El espacio R n. Tema El conjunto R n El espacio vectorial R n

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El espacio R n. Tema El conjunto R n El espacio vectorial R n"

Transcripción

1 Tema 1 El espacio R n En este primer tema de la asignatura recordaremos algunos conceptos ya estudiados acerca del conjunto R n y las estructuras sobre él definidas. Se presentarán por tanto bastantes contenidos de una manera muy sintetizada, y por esta razón estas notas serán, para este Tema, especialmente sucintas. 1.1 El conjunto R n R n = R... R = {x 1,..., x n / x i R, i = 1,..., n} El espacio vectorial R n En R n se definen de manera natural las operaciones: Suma: + x 1,..., x n + x 1,..., x n = x 1 + x 1,..., x n + x n Producto por escalares: R λ x 1,..., x n = λx 1,..., λx n Con estas dos definiciones el conjunto: R n, +, R tiene estructura de espacio vectorial real de dimensión n. Por el Teorema de la Base, todas las bases de R n tienen n vectores y todo vector de R n tiene por tanto n coordenadas en cada base. B = { e 1, 2,..., e n } v R n, v = x 1,..., x n v = α 1 e α n e n α 1,..., α n B 1

2 2 CÁLCULO / INGENIERO GEÓLOGO / TEMA 1 En particular se llama base canónica de R n a la única base B c = { u 1,..., u n }, en la que las componentes de cualquier vector de R n coinciden con sus coordenadas con respecto a dicha base: v = x 1,..., x n = x 1 u x n u n x 1,..., x n Bc y en consecuencia, la base canónica está formada por los vectores: u 1 = 1, 0,..., 0,..., u n = 0, 0,..., 0, 1 Ejemplo: Veamos un ejemplo concreto de diferentes bases y fórmulas del cambio de coordenadas para el caso particular del espacio R 2. Considemos la base B y la base canónica B c de R 2 : B = { e 1 = 1, 2, e 2 = 1, 1 }, B c = { u 1 = 1, 0, u 2 = 0, 1} Entonces todo vector v = x 1, x 2 tendrá coordenadas v = y 1 e 1 + y 2 e 2 y 1, y 2 B en la base B y, obviamente, coordenadas x 1, x 2 en la base canónica. Con un breve cálculo se encuentran las fórmulas de cambio de base que relacionana unas coordenadas con las otras: { x 1 = y 1 y 2 x 2 = 2y 1 + y 2 o bien, en forma matricial: y 1 y 2 = x 1 x x 1 x 2 = y 1 y El espacio vectorial euclídeo R n De manera general se define un producto escalar en un espacio vectorial real V como toda aplicación de V V en R que asigna a cada par de vectores v 1, v 2 un número real v 1 v 2, de tal forma que se verifiquen las propiedades: 1. v 1 v 2 = v 2 v 1, v 1, v 2 V. 2. λ v 1 + µ v 2 v 3 = λ v 1 v 3 + µ v 2 v 3, v 1, v 2, v 3 V, λ, µ R 3. v v 0, v V, y v v = 0 v = 0. Un espacio vectorial euclídeo es un espacio vectorial dotado de un producto escalar. Producto escalar en R n En el espacio R n se define el producto escalar estándar de la siguiente forma: v v = x 1,..., x n x 1,..., x n = x 1 x x n x n

3 CÁLCULO / INGENIERO GEÓLOGO / TEMA 1 3 Es evidente que esta definición verifica las propiedades antes comentadas y por tanto R n, +, R, es un espacio vectorial euclídeo. Ortogonalidad. Dos vectores de un espacio vectorial euclídeo son ortogonales si su producto escalar es nulo. v, u, v 0, u 0 : v u = 0 v u Se dice que una base de R n es ortogonal si todos sus vectores son ortogonales dos a dos, es decir: B = { e 1,..., e n }, e i e j = 0, i j El espacio normado R n Es posible definir una norma en R n asociada al producto escalar de la forma: v = x 1,..., x n = + v v = + x x2 n De manera general un espacio normado es un espacio vectorial real V en el que se define una norma, es decir una aplicación de V en R, v v, tal que verifica las propiedades siguientes: v > 0, v 0, v V, y 0 = 0. λ v = λ v, λ R, v V. v 1 + v 2 v 1 + v 2, v 1, v 2 V. En este sentido, la norma asociada a un producto escalar no es más que una de las posibles normas que pueden definirse en un espacio vectorial euclídeo. En definitiva: R n, +, R, es un espacio vectorial normado. El concepto de norma permite definir vector unitario como aquél que tiene norma igual a uno. Se dice que una base de un espacio vectorial es ortonormal si es ortogonal y además todos sus vectores son unitarios. Es evidente que la base canónica de R n es una base ortonormal. Otro concepto que es posible definir a partir de la norma es el de ángulo entre dos vectores, se trata del número real θ [0, π] que verifica la ecuación: v u = v u cos θ Esta fórmula permite interpretar el producto escalar en términos de las proyecciones de un vector sobre otro ver problemas.

4 4 CÁLCULO / INGENIERO GEÓLOGO / TEMA El espacio afín R n Es posible tomar en R n una estructura de espacio afín considerando el propio R n como el conjunto de puntos, y también como el espacio vectorial de direcciones. De manera natural el punto origen será 0 0,..., 0. De esta manera para cada dos puntos P y Q se define de manera única el vector P Q: P x 1,..., x n, Q y 1,..., y n P Q = y 1 x 1,..., y n x n verificándose trivialmente las propiedades que definen la estructura de espacio afín. Lógicamente, estas definiciones permiten la identificación natural entre un punto P x 1,..., x n y el vector OP = x1,..., x n. Consideraremos de manera habitual el sistema de referencia dado en R n por el origen y la base canónica del espacio vectorial R n, es decir: R = {O; B c }, con 0 0,..., 0 y siendo B c la base canónica de R n. Evidentemente se trata de un sistema de referencia ortonormal El espacio euclídeo R n Finalmente dotaremos a R n de una estructura de espacio métrico por mnedio de la definición de una distancia. Distancia Euclídea. Se define la distancia euclíde en el espacio R n como la aplicación que asigna a cada par de puntos P y Q de R n la norma del vector asociado P Q: dp, Q = P Q = x 1 y x n y n 2 Al igual que ocurría con el concepto de norma, es posible dar una definición general de distancia en un conjunto, como toda aplicación d : A A R tal que verifique: 1. dp, Q = dq, P, P, Q A. 2. dp, Q 0, y dp, Q = 0 P = Q. 3. dp, Q + dq, R dp, R. Es trivial comprobar que la definición anterior cumple estas tres propiedades y en consecuencia R n, d es un espacio métrico, al que denominaremos Espacio Euclídeo. 1.2 Algunos sistemas de coordenadas Para finalizar este tema introductorio repasaremos algunos de los sistemas de coordenadas más habituales en los espacios R 2 y R 3.

5 CÁLCULO / INGENIERO GEÓLOGO / TEMA Sistemas de coordenadas en R 2 Usaremos la identificación natural entre los elementos de R 2 y los puntos del plano, fijando para ello unos ejes cartesianos. De esta forma, cada punto del plano queda determinado por sus coordenadas cartesianas o rectangulares x, y. Coordenadas Polares. Las coordenadas polares r, θ de un punto P x, y se definen mediante las fórmulas de transformación: } x = r cos θ r = + } x, 2 + y 2 y = r sen θ θ = arctan y x r 0,, θ [0, 2π. El origen de coordenadas, 0, 0 no está bien definido en coordenadas polares, pues obviamente se corresponde con r = 0, θ. Coordenadas Elípticas. Fijado un número real c > 0, definimos las distancias desde un punto cualquiera P x, y a los puntos c, 0 y c, 0: r 1 = x c 2 + y 2, r 2 = x + c + y 2 Se definen entonces las coordenadas elípticas u, v del punto P mediante las fórmulas: } } u = 1 2 r 1 + r 2 x = 1 v = 1 2 r, c uv 2 r 1 y = ±1 c u 2 c 2 c 2 v 2 u c,, v c, c. Las coordenadas no están bien definidas en v = ±c y en u = c, que se corresponde con el eje de abscisas Sistemas de coordenadas en R 3 Partimos de las coordenadas cartesianas o rectangulares de un punto P x, y, z de R 3, y definiremos sus coordenadas cilíndricas y esféricas de la siguiente forma: Coordenadas Cilíndricas. x = r cos θ y = r sen θ z = z, r = + x 2 + y 2 θ = arctan y x z = z donde las nuevas coordenadas pertenecen a los intervalos siguientes: r 0,, θ [0, 2π, z R.

6 6 CÁLCULO / INGENIERO GEÓLOGO / TEMA 1 Coordenadas Esféricas. x = ρ sen ϕ cos θ y = ρ sen ϕ sen θ z = ρ cos ϕ, ρ = + x 2 + y 2 + z 2 θ = arctan y x z ϕ = arccos x 2 +y 2 +z 2 con ρ 0,, θ [0, 2π, ϕ 0, π. A veces las coordenadas esféricas se definen de forma ligeramente distinta: x = ρ cos ϕ cos θ y = ρ cos ϕ sen θ z = ρ sen ϕ, ρ = + x 2 + y 2 + z 2 θ = arctan y x z ϕ = arcsen x 2 +y 2 +z 2 ρ 0,, θ [0, 2π, ϕ π 2, π 2.

Sistemas de Coordenadas

Sistemas de Coordenadas C.U. UAEM Valle de Teotihuacán Licenciatura en Ingeniería en Computación Sistemas de Coordenadas Unidad de Aprendizaje: Fundamentos de Robótica Unidad de competencia V Elaborado por: M. en I. José Francisco

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

Tema 3.2. Espacio afín eucĺıdeo. Problemas métricos

Tema 3.2. Espacio afín eucĺıdeo. Problemas métricos Tema 3.2. Espacio afín eucĺıdeo. Problemas métricos Definición: Un espacio afín es una terna A = (P, V, f) en la que P es un conjunto no vacío, V un espacio vectorial de dimensión finita sobre un cuerpo

Más detalles

Geometría Analítica II; Grupo Guía para el primer examen parcial ( significa: ejercicio opcional) 4 + 2) 3.4) x + 4y 3 = 0 (0, 2) (3, 2) (1, 3)

Geometría Analítica II; Grupo Guía para el primer examen parcial ( significa: ejercicio opcional) 4 + 2) 3.4) x + 4y 3 = 0 (0, 2) (3, 2) (1, 3) Geometría Analítica II; Grupo 4083. Guía para el primer examen parcial significa: ejercicio opcional) ESPACIOS EUCLIDIANOS 1. SeaR n = {x 1, x,..., x n ) x i R i {1,,..., n}} el conjunto de todas las n-ádas

Más detalles

Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R.

Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R. ÁLGEBRA Práctica 13 Espacios afines E 2 y E 3 (Curso 2004 2005) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = {O, ē 1, ē 2, ē 3 } y R = {P, ū 1, ū 2, ū 3 }, donde

Más detalles

VECTORES. A cada clase de vectores equipolentes se denomina vector libre.!

VECTORES. A cada clase de vectores equipolentes se denomina vector libre.! VECTORES Vectores libres del plano Definiciones Sean A y B dos puntos del plano de la geometría elemental. Se llama vector AB al par ordenado A, B. El punto A se denomina origen y al punto B extremo. (

Más detalles

SECRETARÍA DE EDUCACIÓN PÚBLICA DIRECCIÓN GENERAL DE EDUCACIÓN SUPERIOR TECNOLÓGICA INSTITUTO TECNOLÓGICO DE VERACRUZ. Carrera: Ingeniería Mecatrónica

SECRETARÍA DE EDUCACIÓN PÚBLICA DIRECCIÓN GENERAL DE EDUCACIÓN SUPERIOR TECNOLÓGICA INSTITUTO TECNOLÓGICO DE VERACRUZ. Carrera: Ingeniería Mecatrónica SECRETARÍA DE EDUCACIÓN PÚBLICA DIRECCIÓN GENERAL DE EDUCACIÓN SUPERIOR TECNOLÓGICA INSTITUTO TECNOLÓGICO DE VERACRUZ Carrera: Ingeniería Mecatrónica Materia: Robótica Titular de la materia: Dr. José Antonio

Más detalles

Cálculo diferencial e integral 3

Cálculo diferencial e integral 3 Cálculo diferencial e integral 3 Guía 1 1. Sean a 1,..., a n R n. Demuestra que el conjunto { W = x = (x 1,..., x n ) R n es un subespacio vectorial de R n. } n a i x i = 0 i=1 2. Sean W y V subespacios

Más detalles

ACTIVIDADES GA ACTIVIDAD

ACTIVIDADES GA ACTIVIDAD ACTIVIDADES GA ACTIVIDAD 1: (Mié-12-Feb-14) a) Conteste Qué es y para qué sirve un Sistema de referencia? b) Conteste Qué es y para qué sirve un Sistema de coordenadas? c) Conteste Es lo mismo 'sistema

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el

Más detalles

Espacios con producto interno

Espacios con producto interno Espacios con producto interno. En el espacio vectorial R con el producto interno euclideano, calcule: a) < (,, ), (,, )> b) (7,, ) (7,, ) c) d) î ĵ e) (v, v, v ) (w, w, w ) f) ( î ĵ)

Más detalles

Objetivos III.1. NORMA VECTORIAL

Objetivos III.1. NORMA VECTORIAL ema III NORMAS VECORIALES Y PRODUCO ESCALAR Objetivos Generalizar conceptos como el de norma de un vector distancia ortogonalidad ángulo entre dos vectores. En este capítulo el cuerpo K de escalares será

Más detalles

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Más detalles

El grupo lineal proyectivo. Homologías. Afinidades.

El grupo lineal proyectivo. Homologías. Afinidades. Tema 3- El grupo lineal proyectivo Homologías Afinidades 31 El grupo lineal proyectivo Recordamos que en el tema anterior hemos definido, para una variedad lineal proyectiva L P n no vacía, el grupo lineal

Más detalles

Física para Ciencias: Vectores y Sistemas de Referencia

Física para Ciencias: Vectores y Sistemas de Referencia Física para Ciencias: Vectores y Sistemas de Referencia Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Magnitudes Físicas Escalares: definidos por un número Ej.: masa, tiempo, presión, temperatura,

Más detalles

Tema 6: Espacios euclídeos

Tema 6: Espacios euclídeos Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 6: Espacios euclídeos Ejercicios 1 Demuestra que la aplicación < A, B >= traza(ab t ), A, B M m n (R), es un producto escalar sobre

Más detalles

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que

Más detalles

Apellidos: Nombre: NIF:

Apellidos: Nombre: NIF: Universidad de Oviedo EPS de ingeniería de Gijón Dpto. Matemáticas Algera Lineal 4//8 Segunda parte Apellidos: Nomre: NIF: Ejercicio puntos) Se considera la aplicación lineal f : R R [x] definida como

Más detalles

or t o G o n a l i d a d y

or t o G o n a l i d a d y Unidad 6 or t o G o n a l i d a d y o r t o n o r M a l i d a d Objetivos: Al inalizar la unidad, el alumno: Determinará cuándo un conjunto de vectores es ortogonal u ortonormal. Obtendrá las coordenadas

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

EL ESPACIO AFÍN EUCLIDEO

EL ESPACIO AFÍN EUCLIDEO EL ESPACIO AFÍN EUCLIDEO DEFINICIÓN: Dado el Espacio Afín donde es el espacio ordinario, es el espacio de los vectores libres y f es la aplicación que a cada par de puntos (A,B) asocia el vector libre.

Más detalles

Espacio Euclídeo. a b = a b. a b = b a c)

Espacio Euclídeo. a b = a b. a b = b a c) .- Un hiperplano de R es: a) Una recta. b) Un plano. c) {0}..- Sean a y b dos vectores de R, si a es ortogonal a b, entonces: a) a b = 0 b) a b = b a c) a b = a b.- Sea F una recta vectorial de R y F un

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante.

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante. Problemas 1.5 Un campo vectorial está dado por G = 24xy + 12(x 2 + 2) + 18z 2. Dados dos puntos, P(1, 2, - 1) y Q(-2, 1, 3), encontrar: a) G en P; b) un vector unitario en la dirección de G en Q; c) un

Más detalles

Tema 5: ESPACIOS VECTORIALES

Tema 5: ESPACIOS VECTORIALES Tema 5: ESPACIOS VECTORIALES EUCLÍDEOS Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles

Tema 1: Introducción y fundamentos matemáticos. Parte 4/4 Vectores en física II: Coordenadas y componentes

Tema 1: Introducción y fundamentos matemáticos. Parte 4/4 Vectores en física II: Coordenadas y componentes Tema 1: Introducción y fundamentos matemáticos ntonio González Fernández Departamento de Física plicada III Universidad de Sevilla Parte 4/4 Vectores en física II: Coordenadas y componentes plicaciones

Más detalles

Comenzaremos repasando la Fórmula de Taylor para funciones reales de una variable real.

Comenzaremos repasando la Fórmula de Taylor para funciones reales de una variable real. Tema 5 Aplicaciones 5.1 Introducción Dedicaremos este tema a estudiar algunas aplicaciones del Cálculo Diferencial en varias variables, particularmente la Fórmula de Taylor, el cálculo de extremos locales

Más detalles

Para poder desarrollar este tema, vamos a exponer inicialmente la teoría Recordaremos el Producto Escalar, Vectorial y Mixto. u, v, w V.

Para poder desarrollar este tema, vamos a exponer inicialmente la teoría Recordaremos el Producto Escalar, Vectorial y Mixto. u, v, w V. 1. Introducción. 1.1. Producto Escalar. 1.. Norma de un Vector. 1.3. Ángulos. 1.4. Ortogonalidad. 1.5. Particularización del Producto Escalar a V 3. 1.6. Producto Vectorial de dos Vectores de V 3. 1.7.

Más detalles

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de ( Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = 2 0 3 0 2. Calcule W = null(a 2I), W 2 = null(a 4I)

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

1 Los números complejos, operaciones y propiedades

1 Los números complejos, operaciones y propiedades TEMA 1 LOS NÚMEROS COMPLEJOS, ESTRUCTURA ALGEBRAICA TOPOLOGÍA 1 Los números complejos, operaciones y propiedades 11 El cuerpo C de los números complejos 1 El espacio vectorial normado de los números complejos

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,

Más detalles

INTRODUCCIÓN AL CÁLCULO VECTORIAL

INTRODUCCIÓN AL CÁLCULO VECTORIAL 1. INTRODUCCIÓN INTRODUCCIÓN AL CÁLCULO VECTORIAL Este capítulo es una revisión condensada de los principales conceptos del cálculo vectorial a modo de repaso de un tema que se supone más o menos conocido

Más detalles

Movimientos. Teorema de Cartan-Dieudonné. Semejanzas.

Movimientos. Teorema de Cartan-Dieudonné. Semejanzas. Capítulo 5 Movimientos. Teorema de Cartan-Dieudonné. Semejanzas. 5.1 Isometrías y movimientos Partimos de un espacio euclídeo (X, V, +) y recordemos que una isometría de V es un elemento ϕ Gl(V ) que conserva

Más detalles

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V.

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V. Capítulo 9 Variedades lineales Al considerar los subespacios de R 2, vimos que éstos son el conjunto {(0, 0)}, el espacio R 2 y las rectas que pasan por el origen. Ahora, en algunos contextos, por ejemplo

Más detalles

Gráficos por Computadora. MSC J. Fco. Jafet Pérez L. Conceptos Geométricos Sistemas de Coordenadas

Gráficos por Computadora. MSC J. Fco. Jafet Pérez L. Conceptos Geométricos Sistemas de Coordenadas Gráficos por Computadora MSC J. Fco. Jafet Pérez L. Conceptos Geométricos Sistemas de Coordenadas Sistema de coordenadas Es un sistema que utiliza uno o más números (coordenadas) para determinar unívocamente

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS . ESPACIO EUCLÍDEO. ISOMETRÍAS. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t R 4 : x y =, z + t = } Hallar: W 2 = L{(,, 2, 2, (,,, } a Las ecuaciones de

Más detalles

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie

Más detalles

MATERIA: MATEMÁTICAS II

MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

ESPACIOS EUCLÍDEOS EL PRODUCTO ESCALAR

ESPACIOS EUCLÍDEOS EL PRODUCTO ESCALAR Todos los derechos de propiedad intelectual de esta obra pertenecen en exclusiva a la Universidad Europea de Madrid, S.L.U. Queda terminantemente prohibida la reproducción, puesta a disposición del público

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal Básica - Grupo 3 Taller 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal Básica - Grupo 3 Taller 3 Universidad Nacional de Colombia Departamento de Matemáticas 2015555- Álgebra Lineal Básica - Grupo Taller (1) Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio

Más detalles

Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad

Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba, S. 2014. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative

Más detalles

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Definición 1. Sea V un espacio vectorial sobre un cuerpo K. Llamamos forma bilineal a toda aplicación f : V V K ( x, y) f( x, y) que verifica: 1. f(

Más detalles

CONTENIDO DE LA PARTE DEL ÁLGEBRA LINEAL

CONTENIDO DE LA PARTE DEL ÁLGEBRA LINEAL CONTENIDO DE LA PARTE DEL ÁLGEBRA LINEAL Versión preliminar D. Yakubovich (2018) En algunas ocasiones, damos referencias a las páginas del libro E. Hernández, Álgebra y geometría, segunda edición, Addison-Wesley/UAM,

Más detalles

Álgebra Lineal. Tema 11. El Teorema Espectral en R. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 11. El Teorema Espectral en R. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema. El Teorema Espectral en R Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Índice

Más detalles

EL ESPACIO VECTORIAL EUCLIDEO

EL ESPACIO VECTORIAL EUCLIDEO EL ESPACIO VECTORIAL EUCLIDEO PRODUCTO ESCALAR Sean dos vectores del espacio V 3. Llamamos producto escalar de dichos vectores, y se denota, al número real que se obtiene al multiplicar sus módulos por

Más detalles

E E V (P, Q) v = P Q AA + AB = AB AA = 0.

E E V (P, Q) v = P Q AA + AB = AB AA = 0. Espacios afines. 1 Definición y propiedades. Definición 1.1 Sea E un conjunto no vacío. Se dice que E está dotado de estructura de espacio afín asociado a un espacio vectorial V, si existe una aplicación:

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja. Beatriz Graña Otero 5 de Diciembre de 8 B.G.O. 47.- Sobre el R-espacio vectorial E de dimensión 4, sea la métrica cuya matriz asociada a la base B = {e, e, e, e 4

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 6 de Junio de 7 Primera parte Ejercicio. Determinar los puntos de máxima y mínima pendiente de la gráfica de la función y = +x, x. Solución.

Más detalles

El espacio euclídeo El espacio vectorial R n. Definición. Conjunto de todas las n-uplas de números reales:

El espacio euclídeo El espacio vectorial R n. Definición. Conjunto de todas las n-uplas de números reales: Lección 1 El espacio euclídeo 1.1. El espacio vectorial R n Definición. Conjunto de todas las n-uplas de números reales: R n = {(x 1,x 2,...,x n ) : x 1,x 2,...,x n R} Nos interesan los casos n = 2 y n

Más detalles

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo:

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo: TEMA 10: VECTORES EN EL ESPACIO. 10.1 Vectores fijos y libres en el espacio vectorial. 10. Operaciones con vectores libres. Bases del espacio vectorial. 10.3 Producto escalar. Módulo y ángulo de vectores.

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Capítulo 4 Espacios vectoriales reales. 4.1 Espacios vectoriales. Definición 86.- Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe

Más detalles

Aplicaciones lineales (Curso )

Aplicaciones lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones lineales (Curso 2004 2005) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4 Universidad Nacional de Colombia Departamento de Matemáticas - Álgebra Lineal - Grupo Taller () Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio vectorial?

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO 1 El plano vectorial Consideremos P como el plano intuitivo de puntos: A,B,C... 1.1. El espacio vectorial de los vectores Definición 1.1 Vectores fijos Dado dos puntos cualesquiera A e B del espacio

Más detalles

TEMA 4 VECTORES VECTORES TEMA 4. 1.º BACHILLERATO - CIENCIAS VECTOR FIJO. VECTOR LIBRE. SUMA DE VECTORES LIBRES

TEMA 4 VECTORES VECTORES TEMA 4. 1.º BACHILLERATO - CIENCIAS VECTOR FIJO. VECTOR LIBRE. SUMA DE VECTORES LIBRES TEMA 4 VECTORES VECTOR FIJO. VECTOR LIBRE. Un ector fijo en IR 2 está determinado por dos puntos A y B, llamados respectiamente, origen y extremo del ector. Su representación gráfica es una flecha que

Más detalles

7 Aplicaciones ortogonales

7 Aplicaciones ortogonales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial

Más detalles

Trabajo Práctico N 4: I) VECTORES EN R 2 Y R 3

Trabajo Práctico N 4: I) VECTORES EN R 2 Y R 3 Trabajo Práctico N 4: I) VECTORES EN R Y R Ejercicio 1: Las fuerzas que actúan en un cuerpo se localizan en un plano, entonces se pueden representar mediante elementos de R. Determine la fuerza que hay

Más detalles

Puntos y Vectores. 16 de Marzo de 2012

Puntos y Vectores. 16 de Marzo de 2012 Geometría en Puntos y Vectores Universidad Autónoma Metropolitana Unidad Iztapalapa 16 de Marzo de 2012 Introducción En Geometría analítica plana las relaciones y las propiedades geométricas se expresan

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

ESPACIO VECTORIAL EUCLÍDEO

ESPACIO VECTORIAL EUCLÍDEO ESPACIO VECTORIAL EUCLÍDEO PRODUCTO ESCALAR Sea V un espacio vectorial sobre C. Una aplicación que asocia un número complejo < u, v > a cada pareja de vectores u y v en V, se dice que es un producto escalar

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por

Más detalles

Tema 5: Espacios Eucĺıdeos.

Tema 5: Espacios Eucĺıdeos. Espacios Euclídeos 1 Tema 5: Espacios Eucĺıdeos. 1. Producto escalar. Espacios eucĺıdeos. Definición. Sea E un R-espacio vectorial y sea f : E E R una forma bilineal simétrica. Se dice que f es un producto

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Estática Profesor Herbert Yépez Castillo

Estática Profesor Herbert Yépez Castillo Estática 2015-2 Profesor Herbert Yépez Castillo Introducción 2.1 Escalares y vectores 2.2 Operaciones vectoriales 2.3 Suma vectorial de fuerzas 2.4 Suma de sistema de fuerzas coplanares 2.5 Vectores cartesianos

Más detalles

Índice. Funciones de varias variables reales I Espacios normados. Revisando con perspectiva. Se puede hacer de forma más general?

Índice. Funciones de varias variables reales I Espacios normados. Revisando con perspectiva. Se puede hacer de forma más general? Índice Funciones de varias variables reales I Espacios normados José Manuel Mira Departamento de Matemáticas Universidad de Murcia Grado en Matemáticas 2013-2014 (18-09-2013) 1 Espacios normados. El espacio

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2016 2017) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = {(1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

Soluciones Hoja Problemas Espacio Vectorial 05-06

Soluciones Hoja Problemas Espacio Vectorial 05-06 Soluciones Hoja Problemas Espacio Vectorial -6.- Se considera R con la suma habitual y con el producto por un escalar que se indica en los casos siguientes. Prueba que en ninguno de ellos, (R,, ) es espacio

Más detalles

Problemas de exámenes de Formas Bilineales y Determinantes

Problemas de exámenes de Formas Bilineales y Determinantes 1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base

Más detalles

Capítulo 1. Introducción al espacio de varias variables

Capítulo 1. Introducción al espacio de varias variables Capítulo 1. Introducción al espacio de varias variables 1.1. Vectores, producto escalar y distancias. 1.2. Conceptos métricos en el espacio eucĺıdeo. 1.3. Curvas y superficies de nivel. 1. Introducción

Más detalles

Otras distribuciones multivariantes

Otras distribuciones multivariantes Trabajo A Trabajos Curso -3 Otras distribuciones multivariantes Clase esférica de distribuciones en R p Definición. Dado un vector aleatorio X = X,..., X p t, se dice que se distribuye en la clase esférica

Más detalles

Interpretación proyectiva de propiedades euclídeas. Elementos

Interpretación proyectiva de propiedades euclídeas. Elementos Tema 9.- Interpretación proyectiva de propiedades euclídeas. Elementos de las cónicas y cuádricas euclídeas 9.1 El espacio euclídeo como subespacio del proyectivo. Consideramos el espacio euclídeo R n

Más detalles

1. Algunas deniciones y resultados del álgebra lineal

1. Algunas deniciones y resultados del álgebra lineal . Algunas deniciones y resultados del álgebra lineal Denición. (Espacio vectorial o espacio lineal sobre R) Un espacio vectorial o espacio lineal sobre el campo de los números reales, R, es un conjunto

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Tema 4: Vectores en el espacio.

Tema 4: Vectores en el espacio. Tema 4: Vectores en el espacio. Producto escalar, vectorial y mixto January 9, 2017 1 Vectores en el espacio Un vector jo en el espacio, AB, es un segmento orientado de origen A, y extremo B. Los vectores

Más detalles

Álgebra Lineal. Tema 12. Geometría de las transformaciones lineales en R

Álgebra Lineal. Tema 12. Geometría de las transformaciones lineales en R Álgebra Lineal Tema 12. Geometría de las transformaciones lineales en R Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 2009 Profesora Mariana Suarez PRACTICA N 7: SISTEMA COORDENADO TRIDIMENSIONAL. VECTORES. PRACTICA 7: Sistema coordenado

Más detalles

UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL

UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL 1. Definiciones básicas. UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL I. Sistemas homogéneos y subespacios de R n. (a) Para el sistema

Más detalles

Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26

Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26 Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del 2016 1 / 26 1 Subespacios y combinaciones lineales 2 Dependencia

Más detalles

TEMA 3: Funciones de varias variables: ĺımites y continuidad

TEMA 3: Funciones de varias variables: ĺımites y continuidad TEMA 3: Funciones de varias variables: ĺımites y continuidad Cálculo Ingeniero de Telecomunicación Cálculo () TEMA 3 Ingeniero de Telecomunicación 1 / 69 1 Funciones Elementales 2 El conjunto R n Estructuras

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

UNIVERSIDAD JOSE CARLOS MARIATEGUI CAPITULO 2 VECTORES

UNIVERSIDAD JOSE CARLOS MARIATEGUI CAPITULO 2 VECTORES CAPITULO 2 VECTORES 2.1 Escalares y Vectores Una cantidad física que pueda ser completamente descrita por un número real, en términos de alguna unidad de medida de ella, se denomina una cantidad física

Más detalles

Teorema 1 (Cambio de Variable en R n ).

Teorema 1 (Cambio de Variable en R n ). Vamos a estudiar en este segundo capítulo sobre los cambios de variable para funciones de varias variables, algunos de los más habituales: los cambios de coordenadas a coordenadas polares en el plano,

Más detalles

) + t( a 1 CILINDRO. = { P = Q( u) + ta / t! u! } Γ = Q F 1 ( u), F 2 ( u), F 3. Σ cil. ,a 3 ) / t! u! } ,a 2

) + t( a 1 CILINDRO. = { P = Q( u) + ta / t! u! } Γ = Q F 1 ( u), F 2 ( u), F 3. Σ cil. ,a 3 ) / t! u! } ,a 2 CILINDRO Conjunto de puntos en el espacio en donde se genera una superficie por una recta que se mantiene siempre paralela con respecto a otra, la cual pasa por una superficie plana contenida en alguno

Más detalles

Tema 3: Espacios eucĺıdeos

Tema 3: Espacios eucĺıdeos Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: mlserrano@uniovi.es Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 1/7 Sistemas de coordenadas

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 1/7 Sistemas de coordenadas Tema 1: Fundamentos Matemáticos Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla Parte 1/7 Sistemas de coordenadas Para identificar los puntos del espacio necesitamos

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO . PRODUCTO ESCALAR. ESPACIO EUCLÍDEO. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t) R 4 : x y =, z + t = } Hallar: W = L{(,,, ), (,,, )} a) Las ecuaciones

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Tema 4: FORMAS BILINEALES Y CUADRÁTICAS

Tema 4: FORMAS BILINEALES Y CUADRÁTICAS Tema 4: FORMAS BILINEALES Y CUADRÁTICAS Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles