POLINOMIOS. se denominan coeficientes.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "POLINOMIOS. se denominan coeficientes."

Transcripción

1

2 POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrile, tod epresión de l form: tl que: 0... n n 0 R; R; R;... ; n R n 0 siendo n N0 En tl epresión, l letr represent un número rel culquier l denominmos vrile o rgumento del polinomio. Los números 0; ; ;...; n se denominn coeficientes. A los polinomios sí definidos, los notremos con un letr múscul, inmeditmente seguid de un préntesis, dentro del cul colocmos l vrile en l que fue definido el polinomio. En nuestro cso resultrí: P( ) = 0... n n Ejemplos de polinomios en l vrile : A()= polinomio de segundo grdo en, cuos coeficientes son: 0 ; ; B()= π polinomio de quinto grdo en, cuos coeficientes son: ; ; 0; 0; π; Oservciones 0 Todo número rel distinto de cero es un polinomio de grdo cero Sí en l epresión: 0... n todos los coeficientes 0... n 0, tl epresión l denominmos, por convenio, polinomio nulo lo indicremos con el símolo: 0 Por lo tnto el polinomio nulo es el número cero crece de grdo Al conjunto de todos los polinomios posiles, incluido el polinomio nulo, lo notremos con l letr P. De ls oservciones nteriores result: R P donde números reles R P =polinomios n P O L I T E C N I C O

3 Polinomios. Fctoreo. Epresiones lgerics rcionles Mtemátic Un polinomio se llm ordendo con respecto ls potencis decrecientes (o crecientes) de l vrile, cundo ést figur en cd término elevd un eponente menor (o mor) que en el término nterior. Ejemplos: D() creciente 7 π polinomio de séptimo grdo en ordendo en form C() π polinomio de tercer grdo en ordendo en form decreciente Un polinomio se llm completo con respecto su vrile cundo figurn tods ls potencis de l mism, menores que l de más lto grdo eistente en el polinomio. Ejemplos: D() 7 polinomio de curto grdo en, completo E() según ls potencis crecientes de l vrile polinomio de tercer grdo en, completo ordendo Cd uno de los términos de l sum que define el polinomio se denomin monomio, el grdo de cd monomio es el eponente con el que figur, en él, l vrile. De l definición de monomio, deducimos que puede epresrse como un cso prticulr de polinomio con un único término. Ejemplos: - π es un monomio de tercer grdo es un monomio de segundo grdo es un monomio de grdo cero Dos monomios en l mism vrile se llmn semejntes si son del mismo grdo, o se que solo pueden diferencirse en el coeficiente. P O L I T E C N I C O

4 Ejemplo: ; ; son monomios semejntes Todo polinomio de dos términos se denomin inomio, el de tres términos, trinomio; el de cutro términos, cutrinomio ; de llí en más polinomio de cinco, seis, siete términos,etc. De ello se desprende que un inomio es un polinomio cuos coeficientes son todos nulos ecepto dos, un trinomio es un polinomio cuos coeficientes son todos nulos ecepto tres, sí sucesivmente. Ejemplo A() creciente. es un inomio de curto grdo en no completo ordendo en form El polinomio A() completo ordendo en form decreciente es: A() Polinomios en vris vriles Lo considerdo hst el presente, se etiende l cso en que los polinomios se definn en vris vriles o rgumentos, en cuo cso resultn epresiones del tipo: A ; z z B ;;z El desrrollo más detlldo de estos polinomios en vris vriles no se efecturá en el presente curso. Vlor numérico de un polinomio El vlor numérico de un polinomio, es el número que result de reemplzr l vrile por un número rel culquier. De modo que, ddo el polinomio P() = Su vlor numérico pr = 0 que notremos P(0) es: P(0) = = 0 P O L I T E C N I C O

5 Polinomios. Fctoreo. Epresiones lgerics rcionles Mtemátic Los vlores numéricos pr: = ; = ; = - son sucesivmente: P() = 8 ; P( ) = 0 ; P(-) = 0 Todo número rel, pr el cul se verifique que P() = 0, recie el nomre de cero del polinomio. En el ejemplo ddo son ceros del polinomio: P() = PRÁCTICA. Indic cuáles de ls siguientes epresiones son polinomios, en tl cso dr su grdo ) ) - c) ( )( ) 6 6 d) e ) f). En centvos por km, el costo de conducir un utomóvil un velocidd v se proim por medio de l función polinómic: C(v) 0,00 v 0,v Cuánto cuest conducir un utomóvil 0 km/h? 80 km/h?. El polinomio P(R,r) (R r ) proporcion el áre de un coron circulr con rdio interior r con rdio eterior R. Clcul el áre de un coron circulr con un rdio eterior de 0 cm uno interior de cm. Iguldd de polinomios Ddos dos polinomios de igul grdo, en l mism vrile, diremos que son igules si los coeficientes de los términos del mismo grdo resultn igules. Simólicmente: P( ) = Q( ) = n 0... n n 0... n Diremos que P( ) = Q( ) i 0;;;,..., n i i P O L I T E C N I C O

6 Operciones con polinomios Notemos que se hn relizdo en otrs ocsiones operciones entre epresiones lgerics, tles como: I. ( ) + (- + ) II. ( + +) ( + ) III. ( ).( + ) Ahor, sólo nos rest efecturls medinte el empleo de un disposición práctic Sum de polinomios Definición: Ddos dos polinomios P( ) = Q( ) = 0 m 0... m n n... Definimos como sum de esos dos polinomios e indicmos P()+Q() otro polinomio S() = c 0 c c... c r con ci i i i ;;;...; r siendo r el grdo del polinomio sum, si este no es nulo en cuo cso crece de grdo. r Ejemplo P() = + Q() = S() = 6 El polinomio S(), sum entre P() Q() es S() = 6 Propieddes:. Eistenci del elemento neutro 0 P / P() P; P() 0 P() ; esto se epres diciendo que el polinomio nulo es elemento neutro respecto de l operción sum.. Eistenci del elemento opuesto R() P Q() P / R() Q() 0 Q() R() P O L I T E C N I C O

7 Polinomios. Fctoreo. Epresiones lgerics rcionles Mtemátic Rest de polinomios Definición: Ddos P() Q() polinomios del conjunto P: Ejemplo P() Q() P() [ Q()] + P() = + + -Q() = - + D() = Luego result P() Q() = D() Multiplicción de polinomios Definición: Ddos dos polinomios P() Q ( ) llmmos polinomio producto e indicmos M(), l polinomio que es l sum de todos los productos posiles de cd monomio de P() por cd monomio de Q(). Ejemplo: P() = Q() = M() = Luego result P(). Q() = M() Propiedd: Eistenci del elemento neutro P / P() P;P(). P() ; esto se epres diciendo que el número rel es elemento neutro respecto de l operción multiplicción. 6 P O L I T E C N I C O

8 Propieddes Pueden demostrrse ls siguientes propieddes de l sum el producto de polinomios en se ls propieddes de l sum producto de números reles. SUMA El grdo del polinomio sum es menor o igul que el grdo de los polinomios sumndos o crece de grdo. MULTIPLICACIÓN El grdo del polinomio producto es igul l sum de los grdos de cd polinomio o crece de grdo si uno o mos de los polinomios son el polinomio nulo L sum de polinomios cumple con l le de cierre L multiplicción de polinomios cumple con l le de cierre Conmuttiv Asocitiv Eistenci del elemento neutro Eistenci de elemento simétrico Condición de nulción del producto Distriutiv del producto con respecto l sum de polinomios PRÁCTICA. El polinomio A() es de curto grdo el polinomio B() es de segundo grdo ) Cuál es el grdo de A() + B()? ) Cuàl es el grdo de A(). B()?. Ddos los polinomios A() = + + ; B() = C() = + +, resuelve: ) A() + C() d) B().[A() + C()] ) A() + B() + C() e) [A()] + [B()] c) A().B() f) [A() C()] P O L I T E C N I C O 7

9 Polinomios. Fctoreo. Epresiones lgerics rcionles Mtemátic 6. Clcul los vlores de, c, en cd cso ) ( ) ( c ) 7 ). c) c 8c d) 6 c División de polinomios Como conclusión de los estudios precedentes sore polinomios, podemos firmr que eiste un nlogí entre ls operciones con números enteros ls operciones con polinomios. Continundo con tl prlelismo, diremos que dividir dos polinomios P() Q() (grdo de P() grdo de Q() ), es encontrr dos polinomios C() R() (este último de grdo menor Q() o crente de grdo) tles que verificn l siguiente identidd: P() = C(). Q() + R() donde grdo de C() = grdo de P() grdo de Q() Result demás: P() divisile por Q() R() = 0 Un esquem mu fmilir dividendo P() Q() divisor R() C() cociente resto Pr otener los polinomios cociente C() resto R() se relizn los siguientes psos.. Se coloc el polinomio dividendo completo ordendo en form decreciente el polinomio divisor ordendo de l mism form.. Pr clculr el primer término del cociente, dividimos el monomio de mor grdo del dividendo por el monomio de mor grdo del divisor 8 P O L I T E C N I C O

10 . El monomio otenido en., se multiplic por el divisor, se coloc jo el dividendo se rest, oteniéndose el primer resto. A prtir de quí se repiten los prtdos., hst que el polinomio resto teng grdo menor que el del polinomio divisor o se oteng el polinomio nulo. Ejemplo: Dividmos P() = + + entre Q() = + _ / 6 + _ +8 / _ / C() cociente R() resto PRÁCTICA 7. En un división de polinomios, el dividendo es de grdo siete el divisor de grdo cutro. Cuál es el grdo del cociente?. Y el grdo del resto? 8. Clcul el cociente el resto en: ) ( 8 ) : ( ) ) ( 6 ) : ( + ) 9. Determin si l siguiente proposición es V(verdder) o F(fls).Justific. 7 es el resto de l división ( ) :( ) 0. Anliz l flsedd o vercidd de es un cociente ecto P O L I T E C N I C O 9

11 Polinomios. Fctoreo. Epresiones lgerics rcionles Mtemátic División de un polinomio de grdo mor o igul por otro de primer grdo Un cso que se present con much frecuenci, es l división de un polinomio P() de grdo n por un inomio de l form + h ( hr), en este cso C() result de grdo n R() es de grdo 0 o crece de grdo; es decir el resto resultrá un número rel (R), que será cero si P() es divisile por + h. Semos que si P() es el dividendo; + h el divisor R el resto, deerá verificrse: P() = C().( + h) + R Teorem del resto El resto R de un división de un polinomio en por un inomio +h ( donde h es un número rel culquier ), es el vlor numérico del polinomio dividendo cundo l vrile sume el vlor (-h) P() +h R C() P(-h) = R Demostrción: Semos que P() = C() (+h) + R P(-h) = C(-h).(-h+h) +R siendo P(-h) el vlor numérico del polinomio P() cundo = -h P(-h) = C(-h).0 +R que (-h + h) = 0 por propiedd de l sum de números opuestos De donde deducimos que: P(-h) = R El resto R de un división de un polinomio en por un inomio + h (donde h es un número rel culquier), es el vlor numérico del polinomio dividendo cundo l vrile sume el vlor (-h). NOTA: Result en consecuenci que: P() es divisile por +h P(-h) =0 0 P O L I T E C N I C O

12 Regl de Ruffini Pr el cálculo efectivo del cociente C(), en el cso de división de polinomios que estmos estudindo, result útil cómodo, utilizr el esquem que completrás como ejemplo con l ud de tu profesor / / 6-6 / ti / 6 PRACTICA. Clcul los cocientes indicdos (P() : Q()) en cd enuncido por plicción de l regl de Ruffini verific el resto otenido, plicndo el teorem del resto ) ( ) :( + ) ) ( ):(- + ) c) ( ) : ( - ) d) ( + ):( + ) e) ( ) : ( ) f) ( 6) : ( + ) P O L I T E C N I C O

13 Polinomios. Fctoreo. Epresiones lgerics rcionles Mtemátic. Determin m pr que el resto de l división resulte igul 8 m m( ) m : ( ). Dd ( ) ( ) : ( ) ) Clcul de modo que el resto se 8 ) Determin, por Ruffini, el cociente de l división signándole el vlor hlldo en el prtdo nterior.. En cd uno de los siguientes cocientes, determin h de modo que l división pose el resto indicdo en cd cso ) h ( h) (h ) : ( ), el resto se (-) ) h h : ( ), el resto se (-), el resto se c) h (h ) h : ( ). En cd un de ls siguientes divisiones, determin h de modo que l división resulte ect. ) ( + h ): ( ) ) ( h ) : ( - ) c) ( h + h ) : (+) d) ( + h) : ( ) 6. Complet el cudro. A() + 0 ( ) A() es divisile por (-)? A() es divisile por (+)? ( ) P O L I T E C N I C O

14 Ceros de un polinomio su descomposición en fctores Ddo el polinomio A()= +, notemos que A()=0 A()=0 por lo tnto : son ceros de A() en consecuenci A() es divisile por (-) (-). Entonces de cuerdo l lgoritmo de l división result: A()= + = (-)( - --) = (-)(-)( + +) ti En generl diremos que : 0 ( α) A A() A() = (-).C() (*) PRÁCTICA 7. ) Determin el vlor del coeficiente de P() pr que el resto de l división entre p() ( - ) se cero, siendo P()= + 8 Y luego fctorélo pr ese vlor de. ) Encuentr otro cero de P() pr ese vlor de c) Complet l siguiente epresión fctored de P(). P()=(-..)(-..)( ) P O L I T E C N I C O

15 Polinomios. Fctoreo. Epresiones lgerics rcionles Mtemátic 8. Complet l epresión fctored de los siguientes polinomios ) + = (-)(..) ) -= (-)(.) c) + = (-)(..)(..) Fctorer un polinomio es trnsformrlo en el producto de dos o más polinomios. Pr loclizr los ceros de un polinomio se utiliz l siguiente propiedd: n Si el polinomio P()= 0... n con i Zi n=,dmite l ríz α entonces α es divisor de 0 PRÁCTICA 9. Fctore todo lo posile hll todos los ceros de cd uno de los siguientes polinomios: () = + 0 () = c() = + 6 d() = + 0. Dds ls siguientes epresiones de l form n h n determin los divisores de l form h de modo que l división resulte ect en ese cso escriir n h n como el producto del divisor por el cociente, o se fctoredo: ) + e) + 6 ) 8 f) 7 c) + g) + d) + 6 h) 8 P O L I T E C N I C O

16 . Clcul el vlor de siendo que es un cero del polinomio p() = +. Clcul de modo tl que resulte P()=Q(), siendo P()= -+ Q()=(-)(+)(+). El polinomio P(R;r)= π (R -r ) proporcion el áre de un coron circulr con rdio interior r rdio eterior R. Clcul el áre de un coron circulr con un rdio eterior de 0cm. uno interior de 0cm.. Fctore l fórmul que d el áre A de cd un de ls regiones somreds ) ) c) d) Epresiones lgerics rcionles. Simplificción. Operciones Ddos dos polinomios P() Q() / Q() 0 culquier se l epresión P() T() l denominmos epresión lgeric rcionl donde Q() P() T() Q() numerdor denomindor El vlor numérico de est epresión dependerá del vlor que signemos l vrile pr el cul l mism quede definid,es decir P() T(), R con Q() 0 Q() P O L I T E C N I C O

17 Polinomios. Fctoreo. Epresiones lgerics rcionles Mtemátic NOTA: En lo sucesivo considerremos que ls epresiones lgerics rcionles P() se encuentrn definids pr todos quellos vlores de pr los cules Q() Q() 0 Oservciones R / Q( ) 0 result: P() ) Si Q()= P() Q() P() Q() ) Si Q()=P() Q() Q() P() 0 c) Si P()= 0 0 Q() Q() Simplificción de epresiones lgerics Dd l epresión A() B() R(). R().Si es posile trnsformrl en P()R() Q()R() A() P()R() P() P() = = =. B() Q()R() Q() Q() en el denomindor, tl operción l denominmos simplificción Ejemplo ( ) ( ) ). ( ) result P() = ; que h un mismo fctor en el numerdor Q() ) 7 7( ) PRÁCTICA. Estlece pr que vlores de l vrile están definids ls siguientes epresiones lgerics rcionles. ) ) c) 9 6 P O L I T E C N I C O

18 6. Une con flechs ls epresiones equivlentes. Justific. 0 ) ) c) d) e) f) ( ) 0 8 ( ) ( ) Operciones con epresiones lgerics Ls operciones con epresiones lgerics rcionles tienen ls misms propieddes que ls operciones con números rcionles. Sum Ejemplo: L sum de epresiones lgerics rcionles puede presentr: I) denomindores igules, en este cso: P() Q() R() Q() P() R(X) Q() P O L I T E C N I C O 7

19 Polinomios. Fctoreo. Epresiones lgerics rcionles Mtemátic II) denomindores distintos, es decir P() Q() R() S() P().S() Q().S() R().Q() S().Q() P().S() R().Q() Q().S() Un recurso útil será descomponer los denomindores en fctores primos luego determinr el múltiplo común menor de los denomindores como el mecnismo empledo en l determinción del mcm de números enteros. Ejemplo:.( ) ( ).( ) ( ).( ) ( ).( ) ( )( ) Rest Dds dos epresiones lgerics rcionles culesquier llmmos diferenci de ells l epresión lgeric rcionl que se otiene sumndo l primer l opuest de l segund. Ejemplo: ( ) ( ) ( ) ( ) ( ( ) ( ) ( ) Multiplicción Dds dos epresiones lgerics rcionles culesquier definimos l multiplicción de ls misms del siguiente modo: P() Q() R() D() P() R(X) Q() D() R / Q() 0 D() 0 Ejemplo:. ( ( )( ) ( )( ) )( ) ( ) ( )( ) 8 P O L I T E C N I C O

20 P O L I T E C N I C O 9 División Dds dos epresiones lgerics rcionles culesquier llmmos cociente entre ells l epresión rcionl que se otiene de multiplicr l primer por el recíproco de l segund. Ejemplo: PRÁCTICA 7. Demuestr ) 9 ) ( 9 ) ) ) ( ( ) ( c) 8 d) e) ) ( f) g) 8 ) ( h) ) ( ) ( 8) ( i) 6 j) k) ) 6( l) ) ) ( ( ) (. m). ) ( ) (. ) ( :

21 Polinomios. Fctoreo. Epresiones lgerics rcionles Mtemátic P O L I T E C N I C O 0 n). o) ) (. 9 6 p) : q) 6 : 9 9 r) : 8 6 c c s) 8 : 8 t) : u) m m m m m 9 0. v) ) (. w) :. ) : ) : RESPUESTAS A LOS PROBLEMAS PLANTEADOS. Son polinomios, c e. El grdo de es, el grdo de c es el grdo de e es 6.. 9, centvos; centvos.. Áre = 7.. ) grdo [A() + B()] = ) grdo [A().B()] = 6. ) A() + C() = ) A() + B() + C() = c) A().B() = d) B().[A() + C()] = e) A () + B () = + + f) [A() C()] =

22 6. ) = -7 ; = ; c = ) = ; = ; c = c) = 7 ; = ; c = - 9 d) = ; c = 7. grdo del cociente = grdo del resto < ó crece de grdo. 8. ) C() = + R() = - ) C() = + 9 R() = 9. verddero 0. verddero. - C() = R() = = P(-) - C() = R() = - = P() c- C() = 6 R() = = P() d- C() = 8 + R() = -8/ = P(-) e- C() = R() = 0 = P() f- C() = + 8 R() = 0 = P(-). m =. ) = -6 ) C() = ) h = 0 ) h = c) h =. ) h = - ) h = c) h = 7 6. d) h = -7 A() + A() es divisile por (-)? A() es divisile por (+)? Si Si ( ) + Si NO ( ) NO NO 7. = P() = ( ).( + + ) 8. ) + = (-)(-) ) -= (-)(+) c) + = (-) (+) P O L I T E C N I C O

23 Polinomios. Fctoreo. Epresiones lgerics rcionles Mtemátic 9. () = ( )( 6)( ) () = ( )( )( + )( + ) c() = ( )( + )( + ) d() = ( )( + ) 0. - ( )( ) - ( )( + + ) c- ( + )( + +) d- no es posile e- ( + )( + 6) f- ( /)( + / + /9) g- no es posile h- ( )( + )( + 9). =. ( = = -) ( = - = ). Áre = 00. ) (8 ) ) c) ( ) d) ( ). ) ; - ) -/9 c) ) ) c) d) e) f) ( ) ( ) ( ) P O L I T E C N I C O

Polinomios 3º Año Cód P r of. M a r í a d el L u já n Matemática M a r t í n ez P r of. M ir t a R o s i t o Dpto.

Polinomios 3º Año Cód P r of. M a r í a d el L u já n Matemática M a r t í n ez P r of. M ir t a R o s i t o Dpto. Polinomios Mtemátic º Año Cód. 0- P r o f. M r í d e l L u j á n M r t í n e z P r o f. M i r t R o s i t o Dpto. de Mtemátic POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrile,

Más detalles

Polinomios 3º Año Cód P r o f. Ma r í a d e l L u j á n Matemática M a r t í n e z P r o f. Mi r t a R o s i t o Dpto.

Polinomios 3º Año Cód P r o f. Ma r í a d e l L u j á n Matemática M a r t í n e z P r o f. Mi r t a R o s i t o Dpto. Polinomios Mtemátic º Año Cód. 0-8 P r o f. M r í d e l L u j á n M r t í n e z P r o f. M i r t R o s i t o Dpto. de Mtemátic POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrible,

Más detalles

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1 TEMA Epresiones lgerics. Polinomios Tem Epresiones lgerics. Polinomios ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum rest de polinomios...- Producto de polinomios...- Potenci de polinomios..-

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1

TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1 TEMA Polinomios y frcciones lgerics Tem Polinomios y frcciones lgerics ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum y rest de polinomios...- Producto de polinomios...- División de polinomios..-

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

EXPRESIONES ALGEBRAICAS: MONOMIOS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS: MONOMIOS Y POLINOMIOS EXPRESIONES LGERIS: MONOMIOS Y POLINOMIOS EXPRESIÓN LGERI.- Un epresión lgeric es culquier cominción de números letrs unidos por ls operciones ritmétics (sum, rest, multiplicción, división, potenci, (o)

Más detalles

2 cuando a y b toman los valores 2 y -1,

2 cuando a y b toman los valores 2 y -1, COLEGIO PEDAGÓGICO DE LOS ANDES TALLER DE NIVELACIÓN DE MATEMÁTICAS SEGUNDO PERIODO GRADO OCTAVO ALGEBRA...- - LLeenngguuj jjee l llggee ri r iiccoo El lenguje numérico sirve pr epresr operciones en ls

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

POLINOMIO GRADO TERM. INDEP. ORDENAR COMPLETAR 2x-x x 3 8-x 4 x+4x 4 2x-1+x 5

POLINOMIO GRADO TERM. INDEP. ORDENAR COMPLETAR 2x-x x 3 8-x 4 x+4x 4 2x-1+x 5 SECRETARIA DE EDUCACIÓN DE BOGOTÁ D.C. COLEGIO CARLOS ALBÁN HOLGUÍN I.E.D. Resolución de Aproción (SED N 8879 de Dic. 7 de 001 Resolución de Jornd Complet (SED N 08 de Nov. 17 de 01 En sus niveles Preescolr,

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

( x) = 4x. ( x) ( ) ( ) REPASO DE LAS RAZONES ALGEBRAICAS (4º ESO) CÁLCULO DEL M.C.D. Y m.c.m. DE VARIOS POLINOMIOS.-

( x) = 4x. ( x) ( ) ( ) REPASO DE LAS RAZONES ALGEBRAICAS (4º ESO) CÁLCULO DEL M.C.D. Y m.c.m. DE VARIOS POLINOMIOS.- REPASO DE LAS RAZONES ALGEBRAICAS (º ESO) CÁLCULO DEL M.C.D. Y m.c.m. DE VARIOS POLINOMIOS.- Ddos dos o más polinomios P Q form nálog l cálculo del M.C.D. el m.c.m. con números º) Se fctorizn los polinomios

Más detalles

Tema: Polinomios y fracciones algebraicas

Tema: Polinomios y fracciones algebraicas Polinomios frcciones lgerics Ejercicios resueltos en los videos: www.josejime.com/videosdemtemtics Ejercicios pr cs resueltos en http://cursosieslsuncion.edu.gv.es/moodle Tem: Polinomios frcciones lgerics.

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

Potencias y radicales

Potencias y radicales Potencis y rdicles. Rdicles Definición Llmmos ríz n-ésim de un número ddo l número que elevdo n nos d. por ser n n Un rdicl es equivlente un potenci de eponente frccionrio en l que el denomindor de l frcción

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: EDISON MEJÍA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 8

Más detalles

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m.

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m. Álgebr 1 de Secundri: I Trimestre I: EXPRESIONES ALGEBRAICAS R Sen 1 Son epresiones lgebrics T 1 log R',, z 3 z A 1 TÉRMINO ALGEBRAICO TÉRMINOS SEMEJANTES ) 3z ; - 3z ; 6z Son términos semejntes b) b;

Más detalles

FORMACIÓN PROFESIONAL BÁSICA MATEMÁTICAS II CAPÍTULO 1: EXPRESIONES ALGEBRAICAS Y POLINOMIOS

FORMACIÓN PROFESIONAL BÁSICA MATEMÁTICAS II CAPÍTULO 1: EXPRESIONES ALGEBRAICAS Y POLINOMIOS Cpítulo Epresiones lgerics polinomios FORMACIÓN PROFESIONAL BÁSICA MATEMÁTICAS II CAPÍTULO EXPRESIONES ALGEBRAICAS Y POLINOMIOS ACTIVIDADES PROPUESTAS. INTRODUCCIÓN. EXPRESIONES ALGEBRAICAS. A finles de

Más detalles

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales. El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros.

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros. 4. Espcios vectoriles, definición propieddes Viguers En l Físic, con frecuenci se us el término vector pr descriir mgnitudes como l fuer, l velocidd, l celerción, otros fenómenos de l nturle, sin emrgo

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: EDISON MEJÍA MONSALVE.

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: EDISON MEJÍA MONSALVE. INSTITUCION EDUCATIVA LA RESENTACION NOMBRE ALUMNA: AREA : ASIGNATURA: DOCENTE: TIO DE GUIA: MATEMATICAS MATEMATICAS EDISON MEJÍA MONSALVE. CONCETUAL - EJERCITACION ERIODO GRADO 8 A/B N FECHA Enero / 0

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez Polinomios Operciones Regl de Ruffini Ríces o ceros Descomposición Frcciones lgebrics Ecuciones rcionles Repso de polinomios Ejercicios Ddos los polinomios P(, Q( R( clculr: P( Q( Q( R( P( Q( R( d P( Q

Más detalles

GUIA Nº 3 ÁLGEBRA BÁSICA

GUIA Nº 3 ÁLGEBRA BÁSICA RECUERDA QUE: GUIA Nº ÁLGEBRA BÁSICA Un epresión lgeric es un cominción de números, vriles signos de operción. Dos o más términos son semejntes si difieren únicmente en su coeficiente. Sólo se puede dicionr

Más detalles

Clase 11 Tema: Multiplicación entre polinomios

Clase 11 Tema: Multiplicación entre polinomios Bimestre: II Número de clse: Mtemátics 8 Clse Tem: Multiplicción entre polinomios Actividd 38 Hlle el volumen de cd cj. 2 8y 2 + 2 5 3y 2 5 9 3 y 4 2 y + 0 2y 2 y,8 3 y 4 + Actividd 39 Un fáric de empques

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas CAÍTULO Epresiones Algerics En Espñ, donde l influenci áre fue muy importnte, surgió el término álger, se utilizó pr referirse l rte de restituir su lugr los huesos dislocdos y por ello, el término lgerist

Más detalles

2 Números racionales positivos

2 Números racionales positivos Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

INTRODUCCIÓN AL ÁLGEBRA (TÉRMINOS, ADICIÓN Y SUSTRACCIÓN)

INTRODUCCIÓN AL ÁLGEBRA (TÉRMINOS, ADICIÓN Y SUSTRACCIÓN) Lortorio Tercero Básico Centro Integrl Empresril por Mdurez CIEM INTRODUCCIÓN AL ÁLGEBRA (TÉRMINOS, ADICIÓN Y SUSTRACCIÓN). Identific los elementos que se piden: ) Los términos de 5r +s ) Los términos

Más detalles

Integración de funciones racionales

Integración de funciones racionales Integrción de funciones rcionles P() Se l integrl d donde P() y Q() son funciones polinómics. Si el grdo P() Q() se Q() divide P() entre Q() medinte el método de l cj y se otiene un cociente () y un resto

Más detalles

Fracciones algebraicas

Fracciones algebraicas Frcciones lgerics L histori del número irrcionl "" = 3.459653589793... Los ntiguos le dn un vlor de 3 con lo que errn en un 5 %; Arquímedes le dio el vlor, los chinos en el 7 siglo I le signron el vlor

Más detalles

Cálculo del valor decimal de una fracción Para obtener el valor de una fracción se divide el numerador entre el denominador. 2 5

Cálculo del valor decimal de una fracción Para obtener el valor de una fracción se divide el numerador entre el denominador. 2 5 LECCIÓN : FRACCIONES.- QUÉ ES UNA FRACCIÓN? UNA FRACCIÓN ES...... L epresión un prte un cntidd enter. Términos un frcción: DENOMINADOR: Es el número que se coloc bjo l r frcción e indic el número totl

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f.

La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f. CAPÍTULO L integrl.6 Propieddes fundmentles de l integrl En est sección presentmos lguns propieddes ásics de l integrl que fcilitn su cálculo. Aditividd respecto del intervlo. Si < < c, entonces: f./ d

Más detalles

GUIA DE MATEMATICA. Coeficiente numérico. Es toda combinación de números y letras ligados por los signos de las operaciones aritméticas.

GUIA DE MATEMATICA. Coeficiente numérico. Es toda combinación de números y letras ligados por los signos de las operaciones aritméticas. www.colegiosntcruzrioueno.cl Deprtmento de Mtemátic GUIA DE MATEMATICA Unidd: Álger en R Contenidos: - Conceptos lgericos ásicos - Operciones con epresiones lgerics - Vlorción de epresiones lgerics - Notción

Más detalles

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I CURSO DE NIVELACIÓN 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I. Con relción l potencición, se firm que es un operción: ) Conmuttiv. ) Distriutiv respecto l sum. 3) Distriutiv

Más detalles

TEMA 0: CONCEPTOS BÁSICOS.

TEMA 0: CONCEPTOS BÁSICOS. TEMA : CONCEPTOS BÁSICOS.. Intervlos:. Intervlos. 2. Propieddes de ls potencis.. Propieddes de los rdicles. Operciones con rdicles. Rcionlizción. 4. Conceptos de un polinomio. Fctorizción de polinomios..

Más detalles

Módulo 12 La División

Módulo 12 La División Módulo L División OBJETIVO: Epresrá lguns propieddes de l división usndo propieddes de l división los inversos; epresr un numero rcionl de l form deciml frcción común vicevers. L división es un operción

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor :

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor : RESUMEN 01 NÚMEROS Nomre : Curso : Profesor : PÁGINA 1 Números Los elementos del conjunto N = {1, 2, 3, 4, 5, } se denominn Números Nturles. Los Números Crdinles corresponden l unión del conjunto de los

Más detalles

Capitulo II. Números Reales

Capitulo II. Números Reales Cpitulo II. Números Reles Ojetivo. El lumno plicrá ls propieddes de los números reles y sus suconjuntos, pr demostrr lguns proposiciones por medio del método de inducción mtemátic y pr resolver inecuciones.

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

GUIA Nº: 7 PRODUCTOS NOTABLES

GUIA Nº: 7 PRODUCTOS NOTABLES CORPORACION UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR CUN DEPARTAMENTO DE INGENIERIAS Y CIENCIAS BÁSICAS FUNDAMENTOS DE MATEMATICAS PRODUCTOS NOTABLES Y FACTORIZACION GUIA Nº: 7 PRODUCTOS NOTABLES Productos

Más detalles

PLAN DE ESTUDIO DE MATEMÁTICA

PLAN DE ESTUDIO DE MATEMÁTICA PLAN DE ESTUDIO DE MATEMÁTICA 2 3 RÉGIMEN DE CORRELATIVIDADES UNIDADES Pr cursr debe tener Pr creditr debe tener Año CURRICULARES Regulrizd Aprobd Regulrizd Aprobd P R I M E R O Pedgogí Alfbetizción Acdémic

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS CÓMO ESTAMOS EN EL TEMA? 1. Enunci verlmente ls siguientes epresiones lgerics: ) - : "L diferenci entre un número " ) c) + 8 d) t + 9 e) t f) - g) h) z i) 1 j) k) ( - ) l) ( + ).

Más detalles

Curso de Ambientación para Alumnos Ingresantes Ingeniería Agronómica

Curso de Ambientación para Alumnos Ingresantes Ingeniería Agronómica 06 MATEMÁTICA Curso de Amientción pr Alumnos Ingresntes Ingenierí Agronómic Bienvenidos Éste es nuestro primer contcto trvés de él desemos drte l ienvenid nuestr Fcultd de Ciencis Agropecuris en prticulr

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1 el log de mte de id: Mtemátics I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores de l incógnit (o

Más detalles

Módulo 14 Multiplicación de expresiones algebraicas. Exponentes

Módulo 14 Multiplicación de expresiones algebraicas. Exponentes Módulo 14 Multiplicción de expresiones lgebrics. Exponentes OBJETIVO: Identificr potenci, bse exponente de un expresión lgebric. Multiplicr dividir polinomios. Recordemos lguns definiciones básics. Un

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

UNIDAD III INECUACIONES

UNIDAD III INECUACIONES Licencitur en Administrción Mención Gerenci y Mercdeo UNIDAD III INECUACIONES Elordo por: Ing. Ronny Altuve Rg, Esp. Ciudd Ojed, mrzo de 2017 Universidd Alonso de Ojed s reles Los números que están ordendos

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

FICHA 1 3/2008. Propiedades Adición (+) Multiplicación (. ) Conmutativa A1 a + b = b + a M1 a.b =b.a

FICHA 1 3/2008. Propiedades Adición (+) Multiplicación (. ) Conmutativa A1 a + b = b + a M1 a.b =b.a FICHA 1 3/2008 Existe un conjunto de números llmdos reles en el que están definids 2 operciones: Adición (+) y multiplicción (.). Est estructur se indic sí: (R, +,. ) (Axiom de Cuerpo) Sen, b y c reles

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Multiplicar y dividir radicales

Multiplicar y dividir radicales Multiplicr y dividir rdicles 1 Repso Simplificr: 000 4 0 18 1000 4 4 4 10 4 0 0 ( ( ) 0 8) 0 0 0 8 Multiplicción de rdicles Si y son números reles, n n n n n Podemos decir que cundo multiplicmos rdicles

Más detalles

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida»

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida» 73 ESO dí. «El que pregunt lo que no se es ignornte un El que no lo pregunt será ignornte tod l vid» E = m c ÍNDICE: MENSAJES OCULTOS 1. EXPRESIONES ALGEBRAICAS. VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA

Más detalles

Potencias y radicales

Potencias y radicales CUADERNO Nº Potencis y rdicles Es necesrio que repsemos ls propieddes de ls potencis. En l escen puedes bordr este repso y ver múltiples ejemplos de cd propiedd. Complet l siguiente tbl: Propiedd (Complet

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1 el de mte de id: Mtemátics Aplicds ls Ciencis Sociles I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documento es de distriución grtuit y lleg grcis Cienci temátic www.ciencimtemtic.com El myor portl de recursos eductivos tu servicio! www.ciencimtemtic.com ATRICES Definición: Un mtriz A, es un rreglo

Más detalles

Clase 2: Expresiones algebraicas

Clase 2: Expresiones algebraicas Clse 2: Expresiones lgebrics Operr expresiones lgebrics usndo ls propieddes lgebrics de ls operciones sum y producto, propieddes de ls potencis, regls de signos y préntesis. Evlur expresiones lgebrics

Más detalles

UNIDAD 2: POLINOMIOS Y FRACCIONES ALGEBRAICAS

UNIDAD 2: POLINOMIOS Y FRACCIONES ALGEBRAICAS I.E.S. Rmó Girldo UNIDAD : POLINOMIOS Y FRACCIONES ALGEBRAICAS. POLINOMIOS Poliomios e u idetermid L epresió lgeric... 0 recie el omre de poliomio e l idetermid. Dode: es u úmero turl.,..., 0 so úmeros

Más detalles

El grado de un polinomio es el grado del monomio de mayor grado de los que lo forman.

El grado de un polinomio es el grado del monomio de mayor grado de los que lo forman. Lección 7:POLINOMIOS 7.- POLINOMIOS TÉRMINOS DE UN POLINOMIO Son cd uno de los monomios que formn un polinomio. Se identificn con l epresión término en (l prte literl que lo form). -6 se llmn términos

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando: Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21 TEMA. NÚMEROS REALES SOLUCIONES DE LAS ACTIVIDADES Págs. Págin. Actividd personl, por ejemplo:,...,...,...,9...,8.... ) No, pues un deciml puede tener un número limitdo de cifrs o ser periódico. Por ejemplo,,

Más detalles

INDICADORES DE DESEMPEÑO

INDICADORES DE DESEMPEÑO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8º A/B Julio de 0 módulos

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer emen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, eplicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

Aplicando las propiedades conocidas de las operaciones entre número reales, obtenemos:

Aplicando las propiedades conocidas de las operaciones entre número reales, obtenemos: Curso de Nivelción en Mtemátic Ecuciones Un prolem de ingenio frecuente es: Pensr un número. Sumrle 5. Multiplicr por el resultdo. A lo que se otiene, restrle 9. Dividirlo por. Restrle 8. ECUACIONES Si

Más detalles

NÚMEROS RACIONALES ABSOLUTOS

NÚMEROS RACIONALES ABSOLUTOS NÚMEROS RACIONALES ABSOLUTOS Frcción: es un pr ordendo de números nturles con l segund componente distint de cero. (, ) pr ordendo frcción es un frcción N N EQUIVALENCIA DE FRACCIONES * Frcciones diferentes,

Más detalles

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales.

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales. Fich Técnic Conjuntos numéricos Intervlos Operciones en el conjunto de números reles Índice de tems: Conjuntos numéricos Intervlos Operciones y propieddes Módulo o vlor bsoluto de un número rel Conjuntos

Más detalles

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a Resuelve ls siguientes ecuciones: 4 5 = 0 0 + 6 = 0 0 + 0 = 0 = 0 Hll el vlor de los siguientes determinntes de orden 4: 0 0 0 0 0 0 4 0 0 5 4 0 0 6 0 5 Clcul el vlor de los siguientes determinntes: 0

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

RECUPERACIÓN DE MATEMÁTICAS 1ª EVALUACIÓN. 4º DE ESO

RECUPERACIÓN DE MATEMÁTICAS 1ª EVALUACIÓN. 4º DE ESO RECUPERACIÓN DE MATEMÁTICAS ª EVALUACIÓN. 4º DE ESO TEMA ª.- Nos dicen que l medid de un cmpo de form rectngulr es de 4,6 m de lrgo por 8,4 m de ncho. Sin embrgo, no estmos seguros de que ls cifrs decimles

Más detalles

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012.

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012. Artículo de sección Revist digitl Mtemátic, Educción e Internet www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

expresiones algebraicas, debemos de tener en consideración en el orden. Primero los signos, luego los coeficiente y por último las literales

expresiones algebraicas, debemos de tener en consideración en el orden. Primero los signos, luego los coeficiente y por último las literales Versión01. Divisiónlgeric Por:SndrElviPérezMárquez De l mism form que en l multiplicción, pr efectur l división de epresioneslgerics,deemosdetenerenconsiderciónenelorden. Primerolossignos,luegoloscoeficienteporúltimolsliterles

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE CIENCIAS ECONÓMICAS JURÍDICAS y SOCIALES DEPARTAMENTO DE CIENCIAS BASICAS AREA DE MATEMATICA

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE CIENCIAS ECONÓMICAS JURÍDICAS y SOCIALES DEPARTAMENTO DE CIENCIAS BASICAS AREA DE MATEMATICA UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE CIENCIAS ECONÓMICAS JURÍDICAS SOCIALES DEPARTAMENTO DE CIENCIAS BASICAS AREA DE MATEMATICA UNIDAD Nº. NÚMEROS REALES. UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD

Más detalles

MATEMÁTICAS B Curso º de E.S.O

MATEMÁTICAS B Curso º de E.S.O MATEMÁTICAS B Curso - º de E.S.O Cálculo de proiliddes Estdístic L Dirección Generl de tráfico h recogido l siguiente informción reltiv l número de mults diris impuests por eceso de velocidd en cierto

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Problemas resueltos. Parte teórica. Y esto es justamente el resultado obtenido en primer lugar pero de manera algebraica. Atención a lo siguiente!

Problemas resueltos. Parte teórica. Y esto es justamente el resultado obtenido en primer lugar pero de manera algebraica. Atención a lo siguiente! Productos Notles I Atención lo siguiente! Si nos piden multiplicr: ( + )( + ) otendremos: ( + )( + ) = + + + o se: ( + ) = + + Lo nterior, es un resultdo otenido lgericmente l multiplicr dos inomios. Sin

Más detalles

Una identidad es una igualdad algebraica que es cierta para valores cualesquiera de las letras que intervienen. una identidad?

Una identidad es una igualdad algebraica que es cierta para valores cualesquiera de las letras que intervienen. una identidad? 3 3.5. Identiddes notles Un identidd es un iguldd lgeric que es ciert pr vlores culesquier de ls letrs que intervienen. 37. Es l iguldd 3x 7x x 9x un identidd? 40. Determin si lgun de ls siguientes igulddes

Más detalles

ÁLGEBRA: Propiedades para la Simplificación

ÁLGEBRA: Propiedades para la Simplificación Sludmed 016, por Prof. Edgr Loptegui Corsino ( http://www.sludmed.com/ ), se encuentr bjo un licenci CC: Cretive Commons : Atribución-No Comercil-Sin Derivds 3.0 PR: http://cretivecommons.org/licenses/by-nc-nd/3.0/pr/

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn TE trices TRICES. DEFINICIÓN. Un mtriz de m fils n columns es un serie ordend de m n números ij, i,,...m; j,,...n, dispuestos en fils columns, tl como se indic continución:... n... n............ m m m...

Más detalles

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE:

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE: IES Fernndo de Herrer Curso 01 / 1 Primer trimestre º ESO 16 de octubre de 01 Números reles. Potencis rdicles NOMBRE: 1) ) Representr en un mism rect rel: 1 9 1/ 0 1 Decir qué números representn b: 0 1

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles