Diagonalización de matrices

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Diagonalización de matrices"

Transcripción

1 Dgolzcó de mtrces L tldd de l dgolzcó de mtrces se obser e: Forms cdrátcs Sstems dámcos leles Aálss mltrdo E térmos geerles cosste e obteer mtrz dgol D prtr de mtrz A de tl mer qe D cosere ls propeddes de A. L mtrz D se obtee prtr del estdo de los lores y ectores propos. Exste mtrces qe o pede ser redcds form dgol pero sí otros tpos como so ls mtrces trglres y ls forms cócs de Jord. Los tems qe prtr de cá mos desrrollr so: Vlores y ectores propos Dgolzcó de mtrces Dgolzcó de mtrces smétrcs Mtrces trglres Forms cócs de Jord Vlores y ectores propos Vmos recordr prmero lgos coceptos Espco ectorl: U cojto V o cío tee estrctr de espco ectorl sobre cerpo K (cerpo de esclres) y lo deotmos por V(K) s se h defdo dos leyes de composcó: ) Ley de composcó ter (smbolzd por ) : VxV V tl qe pr cd pr de elemetos ( x y) VxV le hcemos correspoder elemeto de V qe escrbremos x y y sobre el qe se erfc l: Propedd Asoct: ( x y) z x ( y z) x y z V Exstec de Elemeto Netro: V / x V V x x V Exstec de Elemeto Smétrco: x V ( x) / x ( x) Propedd Comtt: x y y x x y V Co ests ctro propeddes el cojto V co l Ley de composcó ( V ) posee estrctr de grpo comtto. V

2 b) Ley de composcó exter (smbolzd por ) : KxV V tl qe pr cd pr ( α x) ( α K) ( x V ) le hcemos correspoder elemeto de V qe escrbremos α x erfcdo ls sgetes propeddes Sedo socts: α β K x V α( βx) ( αβ ) x Dstrbt respecto de esclres: α β K x V ( α β ) x αx βx Dstrbt de ectores: α K x y V α( x y) αx αy Elemeto etro: x V x x E geerl todo elemeto de espco ectorl se deom ector. El espco ectorl más tlzdo es el de R. Se R el cerpo de úmeros reles. El prodcto crteso de RxRxRxL xr ( eces) org R. U elemeto de este cojto será x ( x x L ) R dode x R. x R tee estrctr de espco ectorl s se cmple: ) L ley de composcó ter : R xr R ( x y) x y b) L ley de composcó exter : R xr R α R x R α α x x L x ) ( αx αx L x ) R ( α Se espco ectorl V(K) de dmesó ft. Se f edomorfsmo sobre V(K) f : V ( K) V ( K) Dremos qe el esclr K es lor propo o tolor del edomorfsmo f s exste l meos ector V (K) tl qe: f S deotmos l edomorfsmo f por l mtrz A es A Los ectores qe erfc o se llm toectores o ectores propos socdos L expresó se pede expresr [ ] A es sstem homogéeo pr qe teg solcó debemos desrrollr el [ A ] Det Al desrrollr el determte e obtedremos polomo crcterístco p ( ) L gldo cero el polomo tedremos l eccó crcterístc L Aplccó lel del espco ectorl e sí msmo

3 L solcó de l eccó crcterístc permte ecotrr los lores de qe hce qe p ( ). Estos lores de so los lores propos qe ssttdos e permte hllr los ectores propos. El polomo p () tedrá ríces (reles o mgrs) y por tto lores propos co lo cl el úmero de tolores cocde co el orde de l mtrz. Ejemplo Determr los lores y ectores propos socdos l mtrz A 8 A Debemos hllr el Det[ A ] qe drá orge l p () prtr del qe hllmos ls ríces crcterístcs de ls cles los tolores qe permtrá hllr los toectores p( ) ( )( b) L ( k) b L k L 8 A Det 8 [ A ] ( )( )( ) [ 8( ) ( ) 8( ) ] [ ] ( 8 )( ) 8 8 [ A ] Det polomo crcterístco de l mtrz A gldo cero el polomo teemos l eccó crcterístc mltplcdo por : pr hllr l solcó de est eccó debo fctorzr de modo qe ( )( )( ) b k ( ) sedo ( ) ríces crcterístcs de l mtrz A y ( ) El orde de l mtrz es el úmero de tolores es. los lores propos de A. Cómo hllr los ectores propos? Debe ssttrse cd lor propo hlldo e el sstem. Recordemos qe er A [ ]

4 8 x Pr 8 x De qí obteemos sstem de eccoes co cógts 8 8 () De l segd eccó obtego () Reemplzo e l tercer 8 Reemplzo este últmo resltdo e. El espco solcó de este sstem será Pr comprobr s estos so los lores del ector propo debe reemplzr los msmos e el sstem (). S se cmple qe tods ls eccoes se l l reemplzr los lores de y etoces este es el ector propo qe srge del tolor y será el prmer toector. Pr 8 x De qí obteemos sstem de eccoes co cógts Recerde qe tolor lor propo y lor crcterístco so sómos. De gl mer lo so toector ector propo y ector crcterístco.

5 8 8 (8) De l tercer eccó obtego (9) Reemplzo e l segd ( ) () Reemplzdo () e (9) ( ) () El espco solcó de este sstem será Pr 8 x De qí obteemos sstem de eccoes co cógts 8 9 () De l segd eccó obtego () Reemplzo e l tercer () co los resltdos de y se costrye el tercer ector propo

6 El espco solcó de este sstem será Obsere qe los lores de los ectores propos reemplzdos e el sstem qe les do orge erfc ls eccoes qe compoe el msmo. E resme los ectores propos so Srgdos de los lores propos perteecetes l mtrz A 8 Codcó ecesr y sfcete pr l dgolzcó Ddo edomorfsmo f sobre V (espco ectorl de dmesó ) s l mtrz qe lo represet e cert bse dgol los lores propos so los elemetos de s dgol prcpl y dch bse está formd por los ectores propos del edomorfsmo. L codcó ecesr y sfcete pr qe mtrz cdrd se dgolzble es qe exst bse del espco ectorl formd por ectores propos del edomorfsmo socdo l mtrz dd. Ddo edomorfsmo de V co mtrz socd A hemos de ecotrr ) Vlores propos de A b) Vectores propos socdos los lores propos Pr determr los tolores de A hemos de clclr ls ríces de l eccó Det A [ ] Pede ocrrr dos csos ) Vlores propos co orde de mltplcdd. Todos los lores propos so dsttos L. De este modo los sbespcos de ectores socdos cd lor propo so de dmesó y ddo qe los ectores propos L so depedetes formrá bse co lo qe l mtrz A es dgolzble. Orde de mltplcdd es l ctdd de eces qe el lor de lor propo se repte.

7 E coclsó: S ls ríces crcterístcs de mtrz A so tods dstts exste mtrz reglr P tl qe P AP es mtrz dgol D formd por los lores propos de A ) Vlores propos por orde de mltplcdd myor qe. Se los lores propos del edomorfsmo f sobre espco ectorl V(C) de cerpo C represetdo por l mtrz A e l bse B co orde de mltplcdd r dode p r co orde de mltplcdd r M co orde de mltplcdd M co orde de mltplcdd r p p () Ls dmesoes de los sbespcos socdos cd lor propo (deomdo erfc qe d r () Necestmos qe exst bse formd por ectores propos pr lo cl y debdo y l codcó ecesr y sfcete pr qe exst es qe d r L p () es decr l dmesó del sbespco debe cocdr co el orde de mltplcdd del lor propo. Pero los ectores propos socdos l tolor A so los qe erfc el sstem: [ A ] (8) y es edete qe pr qe l dmesó del sbespco socdo de ectores propos se r h de exstr r prámetros (cógts secdrs) e el sstem 8 co lo qe Rgo [ A ] r (9) por lo qe coclmos qe: L codcó ecesr y sfcete pr qe mtrz A se dgolzble es qe pr cd lor propo de orde de mltplcdd r se erfc qe Rgo[ A ] r L p () d ) j Por ejemplo l mtrz M tee tolores. El orde de mltplcdd pr el tolor es. Metrs qe el orde de mltplcdd pr el tolor es porqe exste dos tolores de gl lor. Vemos qe ps co el Rgo[ M ] pr y.

8 8 S M dode el rgo es porqe ( ) es decr dos colms de l mtrz so lelmete depedetes. El orde de l mtrz () (porqe es mtrz de x) El orde de mltplcdd e (r) r (porqe o hy otro tolor gl ) Etoces -r- Coclmos qe Rgo[ A ] r () S M dode el rgo es porqe l prmer y segd fl de l mtrz so gles co lo cl so lelmete depedetes. El orde de l mtrz () (porqe es mtrz de x) El orde de mltplcdd e (r) r (porqe hy otro tolor gl ) Etoces -r- Coclmos qe l gldd Rgo[ A ] r o se cmple porqe () Este últmo resltdo dc qe M o es dgolzble porqe los ectores propos o so Lelmete depedetes. Porqe l ser es decr lelmete depedetes por lo tto o se cmple qe L p S repetmos el procedmeto doptdo pr l mtrz M e l mtrz A defd l comezo eremos qe llegmos l coclsó de qe es dgolzble porqe tee lores propos dsttos etre sí qe d orge ectores propos lelmete depedetes. Dgolzcó de mtrz Dd mtrz A dremos qe es dgolzble s exste mtrz dgol D tl qe A y D se semejtes. Cómo obteemos l mtrz dgol? A y D so semejtes s exste mtrz C tl qe A C DC

9 9 Dd 8 A Co ríces crcterístcs ) ( ) ( ) ( Qe sgfc tolores Qe d orge los ectores propos lelmete depedetes Por lo tto l mtrz A es dgolzble. Debemos hllr AC C D dode C es l mtrz de ectores propos de A qe l dgolz. Dd AdjC C C C El determte de C es gl esto sgfc qe exste l ers de l mtrz C por lo qe podemos psr clclr l djt T T AdjC ) ( AdjC C C El cálclo de l mtrz dgol srge de 8 x x AC C D D x 8 L mtrz D (mtrz dgol de A) tee e l dgol prcpl los lores propos de l mtrz A.

10 Dgolzcó de mtrces smétrcs Hy mchs mtrces reles A qe o so dgolzbles. De hecho lgs de ells pede o teer gú lor propo rel. S A es mtrz rel smétrc. Tod ríz de s polomo crcterístco es rel. Estos d lgr ectores propos o los y ortogoles es decr el prodcto esclr de los ectores se l. De modo qe: se A mtrz rel smétrc exste mtrz ortogol P tl qe D P AP es dgol. Vemos por ejemplo l mtrz A qe tee los lores propos qe d orge los ectores propos Los ectores propos de mtrz smétrc so ortogoles es decr s prodcto esclr es cero. S ormlzmos los ectores propos ortogoles l mtrz dgol será l formd por los lores propos. Normlzr ector cosste e ddr cd elemeto del ector por l orm del ector ˆ l orm de ector es l ríz cdrd del cdrdo del ector. Pr los dos ectores propos hlldos e el ejemplo l orm es Al ormlzr mbos ectores teemos / / ˆ ˆ / / Los ectores propos ortogoles y ormlzdos de A form l mtrz P / / P / / L mtrz dgol de es qell qe srj de hcer P AP / / / / / D P AP x x / / / / Dode D es l mtrz dgol de A obted prtr de l mtrz P. Sedo P l mtrz de trsformcó de A hlld trés de l ormlzcó de ss ectores propos ortogoles.

11 L dferec e dgolzr mtrz A de smétrc es qe l mtrz de ectores propos srgd de smétrc debemos ormlzrlos pr obteer mtrz dgol co elemetos gles los lores propos. Sele ocrrr qe los lores propos o tee orde de mltplcdd gl etoces o tedrímos ectores ortogoles y por ede o hbrí depedec lel etre los ectores propos y o podrímos obteer l dgol. Ate est stcó lores propos co orde de mltplcdd myor qe se tlz el método de Grm-Schmdt pr el cl: s A es smétrc y de elemetos reles co k L ectores propos socdos l msmo lor propo de l mtrz A. Los ectores k k L L so ectores propos de A socdos l msmo lor propo. El método de Grm-Schmdt cosste e exgr los coefcetes k L qe se tles qe se ortogol se ortogol y y sí scesmete Por ejemplo l mtrz A tee los lores propos r r Pr [ ] [ ] x A A De qí obteemos sstem de eccoes co cógts De l prmer eccó obtego () Reemplzdo este resltdo e ls otrs dos eccoes se compreb qe se cmple l gldd de ls eccoes por lo tto est es l úc relcó posble qe solco el sstem de modo qe el espco solcó será β α β α pr clqer lor de β α De qí obteemos dos ectores propos hcedo

12 β α y lego β α Estos dos ectores resele el sstem pero o so ortogoles ddo qe s prodcto esclr o se l. Aplcdo el método de Grm-Schmdt mos determr prtr de otros dos ectores propos y qe se perpedclres etre sí. Pr ello se estblece mpoedo l codcó de qe se perpedclr ( ) s prodcto esclr debe ser cero por lo qe [ ] / ) ( De modo qe s reemplzdo / / / Pr erfcr qe bst co relzr el prodcto esclr Co lo qe coclmos qe y so ortogoles. Pr poder hllr bse ortoorml debemos ormlzrlos hcedo ˆ L orm de û será / / / ( / ) (/ ) Por lo tto / / / / / ˆ

13 ˆ () () ˆ Los ectores propos ortogoles ormlzdos so: ˆ y / / ˆ El tercer ector lo obteemos drectmete porqe el orde de mltplcdd del tolor es tedremos [ ] [ ] x A A De qí obteemos sstem de eccoes co cógts De l tercer eccó obtego () Reemplzdo este resltdo e l segd eccó ) ( Reemplzdo este últmo resltdo e () ) ( El ector propo socdo l tolor será α α α El tercer ector propo es ortogol pero es ecesro qe tmbé se orml por lo qe ˆ sedo L bse ortoorml será l formd por los ectores / / / / / / / / ˆ ˆ P

14 Form cóc de Jord Se U(K) espco ectorl y f edomorfsmo represetdo por l mtrz A e l bse cóc de dcho espco ectorl. Pede ocrrr qe l mtrz A o teg bse de ectores propos por lo tto o es semejte mtrz dgol pero pede serlo form cóc de Jord qe pede cosderrse cs como dgol. Etre l mtrz dgol y l form cóc de Jord se stú otro tpo de mtrces qe so ls trglres. Mtrces Trglres Se U(K) y A l mtrz de edomorfsmo e dcho espco ectorl. A es semejte mtrz trglr sí y solo s posee tolores e K. Pr obteer mtrz trglr se prte de mtrz de orde de l cl se obtee scess mtrces A de orde qe permte obteer l mtrz de pso P tl qe T P AP. Cómo hcemos? Hllmos el polomo crcterístco de l mtrz A y los tolores qe lo l. Ecotrmos ector propo co el qe rmmos mtrz P [ ] de b modo qe P A P A Lego psmos trbjr co A obteemos lor propo y ector propo socdo ell etoces P se rm co el ector propo y clqer otro úmero de modo qe teg b ers tl qe P A P A Lego se cosder A y se repte l opercó pero co orde meor L mtrz P se determ hcedo P P x x x L P P P L mtrz trglr bscd será T P AP Retomemos l mtrz M pr l cl hbímos hlldo lores propos y sedo el tolor co orde de mltplcdd. Pr costrymos mtrz P tl qe s prmer ector se el ector propo socdo de l mtrz M P

15 A b MP P Tomdo A bscmos los lores y ectores propos qe l crcterz. Co el ector propo rmmos l mtrz P de modo qe A b A P P Ahor estmos e codcoes de clclr P x P P x P L mtrz trglr AP P T T es mtrz trglr speror qe tee e l dgol prcpl los lores propos de l mtrz M y por ecm de l dgol prcpl clqer lor rel. Form Cóc de Jord U form cóc de Jord es mtrz trglr speror tl qe ) todos ss elemetos de l dgol prcpl so gles los lores propos b) todos ss elemetos e l prmer sobredgol so gles o c) todos los demás elemetos so gles cero E deft debemos cotr co mtrz Q tl qe AQ Q J dode J se l mtrz dgol e form cóc de Jord. Cdo podemos teer form cóc de Jord? Cdo teemos tolores co orde de mltplcdd myor qe pr lo cl es ecesro clclr prtr de tolor ector propo hcedo r r r A

16 Lego pr el msmo tolor clclr el sgete ector hcedo rj rj r rj A dode rj es el ector propo qe form prte de l mtrz Q Por ejemplo l mtrz A El polomo crcterístco ) )( )( ( A Pr el ector crcterístco se obtee de hcer [ ] A De l tercer eccó obteemos Reemplzdo e ) ( El ector propo socdo es Pr el ector crcterístco se obtee de hcer [ ] A De l tercer eccó obteemos Reemplzdo e ) ( co lo cl El ector propo socdo es El tee socdo dos ectores propos. Uo de ellos es el otro ) ( srge de hcer A

17 [ ] A De l tercer eccó se obtee E Esto d lgr l ector propo Ahor estmos e codcoes de rmr l mtrz Q de ectores propos [ ] Q Clclmos l ers ) ( T Q Q Adj Q Q AQ J qe tee e s dgol prcpl los lores propos de l mtrz A e l sobredgol o de cerdo s es bloqe o o y ceros los demás elemetos. Pr costtr bloqe de Jord debemos teer: ) e l dgol prcpl el msmo lor propo b) e l sobredgol todos los elemetos gles c) todos los demás elemetos gles cero E l mtrz del ejemplo teemos dos bloqes: o es el formdo por el elemeto el otro bloqe es l sbmtrz de orde qe tee e l dgol prcpl el tolor y e l sobredgol el. E geerl tod mtrz de Jord se prtco e bloqes deomdos bloqes de Jord.

Determinación del Número de Particiones de un Conjunto

Determinación del Número de Particiones de un Conjunto Determcó del Número de rtcoes de u Couto Lus E Ryber E el estudo de prtcoes estblecds e u couto A que posee elemetos se susct l cuestó del úmero totl de tles prtcoes Es evdete y el cálculo sí lo dc que

Más detalles

ÁLGEBRA LINEAL Ingenierías ÁLGEBRA II. Unidad Nº 3 LM - PM. Espacios Vectoriales. FCEyT - UNSE

ÁLGEBRA LINEAL Ingenierías ÁLGEBRA II. Unidad Nº 3 LM - PM. Espacios Vectoriales. FCEyT - UNSE ÁLGEBA LINEAL Igeerís ÁLGEBA II LM - PM Udd Nº 3 Espcos ectorles CEyT - UNSE Álger II (LM-PM) - Álger Lel (Igs.) -.C.E. y T.- UNSE Udd Nº 3:.- ESPACIOS ECTOIALES Defcó Se A y K, * es Ley de Composcó Exter

Más detalles

ÁLGEBRA II (LSI PI) UNIDAD Nº 4 ESPACIOS VECTORIALES ESPACIOS VECTORIALES CON PRODUCTO INTERIOR

ÁLGEBRA II (LSI PI) UNIDAD Nº 4 ESPACIOS VECTORIALES ESPACIOS VECTORIALES CON PRODUCTO INTERIOR 7 ÁLGEBA II (LSI PI) UNIDAD Nº 4 ESPACIOS ECTOIALES ESPACIOS ECTOIALES CON PODUCTO INTEIO Fcltd de Cecs Excts y Tecologís UNIESIDAD NACIONAL DE SANTIAGO DEL ESTEO Fcltd de Cecs Excts y Tecologís - UNSE.-

Más detalles

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a 5 dsttos Cosecuetemete el cojuto de tods ls combcoes fes de dos putos R es tod l líe determd por estos dos putos metrs que el cojuto de tods ls combcoes coves es el segmeto de líe que ue y. Obvmete cd

Más detalles

Resolución de sistemas de congruencias

Resolución de sistemas de congruencias Resolucó de sstems de cogruecs E este prtdo veremos cómo utlzr l rtmétc modulr pr resolver u problem muy tguo, coocdo como problem cho de los restos, que reformulremos hor utlzdo el leguje modero de ls

Más detalles

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1 PROBLEMS RESUELTOS Presetmos cotucó ls solucoes los problems,, del úmero de l Revst, que eví Crlos Mrcelo Css Cudrdo. Problem Resolver l ecucó e l cógt : (bsolutorl ufgbe, Bver, 87 Solucó l problem El

Más detalles

CATEDRA 0 7 METODOS NUMERICOS. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil

CATEDRA 0 7 METODOS NUMERICOS. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil CATEDRA 7 Fcltd de Igeerí de Ms, Geologí y Cvl Deprtmeto cdémco de geerí de ms y cvl METODOS NUMERICOS Igeerí Cvl ING.CRISTIANCASTROP. . DEFINICIÓN Y CASIFICACIÓN DE MATRICES s mtrces so tlzds por prmer

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS 1 Epresoes Algebrcs es l uó de úmeros y vrbles medte opercoes de sum, rest, multplccó, dvsó, poteccó y rdccó. Epresó lgebrc rcol: se llm sí quells e ls que ls vrbles está fectds

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO ) Defncón de ector fo y ector lre. Vector de poscón de n pnto. ) Módlo de n ector. Dstnc entre dos pntos. c) Opercones áscs con ectores. d) Prodcto esclr. Expresón nlítc. e) Propeddes

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS NÚMEOROS COMPLEJOS Defcó: El cojuto de los úmeros complejos es C R R {(, / R y b R} C está formdo por todos los pres ordedos de úmeros reles etre los que defmos u relcó, l guldd, y dos opercoes brs que

Más detalles

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante Uversdd de Stgo de Chle Fcultd de Cecs Deprtmeto de Mtemátcs y Cecs de l Computcó Aputes y Ejerccos RESUMEN DE CONTENIDOS. Recordr: Proceso de ortogolzcó de Grm-Schmdt: Se defe, e prmer lugr, el operdor

Más detalles

= se cumplen todas las igualdades: Por tanto, una solución del sistema se puede considerar como un vector ( s s s s )

= se cumplen todas las igualdades: Por tanto, una solución del sistema se puede considerar como un vector ( s s s s ) SISTEMAS DE ECUACIONES LINEALES Todo problem cuyo eucdo somete úmeros descoocdos vrs codcoes, es susceptble de ser epresdo por medo de gulddes o desgulddes que form u sstem de ecucoes o ecucoes. De hí

Más detalles

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Guí ejerccos resueltos Sumtor y Bomo de Newto Solucó: ) Como o depede de j, es costte l sumtor. b) c) d) Aulr: Igco Domgo Trujllo Slv Uversdd de Chle e) f)

Más detalles

1. ÁLGEBRA LINEAL Y VECTORES ALEATORIOS

1. ÁLGEBRA LINEAL Y VECTORES ALEATORIOS . ÁLGEBRA LINEAL Y VECTORES ALEATORIOS Vetores Ortogolzó de Grm-Shmdt Mtres ortogoles Atovlores tovetores Forms dráts Vetores mtres letors Mtrz de dtos DAGOBERTO SALGADO HORTA ALGEBRA LINEAL Vetores Mtrz

Más detalles

CAPITULO 1 VECTORES EN R 3

CAPITULO 1 VECTORES EN R 3 CPITULO Nuestrs lms, cuys fcultdes puede compreder l mrvllos rqutectur del mudo, y medr el curso de cd plet vgbudo, ú escl trs el coocmeto fto Chrstopher Mrlowe. ECTORES EN R. Mgtudes esclres y vectorles..

Más detalles

Fundamentos matemáticos. Los Postulados de la Mecánica Cuántica.

Fundamentos matemáticos. Los Postulados de la Mecánica Cuántica. INTRODUCCIÓN L MECÁNIC CUÁNTIC Fudmetos mtemátos Los Postuldos de l Meá Cuát FUNDMENTOS MTEMÁTICOS L Meá Cuát se desrroll e espos etorles deomdos espos de Hlert Pr omezr, repsremos reemete ls des fudmetles

Más detalles

TEMA III ELEMENTOS DEL ÁLGEBRA MATRICIAL

TEMA III ELEMENTOS DEL ÁLGEBRA MATRICIAL TE III EEENTS DE ÁGER TRICI E este tem vmos repsr los coocmetos de mtrces que predmos e cursos terores y que vmos ecestr e est sgtur. I.- TRICES Qué es u mtrz? U mtrz es u dsposcó de úmeros pr l cul este

Más detalles

MMII_L1_c4: Ecuaciones en derivadas parciales lineales

MMII_L1_c4: Ecuaciones en derivadas parciales lineales MMII : Eoes e derds prles leles Gó: Est leó está dedd l eoes leles estdremos s ormló sobre todo ss propeddes oods de otrs eoes leles sts e sgtrs de mtemáts terores pero qe oedrá reordr trtr de espelzr

Más detalles

e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores.

e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores. Tem : Itegrcó umérc Tem : Itegrcó ó umérc Prolem Fórmuls de cudrtur. Fórmuls de Newto-Cotes. Fórmuls del trpeco Smpso. Errores. Clculr l sguete tegrl: e d Usremos l tegrcó umérc cudo, por el motvo que

Más detalles

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica.

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica. INTRODUCCIÓN L MECÁNIC CUÁNTIC Prte : Fudmetos mtemátos Prte : Meá Cuát Prte : FUNDMENTOS MTEMÁTICOS Espos etorles ompleos de dmesó ft Operdores leles Represetó mtrl Proyetores utolores y utoetores Operdor

Más detalles

Minimizando el error cuadrático medio se calculan los coeficientes a k : [ ] a, queda [ ] [ ] = [ ] [ ]

Minimizando el error cuadrático medio se calculan los coeficientes a k : [ ] a, queda [ ] [ ] = [ ] [ ] TCNOLOGÍ DL HBL. CUSO 9/ TM : PDICCIÓN LINL. Los vlores de se uede romr or u combcó lel de ls últms muestrs. co.. Método de l utocorrelcó. rror e Mmzdo el error cudrátco medo se clcul los coefcetes : e

Más detalles

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información Leguje humo Represetcó de l formcó Utlz u cojuto de símbolos lfumércos Crcteres lfbétcos:, B, C,.Z,, b, c,...z Símbolos umércos 9 sgos de putucó... Puede represetr Iformcó umérc lfumérc Leguje del ordedor

Más detalles

está localizado en el renglón i-ésimo y la j-ésima columna del arreglo A.

está localizado en el renglón i-ésimo y la j-ésima columna del arreglo A. Fctd de Cotdrí y dmstrcó. UNM Mtrces tor: Dr. José Me ecerr Espos MEMÁICS ÁSICS MRICES DEFINICIÓN DE MRIZ U mtrz es cojto de úmeros, ojetos operdores, dspestos e rrego dmeso de regoes y coms, ecerrdos

Más detalles

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica.

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica. INTRODUCCIÓN L MECÁNIC CUÁNTIC Prte : Fudmetos mtemátos Prte : Meá Cuát Prte : FUNDMENTOS MTEMÁTICOS Espos etorles ompleos de dmesó ft Operdores leles Represetó mtrl Proyetores utolores y utoetores Operdor

Más detalles

TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales

TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales TEMA : Métodos tertvos de resolucó TEMA. Métodos tertvos de resolucó de Sstems de Ecucoes Leles. Métodos tertvos: troduccó Aplcr u método tertvo pr l resolucó de u sstem S A = b, cosste e trsformrlo e

Más detalles

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS:

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS: SUBESPACIOS FINITAMENTE GENERADOS: Teorema S G={v, v,, v } es u sstema fto de geeradores de u subespaco S V K-EV, etoces G`= {v, v,, v,w} sedo w combacó leal de vectores de G, també geera a S. Demostracó

Más detalles

ÁLGEBRA LINEAL Ingenierías ÁLGEBRA II. Unidad Nº 1 LM - PM MATRICES. DETERMINANTES. FCEyT - UNSE

ÁLGEBRA LINEAL Ingenierías ÁLGEBRA II. Unidad Nº 1 LM - PM MATRICES. DETERMINANTES. FCEyT - UNSE ÁLGEBR LINEL Igeerís ÁLGEBR II LM - PM Udd Nº MTRICES. DETERMINNTES FCEyT - UNSE .- INTRODUCCIÓN ESTRUCTURS LGEBRICS de GRUPO y de CUERPO Defcó Se Álgebr II (LM-PM)-Álgebr Lel (Igs.)-F.C.E. y T.-UNSE G

Más detalles

Unidad 1 Fundamentos de Algebra Matricial Parte 1

Unidad 1 Fundamentos de Algebra Matricial Parte 1 Udd Fudetos de lger trcl Prte Dr. Ruth. gulr Poce Fcultd de Cecs Deprteto de Electróc Propedeutco 8 Fcultd de Cecs trces U trz de es u rreglo rectgulr dspuesto e regloes y colus Trgulr feror O Trgulr superor

Más detalles

Dado el sistema de ecuaciones lineales de la forma

Dado el sistema de ecuaciones lineales de la forma Aálss del Error e Solucó de Sstems de Ecucoes Leles Ddo el sstem de ecucoes leles de l form R A b, dode A ; b R E reldd teemos: A δa δ b δb A Aδ δa δa δ A δb S desprecmosδa δ : δ A - δb δa Métodos Numércos

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA.

ALGEBRA Y GEOMETRIA ANALITICA. ALGEBRA Y GEOMETRIA ANALITICA. - ESPACIOS VECTORIALES. Aptes de l Cáted. Albeto Setell. Colboo Cst Mscett Ves Begoz Edcó Pe CECANA CECEJS CET Jí. UNNOBA Uesdd Ncol de Nooeste de l Pc. de Bs. As. P meses

Más detalles

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores.

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores. Hojs de Prolems Estdístc I. Se cosder el expermeto letoro cosstete e trr tres ddos l re y otr los putos de ls crs superores. ) utos elemetos tee el espco de sucesos? ) lculr l proldd de scr l meos dos.

Más detalles

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2.

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2. Hojs de Problems Algebr III 8. ) Demostrr que s es r, los úmeros turles y so rmos etre s. b) Demostrr que s m, etoces l ctdd de úmeros eteros ostvos dsttos de cero que o so myores que m y que o se dvde

Más detalles

3. Unidad Aritmética Lógica (ALU)

3. Unidad Aritmética Lógica (ALU) 3. Udd rtmétc Lógc (LU) bordremos los spectos que permte l mplemetcó de l rtmétc de u computdor, trbuto fucol de l Udd rtmétc Lógc (LU). Prmero se revstrá lo relcodo l form de represetr los úmeros como

Más detalles

( ) = 1 ; f k. u v. uk v. vk u. Diferenciacion e Interpolacion 1/8. Diferenciacion e Interpolacion numerica. Diferencias finitas

( ) = 1 ; f k. u v. uk v. vk u. Diferenciacion e Interpolacion 1/8. Diferenciacion e Interpolacion numerica. Diferencias finitas Derecaco e Iterpolaco /8 Derecaco e Iterpolaco merca. Derecas tas Dadas las abscsas X ormemete espacadas X X h, a las qe correspode alores de co (): (X) se dee las prmeras derecas tas ( Haca delate ) como:

Más detalles

1 3 i + + A = 0, B = ½, C = 1, D = -½, dx dx de donde, :

1 3 i + + A = 0, B = ½, C = 1, D = -½, dx dx de donde, : Hoj de Prolem Aál IV /. d L ríce de l eccó o,,,, í qe el polomo e decompoe de l form: Decompoemo e frccoe mple: D B A defcdo coefcee, e oee lo vlore: A, B ½,, D -½, Por lo qe: d d d / lclemo por eprdo

Más detalles

a es la parte real, bi la parte imaginaria.

a es la parte real, bi la parte imaginaria. CAPÍTULOIX 55 NÚMEROS COMPLEJOS Coocmetos Prevos Supoemos coocdo que: ) El cojuto de úmeros complejos está e correspodec buívoc co el cojuto de los putos de u plo. b) U úmero complejo expresdo e form boml

Más detalles

BLOQUE 2. ÁLGEBRA LINEAL. ESPACIOS VECTORIALES

BLOQUE 2. ÁLGEBRA LINEAL. ESPACIOS VECTORIALES BOQUE. ÁGEBRA INEA. ESPACIOS VECTORIAES El espcio ectoril IR. Sbespcio ectoril. Depedeci e idepedeci liel. Sistem geerdor. Bse. Este primer tem setrá ls bses qe permitirá desrrollr ftros coceptos. Se lizrá

Más detalles

a, b y POSITIVA, se puede hacer una aproximación del área

a, b y POSITIVA, se puede hacer una aproximación del área BLOQUE III: Aálss -ÁREA BAJO UNA CURVA Tem 5: Itegrles defds Dd u fucó (, y POSITIVA, se puede hcer u promcó del áre compredd etre el eje X y l gráfc de l fucó e el tervlo, del sguete modo: ) Se dvde el

Más detalles

MECÁNICA COMPUTACIONAL I. Capítulo 3 Sistemas de Ecuaciones

MECÁNICA COMPUTACIONAL I. Capítulo 3 Sistemas de Ecuaciones MCÁNICA COMPUTACIONAL I Cpítulo Sstems de cucoes Solucó umérc de sstems de ecucoes Cptulo Itroduccó Notcó, Mtrces y Coceptos Prelmres lmcó de Guss lmcó de Guss-Jord. Determcó de l mtrz vers. Métodos tertvos

Más detalles

POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2

POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2 POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel x es: f x = x + x + + x + x+, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo

Más detalles

ÍNDICE INTRODUCCIÓN 1

ÍNDICE INTRODUCCIÓN 1 ÍNDICE INTRODUCCIÓN CAPÍTULO. NOCIONES BÁSICAS DE ÁLGEBRA DE MATRICES. Cocepto prevo. Opercoe co mtrce.. Cálculo de l trpuet de u mtrz.. Sum de mtrce.. Multplccó por u eclr.. Producto de do mtrce.. Cálculo

Más detalles

1.5 La Factorización QR

1.5 La Factorización QR Edgr Acñ/ESMA 6665 Lecc4-5 4.5 L Fctorizció QR Dd mtriz cdrd y osiglr A de orde x, etoces existe mtriz ortogol Q y mtriz triglr sperior R tl qe AQR est es llmd l fctorizció QR de A. Si l mtriz A o es cdrd

Más detalles

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u FUNDAMENTOS DE LOS ESPACIOS VECTORIALES ABSTRACTOS Prmeros ejemplos. Cosderemos el cojuto V de los vectores lbres del plao. Recordemos que la operacó de sumar vectores verfcaba las sguetes propedades:

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA (Aputes s revsó pr oretr el predzje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Sumtor Pr represetr e form revd determdo tpo de sums, se utlz como símolo l letr greg sgm. Ejemplos.

Más detalles

GUÍA EJERCICIOS: NÚMEROS NATURALES

GUÍA EJERCICIOS: NÚMEROS NATURALES UNIVERSIDAD ANDRÉS BELLO DEPARTAMENTO DE MATEMÁTICAS ÁLGEBRA FMM COORD. PAOLA BARILE M. GUÍA EJERCICIOS: NÚMEROS NATURALES PROGRESIONES ARITMÉTICA Y GEOMÉTRICA EJERCICIOS CON RESPUESTAS.- Verfque s ls

Más detalles

55 EJERCICIOS DE VECTORES

55 EJERCICIOS DE VECTORES 55 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) d = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coordends de los vectores fijos

Más detalles

Trabajo Práctico N 6: ESPACIOS VECTORIALES CON PRODUCTO INTERIOR

Trabajo Práctico N 6: ESPACIOS VECTORIALES CON PRODUCTO INTERIOR Fcltd Regiol Medoz. UTN Álger Geometrí Alític 8 Trjo Práctico N 6: ESPACIOS VECTORIALES CON PRODUCTO INTERIOR Ejercicio : Pr cd espcio ectoril idicdo lice cáles de ls sigietes expresioes deie prodcto iterior.

Más detalles

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 6 ÁLGEBRA II (LSI PI) UNIDAD Nº 6 VALORES Y VECTORES PROPIOS Facultad de Cecas Exactas y Tecologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO aa Error! No hay texto co el estlo especfcado e el documeto.

Más detalles

Métodos Numéricos. Resolución de sistemas de ecuaciones

Métodos Numéricos. Resolución de sistemas de ecuaciones Al flzr est udd el prtcpte estrá e cpcdd de resolver u sstem de ecucoes leles o o leles de ecucoes co cógts por los métodos drectos e tertvos. Itroduccó Prolem clásco del álger lel: se quere solucor u

Más detalles

GENERALIDADES SOBRE MÓDULOS

GENERALIDADES SOBRE MÓDULOS GENERALIDADES SOBRE MÓDULOS Presetar el Z -módulo Z como cocete de u Z -módulo lbre Hacer lo msmo para el grupo de Kle Calcular los auladores de los sguetes módulos: a) El Z -módulo Z Z 6 b) El Z -módulo

Más detalles

Análisis Numérico y Programación. Unidad III. -Interpolación mediante trazadores: Lineales, cuadráticos y cúbicos

Análisis Numérico y Programación. Unidad III. -Interpolación mediante trazadores: Lineales, cuadráticos y cúbicos Aálss Numérco y Programacó Udad III -Iterpolacó medate trazadores: Leales, cuadrátcos y cúbcos Prmavera 9 Aálss Numérco y Programacó Coceptos geerales Problema geeral: Se tee u cojuto dscreto de valores

Más detalles

21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación

21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación USACH ÁLGEBRA Gbrel Rbles R. Uversdd de Stgo de Chle Fcultd de Cec Depto. Mtemátc y Cec de l Computcó Prof. Gbrel Rbles R. SUMATORIAS EJERCICIOS RESUELTOS: Clculr: ) ) b) [ ) ) ] c) j j j d) el vlor de

Más detalles

C n i V0 V10 V'0 V'10 1.000 10 0,05 7721,73493 12577,8925 8107,82168 13206,7872

C n i V0 V10 V'0 V'10 1.000 10 0,05 7721,73493 12577,8925 8107,82168 13206,7872 9. lcúlese los vlores cl y fl de u ret dscret, medt, formd por térmos de cutí. y vlord u tto perodl del %. Dstgur los csos prepgble y pospgble. Solucó: 7.7,7 ;.77,9 ; (pospgble).7, ;.,79 ; (prepgble).....

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposcoes de Secudr TEM 9 DETERMINNTES. PROPIEDDES. PLICCIÓN L CLCULO DEL RNGO DE UN MTRIZ.. Itroduccó... Resultdos preos.. Forms multleles lterds. 3. Determtes. 3.. Determtes de N ectores.

Más detalles

ADMINISTRACIÓN Y FINANZAS. GRADO SUPERIOR RENTAS CONSTANTES. TEMA 5 TEMA 5: RENTAS

ADMINISTRACIÓN Y FINANZAS. GRADO SUPERIOR RENTAS CONSTANTES. TEMA 5 TEMA 5: RENTAS TEMA 5: RENTA. INTRODUCCIÓN Llmmos ret u sucesó de cptles que se hce efectvos e vecmetos peródcos. Ejemplo: lquler, slros, préstmos, etc. A cd uo de estos cptles se le deom térmos o ulddes (A. Llmmos durcó

Más detalles

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ UNIVERSIDD DE GRND ONENCI DE MTEMÁTICS LICDS LS CIENCIS SOCILES ONENTE: ROF FRNCISCO JIMÉNEZ GÓMEZ RUE DE CCESO R MYORES DE ÑOS CONVOCTORI DE ENUNCIDOS Y RESOLUCIÓN DE LOS EJERCICIOS ROUESTOS EN MTEMÁTICS

Más detalles

SISTEMAS DE ECUACIONES LINEALES. TEMA 3. Métodos iterativos para Sistemas de Ecuaciones Lineales

SISTEMAS DE ECUACIONES LINEALES. TEMA 3. Métodos iterativos para Sistemas de Ecuaciones Lineales TEMA3: Métodos tertvos pr Sstems de Ecucoes Leles TEMA 3. Métodos tertvos pr Sstems de Ecucoes Leles 3. Métodos tertvos: troduccó Aplcr u método tertvo pr l resolucó de u sstem S A=b, cosste e trsformrlo

Más detalles

está localizado en el renglón i-ésimo y la j-ésima columna del arreglo A.

está localizado en el renglón i-ésimo y la j-ésima columna del arreglo A. Pág del Colego de temátcs de l ENP-UN trces y ermtes utor: Dr. José uel ecerr Espos RICES Y DEERINNES E V V. DEFINICIÓN DE RIZ U mtrz es u cojuto de úmeros, ojetos u operdores, dspuestos e u rreglo dmesol

Más detalles

3.1. Elección del Método de las Esferas.

3.1. Elección del Método de las Esferas. Método de ls Esfers 3. Método de ls Esfers. 3.. Eleccó del Método de ls Esfers. El Método de ls Esfers represet u mplemetcó l cul lustr ls propeddes geométrcs del lgortmo del elpsode, y hered su robustez

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales étodos Numércos pr Igeeros Sstems de Ecucoes eles E l udd dos hemos usdo métodos umércos pr determr el vlor de que stsfce u ecucó, f(. Ahor, determremos los vlores de u couto de cógts que stsfce u sstem

Más detalles

1: El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo

1: El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo UNIDAD : Geometrí eclíde. Prodcto esclr. PRODUCTO ESCALAR DE DOS VECTORES LIBRES Definición: Se llm prodcto esclr de los ectores y y se not por l nº rel qe se obtiene de l sigiente form: = es decir el

Más detalles

APUNTE: Introducción a las Sucesiones y Series Numéricas

APUNTE: Introducción a las Sucesiones y Series Numéricas APUNTE: Itroducció ls Sucesioes y Series Numérics UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Admiistrció Lic. e Turismo Lic. e Hotelerí Profesor: Prof. Mbel Chresti Semestre: do

Más detalles

REDES DE BASE RADIAL. 1. Funciones de Base Radial.

REDES DE BASE RADIAL. 1. Funciones de Base Radial. Tema 5: Redes de Base Radal Sstemas Coexostas 1 REDES DE BASE RADIAL 1. Fcoes de Base Radal. 2. Dervacó del Modelo Neroal. 2.1. Arqtectra de a RBFN 2.2. Fcoaldad. 2.3. Carácter Local de a RBFN. 3. Etreameto.

Más detalles

APROXIMACION DE FUNCIONES

APROXIMACION DE FUNCIONES APROXIMACION DE FUNCIONES Metodos Numercos 6 Fmls de Fucoes Bses - Moomos : 3 - Trgoométrcs: sωt cosωt sωt... - Fs. Sle: olomos trozos - Fs. Eoecles: e e 4 Metodos Numercos 6 Iterolcó Suogmos teer u cojuto

Más detalles

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES 1. ESPACIOS LINEALES. x = x x L. ε es el elemento neutro de la ley del producto ( )

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES 1. ESPACIOS LINEALES. x = x x L. ε es el elemento neutro de la ley del producto ( ) ÉTODOS ATEÁTICOS TEA 0: REPASO ÁLGEBRA ESPACIOS DE HILBERT Y OPERADORES LINEALES Profesora: ª Cruz Boscá ESPACIOS LINEALES Espaco leal L sobre u cuerpo (comutatvo) Λ U espaco leal (o vectoral) L sobre

Más detalles

INTEGRAL DEFINIDA INTRODUCCIÓN

INTEGRAL DEFINIDA INTRODUCCIÓN INTRODUCCIÓN U medo potete de l vestgcó e mtemátc, físc, mecác y otrs rms de l cec es l tegrl defd. El cálculo de áres lmtds por curvs, de ls logtudes de rcos, volúmees, trjo, velocdd, espco, mometos de

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls

Más detalles

Modelos de Regresión Simple

Modelos de Regresión Simple Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS ESUELA TÉNIA SUPERIOR DE NÁUTIA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO OI ESKOLA TEKNIKOA UNDAMENTOS MATEMÁTIOS : ORMAS UADRÁTIAS orm blel Decó K Se E res espcos vecrles dedos sobre el

Más detalles

El estudio de autovalores y autovectores (o valores y vectores propios) de matrices

El estudio de autovalores y autovectores (o valores y vectores propios) de matrices Tema V DIAGONALIZACIÓN POR TRANSFORMACIONES DE SEMEJANZA Objetvos Presetar los coceptos de autovalor y autovector, los cuales tee gra mportaca e las aplcacoes práctcas (tato es así, que podría decrse que

Más detalles

3.5 OPERADORES LINEALES.

3.5 OPERADORES LINEALES. 3. ESPACIO L w 2 (,) 3.5 OPERADORES LIEALES. E este últmo prtdo preseto revemete, y de orm d-hoc pr uestro prolems, decoes y resultdos de certos operdores que ctú sore ls ucoes de (, ). Estos resultdos

Más detalles

2.1 SUCESIONES 2.2 SUMAS Y NOTACIÓN SIGMA

2.1 SUCESIONES 2.2 SUMAS Y NOTACIÓN SIGMA Sucesoes. SUCESIONES. SUMAS Y NOTACIÓN SIGMA Objetvos: Se pretede que el estudte: Determe covergec o dvergec de sucesoes. Alce Mootoí de sucesoes. Coozc ls propeddes de l otcó sgm. 5 Sucesoes.. SUCESIONES..

Más detalles

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór Capítulo 4 Iterpolacó polomal de Hermte E determadas aplcacoes se precsa métodos de terpolacó que trabaje co datos prescrtos de la fucó y sus dervadas e ua sere de putos, co el objeto de aumetar la aproxmacó

Más detalles

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es:

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es: POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel es: f = + + + + +, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo de vrble

Más detalles

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad.

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad. Parte : MECÁNICA CUÁNTICA 1. Los postulados de la Mecáca Cuátca.. Estados Estacoaros. 3. Relacó de Icertdumbre de Heseberg. 4. Teorema de compatbldad. 1 U breve repaso de Mecáca Clásca 1. Partícula clásca:

Más detalles

ANTES DE COMENZAR RECUERDA

ANTES DE COMENZAR RECUERDA ANTES DE COMENZAR RECUERDA 00 Po tres ejemplos de úmeros reales que o sea racoales, y otros tres ejemplos de úmeros reales que o sea rracoales. Respuesta aberta. Tres úmeros reales que o sea racoales:,

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 79 Mtemátics : Series umérics Cpítulo Sucesioes y series de úmeros reles. Sucesioes Defiició 330.- Llmremos sucesió de úmeros reles culquier plicció f: N R y l represetremos por {, dode = f(). Por comodidd,

Más detalles

Transformaciones lineales

Transformaciones lineales Trsformcioes lieles [Versió prelimir] Prof. Isbel Arrti Z. 1 Se V y W espcios vectoriles sobre el cuerpo R de los úmeros reles. U trsformció liel o plicció liel de V e W es u fució T : V W que stisfce:

Más detalles

TEMA 11: PROBLEMAS MÉTRICOS

TEMA 11: PROBLEMAS MÉTRICOS Alonso Fernánde Glián TEMA PROBLEMAS MÉTRICOS Finlmente vmos ocprnos de clclr ánglos distncis entre rects plnos de resolver problems relciondos con estos conceptos.. ÁNGULOS ENTRE RECTAS Y PLANOS Vemos

Más detalles

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto

Más detalles

el blog de mate de aida CSI: sistemas de ecuaciones. pág

el blog de mate de aida CSI: sistemas de ecuaciones. pág el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i

Más detalles

Del correcto uso de las fracciones parciales.

Del correcto uso de las fracciones parciales. Del correcto uso de las fraccoes parcales. Rubé Emauel Madrd García. E este opúsculo haré u aálss de lo que hoy llamamos fraccoes parcales, lo cual o es otra cosa que la descomposcó del cocete etre dos

Más detalles

FEM-OF: EDP Elíptica de 2 Orden

FEM-OF: EDP Elíptica de 2 Orden 9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk

Más detalles

Tema 2 Transformada Z y análisis transformado de sistemas LTI

Tema 2 Transformada Z y análisis transformado de sistemas LTI Tem Trsformd Z y álss trsformdo de sstems LTI rlos Óscr Sáche Soro 4º Ig. Telecomuccó EPS Uv. S Pblo EU Bblogrfí: Oppehem I p., Oppehem II p. 3, Pros p. 3 y Fucoes props de los sstems LTI x h h h h H x

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

Método del spline cúbico. Cuando un número grande de datos tiene que ajustarse a una curva suave, la interpolación de Lagrange no es adecuada.

Método del spline cúbico. Cuando un número grande de datos tiene que ajustarse a una curva suave, la interpolación de Lagrange no es adecuada. MÉTODO DEL PLINE CÚBICO PROGRAMACIÓN AVANZADA emestre 09- Método del sple úo. Cudo u úmero grde de dtos tee que justrse u urv suve l terpoló de Lgrge o es deud. Pr esto se emple el método del sple úo este

Más detalles

GEOMETRÍA. h a ab b. Volumen r 2 h. Área de la superficie lateral 2 rh. Volumen 4 3. Área de la Superficie 4 r. Volumen 1 2

GEOMETRÍA. h a ab b. Volumen r 2 h. Área de la superficie lateral 2 rh. Volumen 4 3. Área de la Superficie 4 r. Volumen 1 2 ÍNDIE Tem Pg. Geometrí Trgoometrí 4 Números ompleos 4 Geometrí lítc el Espco 5 Regls Geerles e Dervcó 7 Tls e Itegrles 9 Vectores Itegrles Doles 5 Trsorm e plce 7 Fórmls Msceláes 8 Seres e Forer 9 GEOMETRÍ

Más detalles

ININ 6005: Estadística Experimental

ININ 6005: Estadística Experimental ININ 65: Estdístic Eperimetl Diseño de Eperimetos Vribles Cotrolbles PROCESO Respuest Efectos Idepedietes O Recursos, mteriles, persos Modelos diseño eperimetl es u mipulció sistemátic de ls X's (vribles

Más detalles

1.- El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo

1.- El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo UNIDAD.- Geometrí eclíde. Prodcto esclr (tem 6 del libro). PRODUCTO ESCALAR DE DOS VECTORES LIBRES Definición: Se llm prodcto esclr de los ectores se not por sigiente form: del ánglo qe formn dichos ectores.

Más detalles

ELECCIÓN ÓPTIMA DEL PLAZO DE UN PRÉSTAMO EN FUNCIÓN DE PREFERENCIAS INDIVIDUALES

ELECCIÓN ÓPTIMA DEL PLAZO DE UN PRÉSTAMO EN FUNCIÓN DE PREFERENCIAS INDIVIDUALES ELECCÓN ÓPTM DEL PLZO DE UN PRÉSTMO EN FUNCÓN DE PREFERENCS NDVDULES Jesús Mª Sáchez Motero jsmoter@us.es Mª Ágeles Domíguez Serro doser@us.es Jver Gmero Rojs jgm@us.es Deprtmeto Ecoomí plcd Uversdd de

Más detalles

Seminario de problemas. Curso Soluciones hoja 6

Seminario de problemas. Curso Soluciones hoja 6 Semirio de problems. Curso 06-7. Solucioes hoj 6. Si igeios iformáticos, clculr l cifr que precede l fil fil de ceros e!. (Recuerd:! = 4 4 ) Empezremos por determir cuátos ceros hy e l col fil de!. Hbrá

Más detalles

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID / Grl. Ampudi, 6 Teléf.: 9 5-9 55 9 ADRID FBRRO 5 UNIVRSIDAD PONTIFIIA D SALAANA ATÁTIAS DISRTAS FBRRO 5 (TARD) PROBLA : Se cooce el siguiete comportmieto de Luis e u resturte l que v comer: - No es verdd

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tem : Números reles. REALES se utiliz pr Medir mgitudes se obtiee Ctiddes todos so Números Errores viee fectds de errores Aproximcioes clses se represet Rect rel Aproximcioes decimles Redodeos Trucmieto

Más detalles

MATRICES: INVERSA GENERALIZADA DE MOORE-PENROSE. Jorge Eduardo Ortiz Triviño

MATRICES: INVERSA GENERALIZADA DE MOORE-PENROSE. Jorge Eduardo Ortiz Triviño MTRIES: INVERS GENERLIZD DE MOORE-PENROSE Jorge Edurdo Ortiz Triviño jeortizt@uleduco http:/wwwdocetesuleduco Mtrices Elemeto: ij Tmño: m Mtriz cudrd: orde ) Elemetos de l digol: m m m Vector colum mtriz

Más detalles

. Algebraicamente se obtienen diferentes ecuaciones: v u Op v y es otro vector con el mismo módulo, la

. Algebraicamente se obtienen diferentes ecuaciones: v u Op v y es otro vector con el mismo módulo, la 6 CAPÍTULO : GEOMETRÍA EN EL ESPACIO - VECTORES. GEOMETRÍA DEL PLANO A lo largo de los crsos pasados estdamos la geometría del plao co los sgetes elemetos fdametales: Pto: Poscó e el plao qe por coeo defmos

Más detalles