < 0 y = x 2 no tiene solución y > 0 y = x 2 x 1, x 2 = ± y Derivada: g (x) = 2x f Y (y) = fx(x1) g (x 1) + fx(x2) g (x = fx( y) 2) 2 y + fx( y) 2 y para y 0 Cuidado con las regiones!! 1 2 < x < 1 2 { 1 2 < x < > y > 0 0 < x < < y < 1 4 Finalmente: f Y (y) = { 1 y 0 < y en otro caso

16 Cálculo de la fdp Teorema Fundamental. Ejemplos 4 X v.a. Gaussiana N (η, σ), y = g(x) = e x Obtención de las raíces: y 0 y = e x no tiene solución f Y (y) = 0 y > 0 y = e x x 1 = ln(y) Derivada: g (x) = e x f Y (y) = fx(x1) g (x = fx(ln(y)) = 1 1) e ln(y) fx (ln(y)) y > 0 y Conocemos f X(x) = 1 2πσ e x η 2 2σ 2 Finalmente, Y es una v.a. lognormal f Y (y) = { 1 y 2πσ < x < (ln(y) η) 2 e 2σ 2 y > 0 0 y 0

17 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable Aleatoria 5 Teoremas Asintóticos

18 Generación de Números Aleatorios Generación de Números Aleatorios Todos los ordenadores son capaces de generar numeros aleatorios uniformemente distribuidos entre 0 y 1 (Ej: Función rand en Matlab) U n = X n X n+1 = (ax n + c)mod m m En ocasiones necesitaremos generar secuencias aleatorias que sigan una distribución distinta de la uniforme. Podremos generar variables aleatorias con cualquier distribución a partir de transformaciones de una v.a. uniforme?

19 Generación de Números Aleatorios Generación de Números Aleatorios Supongamos que disponemos de una v.a. Y con una función distribución conocida F Y (y) y que le aplicamos la transformación X = g(y ) = F Y (Y ) F X (x) P (X x) = P (B X ) = P (B Y ) = P (Y y) F Y (y) = x 0 < x < 1 1 F Y(y) = x x B X B Y y y Y F Y(y) x=g(y)=f Y (y) X Uniforme en (0,1) Caso inverso: Dada una v.a. X uniforme entre 0 y 1, obtendremos Y con F Y (y) sin más que aplicar la transformación inversa Y = F 1 Y (X) X Uniforme en (0,1) y=g -1 (x)=f -1 Y(x) Y F Y(y)

20 Generación de Números Aleatorios Generación de Números Aleatorios. Ejemplos Gaussiana: f Y (y) = 1 e (y η)2 2σ 2 2πσ F Y (y) = G( y η σ ) = erf ( ) y η σ ( F 1 Y (x) = σg 1 (x) + η = σerf 1 x 1 2 ) + η Exponencial: (c > 0) f Y (y) = ce cy y > 0 F Y (y) = 1 e cy y > 0 F 1 Y (x) = 1 ln(1 x) c

21 Generación de Números Aleatorios Generación de Números Aleatorios. Ejemplos Laplace: f Y (y) = c 2 e c y η c > 0 { 1 F Y (y) = 2 ec(y η) y < η e c(y η) y η { 1 F 1 Y (x) = c ln(2x) + η 0 x c ln(2 2x) + η 1 2 x 1 Cauchy: f Y (y) = c/π y 2 + c 2 c > 0 F Y (y) = ( y π arctan c ( F 1 Y (x) = c tan πx π ) 2 )

22 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable Aleatoria 5 Teoremas Asintóticos

23 Momentos de una Variable Aleatoria Momentos de Una Variable Aleatoria Consideremos la transformación Y = g(x) Media: η Y = E[Y ] = sin embargo, se puede calcular como η Y = E[Y ] = E[g(X)] = yf Y (y)dy g(x)f X(x)dx Teorema: El operador esperanza matemática es un operador lineal E[aX + b] = ae[x] + b Varianza: σ 2 Y = Var [g(x)] = E [ g 2 (X) ] E ([g(x)]) 2 Var [ax + b] = a 2 Var[X] = a 2 σ 2 X

24 Momentos de una Variable Aleatoria Momentos de Una Variable Aleatoria Los momentos de una v.a. son n o s reales que proporcionan información estadística parcial Momento no centrado de orden n: m n = Caso particular: x n f X(x)dx = E[X n ] n = 1, 2,... m 1 = E[X] = η X Momento centrado de orden n: µ n = (x η X) n f X(x)dx = E[(X η X) n ] n = 2, 3,... Caso particular: µ 2 = E[(X η X ) 2 ] = σ 2 X

25 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable Aleatoria 5 Teoremas Asintóticos

26 Teorema del Límite Central Teorema del Límite Central Teorema: Sean X 1, X 2,..., X N v.a. independientes con medias y varianzas η i = E[X i], σ 2 i = E[(X i η i) 2 ], i = 1,..., N, y la v.a. Y = N i=1 Xi, entonces donde ( y2 η Y lím P (y1 < Y y2) = G N σ Y G(y) = 1 2π y ) ( ) y1 η Y G, σ Y e x2 2 dx Es decir, Y se aproxima a una distribución N (η Y, σ Y ), con N N η Y = η i, σy 2 = i=1 i=1 σ 2 i

27 Teorema del Límite Central Comentarios Se puede aplicar siempre que una v.a. no predomine sobre el resto La aproximación es buena a partir de N 6 Aproximación fiable con N pequeño. Sobre todo para los valores centrales. El Teorema asegura que F Y (y) tiende a ser Gaussiana En principio no dice nada sobre la fdp. Si X i son v.a. continuas f Y (y) tiende a ser Gaussiana Teorema de la Convolución: La fdp de la suma de v.a. independientes es la convolución de las fdp s Podemos decir que la convolución de fdp s tiende a ser Gaussiana! El Teorema del Límite Central sugiere una manera alternativa de generar variables aleatorias Gaussianas Ejemplo: Receptor de Comunicaciones: Interferencias, Ruido Térmico, Ruido Galáctico...

28 Teorema del Límite Central Ejemplo Suma de N v.a. independientes uniformes en [0,1] (10 6 realizaciones y 50 bins) n n N=1 x y N=4 x y n n N=2 x y N=5 x y n n N=3 x y N=6 x y

29 Teorema de DeMoivre-Laplace Teorema de DeMoivre-Laplace Teorema: Dadas X 1,..., X n v.a. independientes de Bernoulli con η i = E[X i] = p, σ 2 i = E[(X i η i) 2 ] = pq, i = 1,..., n y la v.a. Binomial X = n i=1 Xi, entonces lím P (k 1 < X k 2 ) T a Lim. Cent. = G n ( n P (k 1 < X k) = p k) k q n k ( k2 np npq ) G k n 1 x=k 1 Por lo tanto, B(n, p) se puede aproximar por P (X = k) 1 e (k np)2 2npq 2πnpq ( ) k1 np npq 1 e (x np)2 2npq 2πnpq } {{ } cte. para npq 1 dx

30 Teorema de DeMoivre-Laplace Comentarios Buena aproximación, incluso para n pequeña, en el centro de la función { P(np) n 1, np < 5 Aproximación de B(n, p) : N (np, npq) n 1, np 1 Ejemplo B(n = 100, p = 0.03) B(n = 100, p = 0.2) Distribución Binomial (fdp) Binomial B(100,0.03) Poisson P(3) Distribución Binomial (fdp) Binomial B(100,0.2) N(20,4) fdp fdp x x

31 Desigualdad de Chebychev Desigualdad de Chebychev Sea X una variable aleatoria con media η y varianza σ 2, se tiene P ( X η ɛ) σ2 ɛ 2 ɛ En función del suceso contrario: P ( X η < ɛ) 1 σ2 ɛ 2 ɛ=kσ P ( X η < Kσ) 1 1 K 2 Aproximación general pero muy conservadora. Demostración: η ɛ P ( X η ɛ) = f X (x)dx + f X (x)dx = f X (x)dx η+ɛ x η ɛ σ 2 = (x η) 2 f X (x)dx (x η) 2 f X (x)dx x η ɛ ɛ 2 f X (x)dx = ɛ 2 P ( X η ɛ) x η ɛ

32 Desigualdad de Chebychev Ejemplo Calcular P ( X η < Kσ) Desigualdad de Chebychev: Distribución Gaussiana N (η, σ) P ( X η < Kσ) 1 1 K 2 P ( X η < Kσ) = P (η Kσ < X < η + Kσ) = = F X (η + Kσ) F X (η Kσ) = = G(K) G( K) = 2G(K) 1

33 Desigualdad de Chebychev Ejemplo Calcular P ( X η < Kσ) Distribución Uniforme en [x 1, x 2] 0 x < x 1 x x F X (x) = 1 x 1 + x 2 x x 2 x 1 < x < x 2 1 η = 2 1 x > x 2 Asumimos entonces: P ( X η < Kσ) = F X (η + Kσ) F X (η Kσ) { η + Kσ x2 η Kσ x 1 σ 2 = (x 2 x 1 ) 2 12 P ( X η < Kσ) = η + Kσ x 1 η Kσ x 1 = 2Kσ = K x 2 x 1 x 2 x 1 x 2 x 1 3 { K 3 0 < K < 3 P ( X η < Kσ) = 1 K > 3

34 Desigualdad de Chebychev Ejemplo Desigualdad de Chebychev P( X η <Kσ) 0.68 Chebychev Dist. Uniforme Dist. Gaussiana K 3 4

35 Ley de Los Grandes Números Ley de Los Grandes Números Teorema: Dadas n realizaciones independientes de un exp. aleatorio ε, y un suceso A con P (A) = p, se verifica ɛ > 0 lím P ( fa p ɛ) = 1, n donde f A = N A n es la frecuencia relativa del suceso A. Demostración: (N A es una v.a. B(n, p)) P ( f A p ɛ) = P (p ɛ N A n p + ɛ) = P (np nɛ N A np + nɛ) ( ) ( ) np + nɛ np np nɛ np P ( f A p ɛ) = G G npq npq ( ) ( ) ( ) nɛ nɛ nɛ = G G = 2G 1 npq npq npq ( ) nɛ lím P ( fa p ɛ) = lím 2G 1 = 1 n n npq

36 Ley de Los Grandes Números Ley de Los Grandes Números Aplicación Práctica: Suceso A con P (A) = p n? para que P ( f A p ɛ) µ Ejemplo: P (A) = p = 0.6 ɛ = 0.01 µ = 0.98 P ( f A ) 2G ( n 0.01 n ) 1 P ( f A ) 0.98 n Y si desconocemos P (A) = p? ( ) nɛ P ( f A p ɛ) = 2G 1 2G(2ɛ n) 1 npq pq 1/4 2G(0.02 n) n 13572

Tema 3: Funcio n de Variable Aleatoria

Tema 3: Funcio n de Variable Aleatoria Tema 3: Funcio n de Variable Aleatoria Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Función de una Variable Aleatoria 2 3 Cálculo de la fdp 4 Generación de Números Aleatorios 5 Momentos de una

Más detalles

Tema 2: Variables Aleatorias Unidimensionales

Tema 2: Variables Aleatorias Unidimensionales Tema 2: Variables Aleatorias Unidimensionales Teorı a de la Comunicacio n Curso 27-28 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función

Más detalles

Tema 6: Teoremas Asinto ticos

Tema 6: Teoremas Asinto ticos Tema 6: Teoremas Asito ticos Teorı a de la Comuicacio Curso 27-28 Coteido 1 Teorema del Límite Cetral 2 Teorema de DeMoivre-Laplace 3 Desigualdad de Chebychev 4 Ley de Los Grades Números Coteido 1 Teorema

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Tema 4: Variable Aleatoria Bidimensional

Tema 4: Variable Aleatoria Bidimensional Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones

Más detalles

Repaso de Estadística

Repaso de Estadística Teoría de la Comunicación I.T.T. Sonido e Imagen 25 de febrero de 2008 Indice Teoría de la probabilidad 1 Teoría de la probabilidad 2 3 4 Espacio de probabilidad: (Ω, B, P) Espacio muestral (Ω) Espacio

Más detalles

TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)

TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real) TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES Grado Ing Telemática (UC3M) Teoría de la Comunicación Variable Aleatoria / 26 Variable aleatoria (Real) Función que asigna un valor

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Part I. Momentos de una variable aleatoria. Esperanza y varianza. Modelos de Probabilidad. Mario Francisco. Esperanza de una variable aleatoria

Part I. Momentos de una variable aleatoria. Esperanza y varianza. Modelos de Probabilidad. Mario Francisco. Esperanza de una variable aleatoria una una típica Part I Momentos. Esperanza y varianza Esperanza una una típica Definición Sea X una discreta que toma los valores x i con probabilidades p i. Supuesto que i x i p i

Más detalles

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22 Unidad 3. Probabilidad Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre 2018-1 1 / 22 Espacios de probabilidad El modelo matemático para estudiar la probabilidad se conoce como espacio de

Más detalles

Tema 5 Modelos de distribuciones de Probabilidad

Tema 5 Modelos de distribuciones de Probabilidad Tema 5 Modelos de distribuciones de Probabilidad Variable aleatoria unidimensional Dado un espacio de Probabilidad (E, F, P), una variable aleatoria es una aplicación del espacio muestral E al conjunto

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:

Más detalles

Repaso de Teoría de la Probabilidad

Repaso de Teoría de la Probabilidad Repaso de Teoría de la Probabilidad Luis Mendo Tomás Escuela Politécnica Superior Universidad Autónoma de Madrid Febrero de 2008 1. Introducción Este documento contiene, de forma esquemática, los conceptos

Más detalles

3. Variables aleatorias

3. Variables aleatorias 3. Variables aleatorias Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 3. Variables aleatorias Curso 2009-2010 1 / 33 Contenidos 1 Variables aleatorias y su distribución

Más detalles

Momentos de Funciones de Vectores Aleatorios

Momentos de Funciones de Vectores Aleatorios Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 5 Esperanza y momentos Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Notas de clase. Prof. Nora Arnesi

Notas de clase. Prof. Nora Arnesi Notas de clase Este material está sujeto a correcciones, comentarios y demostraciones adicionales durante el dictado de las clases, no se recomienda su uso a aquellos alumnos que no concurran a las mismas

Más detalles

Modelos Básicos de Distribuciones Discretas y Continuas

Modelos Básicos de Distribuciones Discretas y Continuas Modelos de Distribuciones Discretas y Continuas 1/27 Modelos Básicos de Distribuciones Discretas y Continuas Departamento de Estadística e Investigación Operativa Universidad de Sevilla Contenidos Modelos

Más detalles

EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 2006

EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 2006 EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 6 Problema ( ptos) Considera un experimento aleatorio con espacio muestral Ω. a) Definir una σ-álgebra A sobre Ω. b) Dar

Más detalles

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

Variables aleatorias. Descripción breve del tema. Objetivos. Descripción breve del tema. Tema 4

Variables aleatorias. Descripción breve del tema. Objetivos. Descripción breve del tema. Tema 4 Descripción breve del tema Variables aleatorias Tema 4 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Descripción breve

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles

Variables aleatorias continuas y Teorema Central del Limite

Variables aleatorias continuas y Teorema Central del Limite Variables aleatorias continuas y Teorema Central del Limite FaMAF 17 de marzo, 2015 Variables aleatorias continuas Definición Una variable aleatoria X se dice (absolutamente continua) si existe f : R R

Más detalles

Transformaciones y esperanza

Transformaciones y esperanza Capítulo 3 Transformaciones y esperanza 3.1. Introducción Por lo general estamos en condiciones de modelar un fenómeno en términos de una variable aleatoria X cuya función de distribución acumulada es

Más detalles

Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema

Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema Raúl Jiménez Universidad Carlos III de Madrid Noviembre 2011 Consideremos el lanzamiento de un dado, Ω = {1, 2, 3, 4, 5, 6}, y supongamos

Más detalles

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Tema 6 - Introducción 1 Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Generalización Tema 6. Variables aleatorias unidimensionales

Más detalles

Introducción al Diseño de Experimentos.

Introducción al Diseño de Experimentos. Introducción al Diseño de Experimentos www.academia.utp.ac.pa/humberto-alvarez Introducción Una población o universo es una colección o totalidad de posibles individuos, especímenes, objetos o medidas

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 011 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Valeri Makarov: Estadística Aplicada y Cálculo Numérico (Grado en Química)

Valeri Makarov: Estadística Aplicada y Cálculo Numérico (Grado en Química) Estadística Aplicada y Cálculo Numérico (Grado en Química) Valeri Makarov 10/02/2015 29/05/2015 F.CC. Matemáticas, Desp. 420 http://www.mat.ucm.es/ vmakarov e-mail: vmakarov@mat.ucm.es Capítulo 4 Variables

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Curso Propedéutico de Cálculo Sesión 6: Aplicaciones de la Integración

Curso Propedéutico de Cálculo Sesión 6: Aplicaciones de la Integración por Curso Propedéutico de Cálculo Sesión 6: de la Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema por 1 por 2 Esquema por 1 por 2 por Al contrario

Más detalles

TEMA 2.- VARIABLES ALEATORIAS

TEMA 2.- VARIABLES ALEATORIAS TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 16/17 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias. 2.2. Variables aleatorias discretas. Diagrama de barras. 2.3. Función de

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Probabilidad y Procesos Aleatorios

Probabilidad y Procesos Aleatorios y Dr. Héctor E. Poveda P. hector.poveda@utp.ac.pa www.hpoveda7.com.pa @hpoveda7 Plan del curso Probabilidad Múltiples 1. Probabilidad Espacios probabilísticos Probabilidad condicional 2. 3. Múltiples 4.

Más detalles

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema: Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

2. VARIABLE ALEATORIA. Estadística I Dr. Francisco Rabadán Pérez

2. VARIABLE ALEATORIA. Estadística I Dr. Francisco Rabadán Pérez 2. VARIABLE ALEATORIA Estadística I Dr. Francisco Rabadán Pérez Índice 1. Variable Aleatoria 2. Función de Distribución 3. Variable Aleatoria Discreta 4. Variable Aleatoria Continua 5. Esperanza Matemática

Más detalles

Tema 2: VARIABLE ALEATORIA UNIDIMENSIONAL

Tema 2: VARIABLE ALEATORIA UNIDIMENSIONAL Tema 2: VARIABLE ALEATORIA UNIDIMENSIONAL Carlos Alberola López Lab. Procesado de Imagen, ETSI Telecomunicación Despacho 2D014 caralb@tel.uva.es, jcasasec@tel.uva.es, http://www.lpi.tel.uva.es/sar Concepto

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Tablas de Probabilidades

Tablas de Probabilidades Tablas de Probabilidades Ernesto Barrios Zamudio José Ángel García Pérez José Matuk Villazón Departamento Académico de Estadística Instituto Tecnológico Autónomo de México Mayo 2016 Versión 1.00 1 Barrios

Más detalles

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los

Más detalles

Part VI. Distribuciones notables. Estadística I. Mario Francisco. Principales distribuciones unidimensionales. discretas. Principales distribuciones

Part VI. Distribuciones notables. Estadística I. Mario Francisco. Principales distribuciones unidimensionales. discretas. Principales distribuciones Part VI notables El proceso de Bernoulli En cada observación se clasifica el elemento de la población en una de las dos posibles categorías, correspondientes a la ocurrencia o no de un suceso. Llamaremos

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

9 APROXIMACIONES DE LA BINOMIAL

9 APROXIMACIONES DE LA BINOMIAL 9 APROXIMACIONES DE LA BINOMIAL 1 Una variable aleatoria sigue una distribución binomial B(n = 1000; p = 0,003). Mediante la aproximación por una distribución de POISSON, calcular P(X = 2), P(X 3) y P(X

Más detalles

Estadística I Tema 5: Modelos probabiĺısticos

Estadística I Tema 5: Modelos probabiĺısticos Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y función de distribución.

Más detalles

Resumen de Probabilidad

Resumen de Probabilidad Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS

Más detalles

Teoría Moderna de Decisión y Estimación, Notas Introductorias: Cálculo de probabilidades y

Teoría Moderna de Decisión y Estimación, Notas Introductorias: Cálculo de probabilidades y Profesores de TMDE Teoría Moderna de Decisión y Estimación, Notas Introductorias: Cálculo de probabilidades y estadística Monograph 9 de septiembre de 23 Springer Índice general. Variables aleatorias

Más detalles

Material introductorio

Material introductorio Material introductorio Nombre del curso: Teoría Moderna de la Detección y Estimación Autores: Vanessa Gómez Verdejo Índice general. Variables aleatorias unidimensionales..................................

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Estadística I Tema 5: Modelos probabiĺısticos

Estadística I Tema 5: Modelos probabiĺısticos Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y Función de distribución.

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

DISTRIBUCIONES MULTIDIMENSIONALES DE PROBABILIDAD

DISTRIBUCIONES MULTIDIMENSIONALES DE PROBABILIDAD DISTRIBUCIONES MULTIDIMENSIONALES DE PROBABILIDAD FUNCIÓN DE DISTRIBUCIÓN ( CONJUNTA ) DE UN VECTOR ALEATORIO FUNCIÓN DE CUANTÍA ( CONJUNTA) DE VECTORES ALETORIOS DISCRETOS FUNCIÓN DE DENSIDAD (CONJUNTA)

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Variables Aleatorias y Principios de Simulación.

Variables Aleatorias y Principios de Simulación. Variables Aleatorias y Principios de Simulación http://humberto-r-alvarez-a.webs.com Conceptos de probabilidad La Teoría de Probabilidad trata fenómenos que pueden ser modelados por experimentos cuyos

Más detalles

SEÑALES Y SISTEMAS Clase 5

SEÑALES Y SISTEMAS Clase 5 SEÑALES Y SISTEMAS Clase 5 Carlos H. Muravchik 15 de Marzo de 2018 1 / 43 Habíamos visto: Repaso Probabilidades (sobrevuelo) Veremos: 1. Repaso Probabilidades 2. Repaso Variables aleatorias. Distribuciones.

Más detalles

5. TEOREMA FUNDAMENTAL: Repaso Variables Aleatorias. Jorge Eduardo Ortiz Triviño

5. TEOREMA FUNDAMENTAL: Repaso Variables Aleatorias. Jorge Eduardo Ortiz Triviño 5. TEOREMA FUNDAMENTAL: Repaso Variables Aleatorias Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co/jeortizt/ CONTENIDO 1. INTRODUCCIÓN 2. VARIABLES ALEATORIAS 3. TEOREMA

Más detalles

Ruido en los sistemas de comunicaciones

Ruido en los sistemas de comunicaciones Capítulo 2 Ruido en los sistemas de comunicaciones Cuando una señal se transmite a través de un canal de comunicaciones hay dos tipos de imperfecciones que hacen que la señal recibida sea diferente de

Más detalles

SESIÓN 2 Splines e integración numérica

SESIÓN 2 Splines e integración numérica SESIÓN Splines e integración numérica ) Sea f x = x 4 para x [,] y sea s: [,] R el spline cúbico que aproxima a f definido a partir de los puntos de abscisas, y. Razona cual de las siguientes expresiones

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas VARIABLE ALEATORIA UNIFORME Definición Se dice que una variable X tiene una distribución uniforme en el intervalo [a;b] si la fdp de X es: 1 si a x b f(x)= b-a 0 en otro

Más detalles

Fórmulas, Resultados y Tablas Cálculo de Probabilidades y Estadística Matemática

Fórmulas, Resultados y Tablas Cálculo de Probabilidades y Estadística Matemática DEPARTAMENT D ESTADÍSTICA I INVESTIGACIÓ OPERATIVA Fórmulas, Resultados y Tablas Cálculo de Probabilidades y Estadística Matemática A. Distribuciones de variables aleatorias. 1. Descripción de una distribución

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media

Más detalles

6-1. Dos preguntas sobre 100 tiradas de dado

6-1. Dos preguntas sobre 100 tiradas de dado Semana 6 Esperanza y Varianza 6-1. Dos preguntas sobre 100 tiradas de dado 6-2. Esperanza 6-3. Propiedades básicas de la esperanza 6-4. Distancia esperada a la media 6-5. Varianza 6-6. Demostraciones 6-1.

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales:

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales: Probabilidad Condicional Teorema de Bayes para probabilidades condicionales: Definición: Sea S el espacio muestral de un experimento. Una función real definida sobre el espacio S es una variable aleatoria.

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

Función característica. Sean X e Y v.a. en (Ω, A, P), Z = X + iy es una variable aleatoria compleja, es decir, Z : Ω C.

Función característica. Sean X e Y v.a. en (Ω, A, P), Z = X + iy es una variable aleatoria compleja, es decir, Z : Ω C. Función característica Sean X e Y v.a. en (Ω, A, P), Z = X + iy es una variable aleatoria compleja, es decir, Z : Ω C Z(w) =X(w)+i Y(w) w Ω La esperanza de Z se define: si E(X)

Más detalles

Tema 6: Características numéricas asociadas a una variable aleatoria. Función generatriz de momentos

Tema 6: Características numéricas asociadas a una variable aleatoria. Función generatriz de momentos Tema 6: Características numéricas asociadas a una variable aleatoria. Función generatriz de momentos. Introducción En este Tema 6. construiremos y estudiaremos una serie de parámetros o características

Más detalles

Representaciones gráficas de las distribuciones bidimensionales de frecuencias... 74

Representaciones gráficas de las distribuciones bidimensionales de frecuencias... 74 Índice 1. Introducción al R 15 1.1. Introducción............................. 15 1.2. El editor de objetos R....................... 18 1.3. Datos en R............................. 19 1.3.1. Vectores...........................

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

Ejercicios para auto evaluación Variables continuas y Teorema de Límite Central

Ejercicios para auto evaluación Variables continuas y Teorema de Límite Central Ejercicios para auto evaluación Variables continuas y Teorema de Límite Central Enero 2008. Sea f(u) = ce u, u R. Determine el valor de c para que f sea una función de densidad de probabilidad y calcule

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Experimento aleatorio Probabilidad Definición variable aleatoria: discretas y continuas Función de distribución y medidas Distribución Binomial Distribución de Poisson Distribución

Más detalles

Función característica. Sean X e Y v.a. en (Ω,A,P), Z = X + iy es una variable aleatoria compleja, es decir, Z : Ω C

Función característica. Sean X e Y v.a. en (Ω,A,P), Z = X + iy es una variable aleatoria compleja, es decir, Z : Ω C Dada una variable aleatoria X, introduciremos la función caracteística de X, que se denotará φ X (t). El objetivo de los Teoremas que se enuncian a continuación es probar que X n D X φ Xn (t) φ X (t) t

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 6 Teoremas ĺımite Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST. Tema

Más detalles

FORMULARIO DE DISTRIBUCIONES DE PROBABILIDAD

FORMULARIO DE DISTRIBUCIONES DE PROBABILIDAD FORMULARIO DE DISTRIBUCIONES DE PROBABILIDAD Jorge M. Galbiati pág. DISTRIBUCION BINOMIAL 2 DISTRIBUCION POISSON 4 DISTRIBUCION HIPERGEOMETRICA 5 DISTRIBUCION GEOMETRICA 7 DISTRIBUCION NORMAL 8 DISTRIBUCION

Más detalles

Hoja 4 Variables aleatorias multidimensionales

Hoja 4 Variables aleatorias multidimensionales Hoja 4 Variables aleatorias multidimensionales 1.- Estudiar si F (x, y) = 1, si x + 2y 1, 0, si x + 2y < 1, es una función de distribución en IR 2. 2.- Dada la variable aleatoria 2-dimensional (X, Y )

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia

Más detalles

Notas sobre convergencia y funciones generatrices

Notas sobre convergencia y funciones generatrices Notas sobre convergencia y funciones generatrices Universidad Carlos III de Madrid Abril 2013 Para modelar un fenómeno aleatorio que depende del tiempo, podemos considerar sucesiones de variables X 1,X

Más detalles

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias Universidad de Chile Facultad De Ciencias Físicas y Matemáticas MA3403 - Probabilidades y Estadística Prof. Auxiliar: Alberto Vera Azócar. albvera@ing.uchile.cl Vectores Aleatorios 1. Vectores Aleatorios

Más detalles

Estadís4ca y Métodos Numéricos Tema 2. Variable Aleatoria

Estadís4ca y Métodos Numéricos Tema 2. Variable Aleatoria Estadís4ca y Métodos Numéricos Tema. Variable Aleatoria Ángel Barón Caldera Ángel Cobo Ortega María Dolores Frías Domínguez Jesús Fernández Fernández Francisco Javier González Or@z Carmen María Sordo García

Más detalles