Práctica 2 VARIABLES ALEATORIAS CONTINUAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 2 VARIABLES ALEATORIAS CONTINUAS"

Transcripción

1 Práctica. Objetivos: a) Apreder a calcular probabilidades de las distribucioes Normal y Chi-cuadrado. b) Estudio de la fució de desidad de la distribució Normal ~ N(µ;σ) c) Cálculo de la fució de distribució de la distribució Normal ~ N(µ;σ) d) Estudio de la fució de desidad de la distribució Chi-cuadrado. e) Cálculo de la fució de distribució de la distribució Chi-cuadrado. f) Resolució de problemas co ambos tipos de distribucioes.. Itroducció a variables aleatorias cotiuas: El la práctica aterior se hizo ua itroducció a las variables aleatorias. Esquemáticamete: Sea X ua v.a. defiida sobre el espacio probabilístico ( S, P) y sea F su fució de distribució. La v.a. X podrá ser de tipo discreto o de tipo cotiuo. V.A. DISCRETA VARIABLE ALEATORIA X V.A. CONTINUA FUNCION DE DENSIDAD f(x) ESPERANZA Y VARIANZA UNIFORME NORMAL CHI-CUADRADO T DE STUDENT Y F SNEDECOR i. X será ua v.a. discreta cuado sólo puede tomar u úmero fiito o ifiito, pero umerable, de valores. Estas v.a. fuero objeto de estudio e esta práctica. ii. X será ua v.a. cotiua cuado puede tomar todos los valores posibles de u itervalo, fiito o ifiito. A este tipo de variables va dedicada esta práctica. DEFINICIÓN : Diremos que ua variable aleatoria X : Ω R es de tipo cotiuo si existe ua fució real positiva f : R R, que llamaremos fució de desidad, tal que : PROPIEDADES: i. f ( x) 0 x F ( x) = f ( t) dt

2 Práctica ii. + f ( x) dx = iii. ( a X b) = iv. P f ( t) dt b a Si f(x) es cotiua e a, etoces F (a) = f(a) Las dos primeras propiedades caracteriza a las fucioes de desidad ya que si ua fució cualquiera las verifica, puede costruirse ua v.a. de tipo cotiuo para la que será su fució de desidad. Estas propiedades úicamete idica que ua fució de desidad es ua fució real positiva que ecierra bajo ella área. E la propiedad tercera puede itercambiarse los meores o iguales por meores estrictos y la propiedad se sigue cumpliedo. La propiedad cuarte proporcioa ua forma de calcular la fució de desidad a partir de ua fució de distribució cotiua e toda la recta real y derivable e casi todos los putos. 3. Características de ua variable aleatoria cotiua 3.. Esperaza Matemática o valor esperado Se represeta por E(X) y se calcula, e el caso cotiuo, mediate la fórmula: + ( X ) E = x f ( x) dx Gráficamete, la esperaza de ua variable aleatoria cotiua coicide co el cetro de gravedad del área ecerrada etre la fució de desidad y el eje OX. 3.. Variaza Se represeta por Var(X)=σ y se calcula, e el caso cotiuo, mediate la fórmula: + E = x f ( x) dx. dode ( X ) Var ( X ) = E( X ) E( X ) La desviació típica σ se calcula como la raíz cuadrada de la variaza. 4. Modelos de variables aleatorias cotiuas 4.. Distribució Uiforme : X~U(a;b) Esta distribució, tambié llamada rectagular por el aspecto de su fució de desidad, fue utilizada por primera vez por Bayes e 763 y por Laplace e 8. Segú la defiició de esta variable, cualquier elecció de úmeros reales al azar e u itervalo de logitud fiita, es ua v.a. uiforme. CARACTERÍSTICAS: i. Parámetros : a, b, co a < b

3 Práctica ii. Fució de desidad : iii. Media : E(X) = a + b iv. Variaza : Var (X)= ( b a ) f ( x) = si a x b b a Si ua v.a. tiee fució de distribució F(x), la variable Y=F(x) es U(0;). Esta propiedad es fudametal e la geeració de úmeros aleatorios y técicas de simulació. 4.. Distribució Normal: X~N(µ;σ) Si los griegos la hubiese coocido, la habría adorado como a u dios. Galto (8-9) Esta distribució, e su versió más simple N(0;), fue itroducida por primera vez por De Moivre e 733 como aproximació de la distribució biomial. Posteriormete, Laplace y Gauss la hallaro empíricamete estudiado la distribució de los errores de medició, y tras sus trabajos se covirtió e la distribució más utilizada. CARACTERÍSTICAS: i. Parámetros : < µ < ; 0 < σ < ii. Fució de desidad: iii. Media : E(X) = µ iv. Variaza : Var (X)= σ ( x µ ) σ ( ) f x = e si < x < σ π 4.3. Distribucioes relacioadas co la Normal So distribucioes que surge teóricamete como resultado del proceso de iferecia estadística Distribució CHI-CUADRADO ( ℵ ) de Pearso Esta distribució surge cuado se desea coocer la distribució de la suma de los cuadrados de variables idepedietes e igualmete distribuidas co distribució Normal. DEFINICIÓN : Sea aleatoria X,, X,... X, variables aleatorias idepedietes N(0;). Etoces la variable X + X X = X i sigue ua distribució i= grados de libertad. CARACTERÍSTICAS: i. Fució de desidad: mediate tablas. ii. Media : E(X) = iii. Variaza : Var (X)= ℵ (chi-cuadrado) co 3

4 Práctica Distribució t de STUDENT El orige de esta distribució se ecuetra e la estimació de esperazas de distribucioes ormales cuado su desviació típica es descoocida. Gosset ( ), quie publicó bajo el seudóimo de Studet, la propuso y tabuló e 908. DEFINICIÓN : Sea X y X, X,..., X, variables aleatorias idepedietes N(0;). Etoces la variable aleatoria t = X sigue ua distribució t de Studet co grados de X + X X libertad. CARACTERÍSTICAS: i. Fució de desidad: mediate tablas. ii. Media : E(X) = 0 si > iii. Variaza : Var (X)= si > Distribució F de SNEDECOR DEFINICIÓN : Sea X e Y variables aleatorias idepedietes co distribució ℵ de y m grados de X libertad, respectivamete. Etoces la variable aleatoria F, m = sigue ua distribució F Y m de Sedecor co grados de libertad e el umerador y m grados de libertad e el deomiador. 5. Variables aleatorias cotiuas usado EXCEL: 5.. Distribució Normal = DISTR.NORM(x;media;desv_estádar;acum) Devuelve la distribució ormal para la media y desviació estádar especificadas. Esta fució tiee u gra úmero de aplicacioes e estadística, icluidas las pruebas de hipótesis. Sitaxis DISTR.NORM(x;media;desv_estádar;acum) X es el valor cuya distribució desea obteer. 4

5 Práctica Media es la media de la distribució. Desv_estádar es la desviació típica de la distribució. Acum es u valor lógico que determia la forma de la fució. Si el argumeto acum = FALSO devuelve el valor de la fució de desidad. Si el argumeto acum =VERDADERO devuelve el valor de la fució de distribució. A =4 A3 = 40 A4 =,5 Descripció Valor cuya distribució desea obteer Media de la distribució Desviació típica de la distribució Descripció (Resultado) =DISTR.NORM(A;A3;A4;VERDADERO) Fució de distribució : F(4)= 0, para N(40;,5) =DISTR.NORM(A;A3;A4;FALSO) Fució de desidad: 5.. Iversa de la Fució de distribució Normal =DISTR.NORM.INV(probabilidad;media;desv_estádar) Devuelve el iverso de la distribució acumulativa ormal para la media y desviació estádar especificadas. Sitaxis DISTR.NORM.INV(probabilidad;media;desv_estádar) Probabilidad es ua probabilidad correspodiete a la distribució ormal. Media es la media de la distribució. Desv_estádar es la desviació típica de la distribució. Si media = 0 y desv_estádar =, DISTR.NORM.INV utiliza la fució de distribució ormal estádar (vea DISTR.NORM.ESTAND.INV). 5

6 Práctica A = 0, A3 = 40 A4 =,5 =DISTR.NORM.INV(A;A3;A4) Descripció Probabilidad correspodiete a la distribució ormal Media de la distribució Desviació típica de la distribució Descripció (Resultado) Iversa de la Fució de distribució ormal: P X K = 0. K= 4 cumple que ( ) Tipificació = NORMALIZACION(x;media;desv_estádar) Devuelve u valor tipificado de ua distribució Normal de media =µ y desviació típica=σ. Sitaxis NORMALIZACION(x;media;desv_estádar) X es el valor que se desea tipificar. Media es la media de la distribució. Desv_estádar es la desviació típica de la distribució. A = 4 A3 = 40 Descripció Valor que se desea tipificar Media de la distribució A4=,5 Desviació típica de la distribució Descripció (Resultado) =NORMALIZACION(A;A3;A4) Valor TIPIFICADO de 4 =, Distribució CHI-CUADRADO = DISTR.CHI(x;grados_de_libertad) 6

7 Práctica Devuelve la probabilidad de ua v.a. que sigue ua distribució chi cuadrado. Cocretamete DISTR.CHI os calcula P(X>x) = - F(x), dode X es ua variable aleatoria chi-cuadrado co grados de libertad. Sitaxis =DISTR.CHI(x;grados_de_libertad) x es el valor al que se desea evaluar de la distribució. Grados_de_libertad es el úmero de grados de libertad. Descripció A= 8,307 Valor que se desea evaluar la distribució A3= 0 Grados de libertad =DISTR.CHI(A;A3) Descripció (Resultado) Nos calcula el área a la derecha del puto: 5.5. Iversa de la fució de distribució de ua Chi-cuadrado = PRUEBA.CHI.INV(probabilidad;grados_de_libertad) Devuelve, para ua probabilidad dada, el valor de la variable aleatoria siguiedo ua distribució chi cuadrado. Si el argumeto probabilidad = DISTR.CHI(x;...), etoces PRUEBA.CHI.INV(probabilidad,...) = x. Sitaxis PRUEBA.CHI.INV(probabilidad;grados_de_libertad) Probabilidad es ua probabilidad asociada a la distribució chi cuadrado. Grados_de_libertad es el úmero de grados de libertad. 7

8 Práctica Descripció 0,05 P(X>k) = 0,05 0 Grados de libertad =PRUEBA.CHI.INV(A;A3) Descripció (Resultado) Nos devuelve el valor k=8,30703 cumpliedo P(x>k) = 0,05 6. Caso práctico 6.. Cálculo de probabilidades e ua v.a. Normal : 6... Crea ua hoja de cálculo (HOJA) que calcule, para ua v.a. Normal de media µ y desviació típica σ, los siguietes valores: a. La fució de desidad f(x). b. La fució de distribució F(x) = P(X x). c. P( X>k) = - P( X < k) d. P(a < X < b) = P(X<b) P( x <a) e. el valor de k, sabiedo que P(X<k) = p (coocido). Utilizado la HOJA calcula las siguietes probabilidades: a. E ua N(5;), f (5) = ; F(6)= ; P(X>4,3): b. E ua N(0;), P(X < 0,)= ; P(-0,6< X < 0,6) = c. E ua N(-;,7), P (, X 0,5) = ; P(X > -)= d. E ua N(5;0,8), el valor de k cumpliedo P(x < k)=0, Crea otra hoja de cálculo (HOJA) que cotega los valores de la fució de desidad y de distribució e el itervalo [ µ -3σ, µ +3σ ] de la distribució ormal de media µ y desviació típica σ. Utilizado los datos de la HOJA haz la represetació gráfica de ambas fucioes. 6.. Resolució de problemas usado la Normal: Crea ua hoja de cálculo (HOJA3) mediate la cual puedas resolver el siguiete problema: La altura de los jóvees de determiada població sigue ua distribució ormal de media.76 y desviació típica 0,3. Calcular el porcetaje de població que tedrá ua altura mayor que metros, cuátos etre,70 y,80 y cuátos co altura meor que,60. Si de 000 idividuos medidos sólo 9 está etre,50 y,00 metros, qué podemos pesar? 8

9 Práctica 6.3. Cálculo de probabilidades e ua v.a. Chi-cuadrado : Crea ua hoja de cálculo (HOJA4) que calcule, para ua v.a chi-cuadrado co grados de libertad, los siguietes valores: a) P( X>k) = - P( X < k) b) La fució de distribució F(x) = P(X x). c) P(a < X < b) = P(X<b) P( x <a) d) el valor de k, sabiedo que P(X>k) = p (coocido). Utilizado la HOJA4 calcula las siguietes probabilidades: a) E u ℵ, P(X<4,8) = ; P(X > 0) b) E ua ℵ 0, P( X-8 < 5)= ; P(0,6< X < 6) = c) E ua ℵ 0, el percetil 9, P(X<K ) = 0,9 9

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

3. Distribuciones de probabilidad

3. Distribuciones de probabilidad 3. Distribucioes de probabilidad Estudiamos a cotiuació las pricipales distribucioes de probabilidad que se ecuetra e las aplicacioes del cálculo de probabilidades. Clasificaremos las distribucioes atediedo

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

Número de personas que se forman en una fila en 1 hora Número de águilas que se obtienen al lanzar una moneda 5 veces.

Número de personas que se forman en una fila en 1 hora Número de águilas que se obtienen al lanzar una moneda 5 veces. Statistics Review Variable Aleatoria o Ua variable aleatoria es ua variable cuyo valor está sujeto a variacioes que depede de la aleatoriedad. o Debe tomar valores uméricos, que depede del resultado del

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado e Geomática y Topografía Escuela Técica Superior de Igeieros e Topografía, Geodesia y Cartografía. Uiversidad Politécica de Madrid

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS Població E el cotexto de la estadística, ua població es el cojuto de todos los valores que puede tomar ua característica medible e particular, de u cojuto correspodiete

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

TEMA 4- MODELOS CONTINUOS

TEMA 4- MODELOS CONTINUOS TEMA 4- MODELOS CONTINUOS 4.1. Itroducció. 4.2. Distribució uiforme cotiua de parámetros a y b. X Ua, b 4.3. Distribució Gamma de parámetros y. X, Casos particulares: 4.3.1.Distribució Expoecial. X Exp

Más detalles

Tema 14: Inferencia estadística

Tema 14: Inferencia estadística Tema 14: Iferecia estadística La iferecia estadística es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. 1. Estimació de parámetros Cuado descoocemos

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

TEORÍA DE LA ESTIMACIÓN

TEORÍA DE LA ESTIMACIÓN TEORÍA DE LA ESTIMACIÓN Objetivo: El objetivo de la estimació putual es usar ua muestra para obteer úmeros (estimacioes putuales) que sea la mejor represetació de los verdaderos parámetros de la població.

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

1 x 1 0,1666. sabiendo que 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496.

1 x 1 0,1666. sabiendo que 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496. GRADO GESTIÓN AERONÁUTICA: EXAMEN ESTADÍSTICA TEÓRICA 9 de Eero de 015. E-7. Aula 104 1.- La fució de desidad de ua variable aleatoria es: a b 0 f() 0 e el resto sabiedo que 1 P 1 0,1666. Determiar a y

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

La ley de los grandes números

La ley de los grandes números La ley de los grades úmeros "El idicio de que las cosas estaba saliédose de su cauce ormal vio ua tarde de fiales de la década de 1940. Simplemete lo que pasó fue que etre las siete y las ueve de aquella

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

Desigualdad de Tchebyshev

Desigualdad de Tchebyshev Desigualdad de Tchebyshev Si la Esperaza y la variaza de la variable X so fiitas, para cualquier úmero positivo k, la probabilidad de que la variable aleatoria X esté e el itervalo La probabilidad de que

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

TEMA 7 DISTRIBUCIONES DE PROBABLIDAD CONTINUAS

TEMA 7 DISTRIBUCIONES DE PROBABLIDAD CONTINUAS www.iova.ued.es/webpages/ilde/web/idex.htm e-mail: imozas@elx.ued.es TEMA 7 DISTRIBUCIONES DE PROBABLIDAD CONTINUAS Distribució uiforme e el itervalo [a, b].-, a x b Fució de desidad: f(x) = b a 0, e el

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribucioes de probabilidad discretas Departameto de Ciecias del Mar y Biología Aplicada Itroducció Iferecia estadística: Parte de la estadística que estudia grades colectivos a partir

Más detalles

TEMA 4. Algunos modelos de probabilidad de tipo continuo

TEMA 4. Algunos modelos de probabilidad de tipo continuo TEMA 4. Alguos modelos de probabilidad de tipo cotiuo Vamos a abordar e este capítulo el estudio de aquellas distribucioes de probabilidad de tipo cotiuo, que se os preseta co bastate frecuecia e el mudo

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Universidad MUESTREO de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Métodos Estadísticos para

Universidad MUESTREO de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Métodos Estadísticos para MÉTODOS ESTADÍSTICOS PARA LA EMPRESA TEMA 7: HERRAMIENTAS INFERENCIALES. DISTRIBUCIONES ASOCIADAS AL Uiversidad MUESTREO de Oviedo. Facultad de Ecoomía y Empresa. Grado e ADE. 7.1.- Distribucioes Métodos

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

Distribuciones: discretas y continuas

Distribuciones: discretas y continuas Distribucioes: discretas y cotiuas DISTRIBUCIONES. DISTRIBUCIONES DISCRETAS. Distribució Uiforme.... Distribució Biomial... 3.3 Distribució de Poisso... 6. DISTRIBUCIONES CONTINUAS.. Distribució Uiforme

Más detalles

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Itroducció a la Iferecia Estadística. Método Estadístico. Defiicioes previas. 5.2. Estimació putual 5.3. Métodos de obteció de estimadores: 5.3.1. Método de los

Más detalles

Probabilidades y Estadística (M) Práctica 8 1 cuatrimestre 2012 Convergencias - Ley de los Grandes Números

Probabilidades y Estadística (M) Práctica 8 1 cuatrimestre 2012 Convergencias - Ley de los Grandes Números robabilidades y Estadística (M) ráctica 8 cuatrimestre 22 Covergecias - Ley de los Grades Números. Ua máquia produce artículos de 3 clases: A, B y C e proporcioes 25 %, 25 % y 5 % respectivamete. Las logitudes

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

SOLUCIONES DE LA SEGUNDA PRUEBA DE EVALUACION CONTINUA (PEC 2)

SOLUCIONES DE LA SEGUNDA PRUEBA DE EVALUACION CONTINUA (PEC 2) Curso 2012-13 PEC2 Pág. 1 SOLUCIONES DE LA SEGUNDA PRUEBA DE EVALUACION CONTINUA (PEC 2) Gráfico 1: E ua ivestigació se compara la eficacia de tres tipos de tratamieto de las fobias, atediedo a si ha habido

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

UNIDAD 3.- INFERENCIA ESTADÍSTICA I

UNIDAD 3.- INFERENCIA ESTADÍSTICA I UNIDAD 3.- INFERENCIA ESTADÍSTICA I 1. ESTADÍSTICA INFERENCIAL. MUESTREO La Estadística es la ciecia que se preocupa de la recogida de datos, su orgaizació y aálisis, así como de las prediccioes que, a

Más detalles

Distribuciones: discretas y continuas

Distribuciones: discretas y continuas Distribucioes: discretas y cotiuas DISTRIBUCIONES. DISTRIBUCIONES DISCRETAS. Distribució Uiforme.... Distribució Biomial... 3.3 Distribució de Poisso... 6. DISTRIBUCIONES CONTINUAS.. Distribució Uiforme

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

INTRODUCCION Teoría de la Estimación

INTRODUCCION Teoría de la Estimación INTRODUCCION La Teoría de la Estimació es la parte de la Iferecia Estadística que sirve para coocer o acercarse al valor de los parámetros, características poblacioales, geeralmete descoocidos e puede

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

DISTRIBUCIONES EN EL MUESTREO

DISTRIBUCIONES EN EL MUESTREO 7/9/08 DISTRIBUCIONES EN EL MUESTREO Uidad 4 08 Las estadísticas pesadas como variables aleatorias Ejemplo: u experimeto E cosiste e elegir =5 alícuotas de agua del río y medir la cocetració de arséico:

Más detalles

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales Ídice 5 Itroducció a la Iferecia Estadística Muestreo e poblacioes ormales 51 51 Itroducció 51 52 Estadísticos y mometos muestrales 53 521 Media muestral Propiedades 54 522 Variaza muestral Propiedades

Más detalles

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:...

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 6 de julio de 5 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... Ejercicio Ejercicio Ejercicio Ejercicio 4 Ejercicio 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R Capítulo 3. El modelo de regresió múltiple. Jorge Feregrio Feregrio Idetificació del modelo La idetificació del objeto de ivestigació permitirá realizar ua búsqueda exhaustiva de los datos para llevar

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

Calificación= (0,4 x Aciertos) - (0,2 x Errores) SOLUCIONES

Calificación= (0,4 x Aciertos) - (0,2 x Errores) SOLUCIONES eptiembre 05 EAMEN MODELO B ág. INTRODUCCIÓN AL ANÁLII DE DATO ETIEMBRE 05 Código asigatura: 60037 EAMEN TIO TET MODELO B DURACION: HORA Material: Addeda (Formulario y Tablas) y calculadora (cualquier

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

1. Distribución Normal.

1. Distribución Normal. DEPARTAMENTO DE MATEMÁTICAS UNIDAD 5. Estadística IES Galileo Galilei RESUMEN 1. Distribució Normal. 1.1. Cálculo de probabilidades a) Para ua distribució estádar N(0,1) usamos directamete la tabla: Ejemplos:

Más detalles

MATEMÁTICAS 2ºBACHILLERATO CCSSII

MATEMÁTICAS 2ºBACHILLERATO CCSSII La trata del recueto, ordeació y clasificació de los datos obteidos por las observacioes, para poder hacer comparacioes y sacar coclusioes. U estudio estadístico costa de las siguietes fases: Recogida

Más detalles

Apellidos y Nombre: Aproximación lineal. dy f x dx

Apellidos y Nombre: Aproximación lineal. dy f x dx INGENIERÍA DE TELECOMUNICACIÓN HOJA 0 Aproximació lieal Defiició (Diferecial).- Sea y = f ( x) ua fució derivable e u itervalo abierto que cotiee al úmero x, - La diferecial de x es igual al icremeto de

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 2.001-2.002 - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD ESTADÍSTICA, CURSO 008 009 TEMA : DISTRIBUCIONES DE PROBABILIDAD LEYES DE PROBABILIDAD. SUCESOS ALEATORIOS Experimetos aleatorios, espacio muestral. Sucesos elemetales y compuestos. Suceso imposible Ø,

Más detalles

El método de Monte Carlo

El método de Monte Carlo El método de Mote Carlo El método de Mote Carlo es u procedimieto geeral para seleccioar muestras aleatorias de ua població utilizado úmeros aleatorios. La deomiació Mote Carlo fue popularizado por los

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Análisis estadístico de datos simulados Estimadores

Análisis estadístico de datos simulados Estimadores Aálisis estadístico de datos simulados Estimadores Patricia Kisbye FaMAF 11 de mayo, 2010 Aálisis estadístico Iferecia estadística: Elegir ua distribució e base a los datos observados. Estimar los parámetros

Más detalles

Estimadores Puntuales: Propiedades de estimadores Sebastián Court

Estimadores Puntuales: Propiedades de estimadores Sebastián Court Estadística Estimadores Putuales: Propiedades de estimadores Sebastiá Court 1.Motivació Cosideremos ua variable aleatoria X co ciertas características, como por ejemplo, u parámetro θ, y ua muestra aleatoria

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

No debe entregar los enunciados. Después del Tratamiento (Y)

No debe entregar los enunciados. Después del Tratamiento (Y) Después del Tratamieto (Y) Febrero 016 EAMEN MODELO B Pág. 1 INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO 016 Código asigatura: 6011037 EAMEN TIPO TEST MODELO B DURACION: HORAS Material: Addeda (Formulario

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA X INFERENCIA ESTADÍSTICA Sea ua característica o variable aleatoria de la població objeto de estudio y sea ( X, X, X,..., X ) ua muestra aleatoria de dicha població. 1 3 U parámetro poblacioal es ua caracterizació

Más detalles

DISTRIBUCIONES MUESTRALES

DISTRIBUCIONES MUESTRALES UNIDAD II DISTRIBUCIONES MUESTRALES Competecia: -El estudiate debe saber utilizar las diferetes distribucioes muestrales,es decir las diferetes distribucioes de cualquier estadístico estimado a partir

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

SUMA DE VARIABLES ALEATORIAS

SUMA DE VARIABLES ALEATORIAS SUMA DE VARIABLES ALEATORIAS do C. 018 Clase Nº 9 Mg. Stella Figueroa Teorema Cetral del Límite El teorema afirma que la distribució de la suma de u gra úmero de variables aleatorias tiee aproximadamete

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

Distribuciones Muestrales

Distribuciones Muestrales 10/08/007 Diseño Estadístico y Herramietas para la Calidad Distribucioes Muestrales Epositor: Dr. Jua José Flores Romero juaf@umich.m http://lsc.fie.umich.m/~jua M. e Calidad Total y Competitividad Distribucioes

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

Estadística Aplicada a las ciencias Sociales Examen Febrero de 2008 segunda semana

Estadística Aplicada a las ciencias Sociales Examen Febrero de 2008 segunda semana Estadística Aplicada a las ciecias Sociales Exame Febrero de 008 seguda semaa Ejercicio 1.- E la siguiete tabla, se tiee el úmero de alumos de educació de adultos matriculados e el curso graduado escolar

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Septiembre de 013 (Modelo Reserva ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SEPTIEMBRE 013 MODELO RESERVA OPIÓN A EJERIIO 1 (A) 8 3 3-5 3 5 Sea las matrices

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA FACULTAD DE INGENIERÍA INFERENCIA ESTADÍSTICA Iree Patricia Valdez y Alfaro Estimació de parámetros ireev@servidor.uam.mx Ua clasificació de estadística Descriptiva Calculo de medidas descriptivas Costrucció

Más detalles

PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE

PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE Objetivos Comprobar que la suma de variables aleatorias idepedietes y co la misma distribució es aproximadamete ormal. Estudiar la robustez de la aproximació frete

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

ESTADÍSTICA. n i Se pide:

ESTADÍSTICA. n i Se pide: ESTDÍSTIC Tercera Prueba de Evaluació cotiua 1 de diciembre de 16 1.- l calcular cico veces la distacia etre dos putos, obteemos los siguietes valores: 17,13m; 17,1m; 17,m; 17,65m; 17,4 a) Itervalo de

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

Tipo A Tipo B Máximo Avellanas Nueces Almendras Beneficio x + 40y

Tipo A Tipo B Máximo Avellanas Nueces Almendras Beneficio x + 40y IES Fco Ayala de Graada Juio de 010 (Específico Modelo 4) Solucioes Germá-Jesús Rubio Lua MATEMÁTICAS CCSS JUNIO 010 (ESPECÍFICO MODELO 4) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 ( 5 putos) U comerciate

Más detalles

Métodos de Análisis Cuantitativo

Métodos de Análisis Cuantitativo Métodos de Aálisis Cuatitativo Fórmulas E este documeto se lista las fórmulas trabajadas e las clases del curso de Métodos de Ivestigació Cuatitativa (GES204) de la Facultad de Gestió y Alta Direcció de

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales

Curso de Estadística Aplicada a las Ciencias Sociales Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua media (Cap. 21 del libro) 1 Tema 11. Estimació de ua media Itroducció 1. Distribució de la media e el muestreo 2. La media

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

IES Fco Ayala de Granada Sobrantes de 2003 (Modelo 6) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2003 (Modelo 6) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2003 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua piscifactoría vede gambas y lagostios a 10 y 15 euros el kg, respectivamete. La producció máxima

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 7

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 7 AMPLIACIÓN DE MATEMÁTICAS Igeiería Técica Idustrial. Especialidad e Electróica Idustrial Boletí o 7. Dibujar las gráficas y hallar el desarrollo e serie de Fourier de las siguietes fucioes periódicas de

Más detalles

Convergencia de variables aleatorias

Convergencia de variables aleatorias Capítulo Covergecia de variables aleatorias El objetivo del presete capítulo es estudiar alguos tipos de covergecia de variables aleatorias. Iiciaremos co la defiició de los distitos modos de covergecia...

Más detalles

Sobre los intervalos de confianza y de predicción

Sobre los intervalos de confianza y de predicción Sobre los itervalos de cofiaza y de predicció Itervalos de cofiaza Javier Satibáñez 28 de febrero de 2018 Se costruye itervalos de cofiaza para parámetros. Sea X = X 1,..., X } ua muestra aleatoria de

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

TEMA 6.- INTERVALOS DE CONFIANZA

TEMA 6.- INTERVALOS DE CONFIANZA TEMA 6.- INTERVALOS DE CONFIANZA 6.1. Distribucioes asociadas a la Normal 6.1.1. Distribució Chi cuadrado de Pearso o Gi dos 6.1.. Distribució t de Studet 6.. Itroducció a itervalos de cofiaza 6.3. Método

Más detalles