Técnicas de Minería de Datos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Técnicas de Minería de Datos"

Transcripción

1 Técnicas de Minería de Datos Act. Humberto Ramos S. 1

2 Qué es Minería de datos? El desarrollo de dispositivos tecnológicos para acumular datos a bajo costo. Acumulación o registro de gran cantidad de datos. Empresas. Escuelas. Entidades de Gobierno. Dificultad para realizar análisis relevantes. Relaciones demasiado complejas por la gran cantidad de datos. Alto Valor Conocimiento Información Bajo Volumen Alto Volumen Datos Bajo Valor 2

3 Qué es Minería de datos? A manera de definición Minería de datos: Proceso de obtención de conocimiento útil basado en un gran volumen de datos usando modelos matemáticos para identificar patrones y tendencias de estos. La recopilación de patrones y tendencias una vez modelados se pueden dirigir a: Pronosticar formas de orden de gasto de los clientes. Tomar decisiones de veta. Crear productos a clientes específicos. Detección de fraudes. Evolución de una variable en el futuro. 3

4 Qué es Minería de datos? Campo interdisciplinario en el que participan: Estadística. Informática. Inteligencia artificial. Minería de datos predictiva Usa Modelos estadísticos Minería de datos para el conocimiento Asociaciones. Secuencias. Clasificaciones. Agrupamientos. Pronósticos. Usa Técnicas de inteligencia artificial Produce cinco tipos de información 4

5 Qué es Minería de datos? Evaluación del problema. Establecimiento de metas Filtrado de datos Obtención y preparación de datos. Selección de variables Construcción del Modelo Selección de características y patrones de la variables Aplicación de herramientas Evaluación de resultados Obtención de resultados Uso del Modelo Técnica estadística y software No confundir con un GRAN SOFTWARE 5

6 Qué es Minería de datos? Definir el problema Establecer objetivos y metas en función de las directivas y problemáticas de la empresa. Meta: Medible. Alcanzable. Bajo mi control. Meta: Excelente para mi. Muy buena para mi entorno. Buena para los demás. 6

7 Qué es Minería de datos? Definir el problema Qué está buscando?, Qué tipos de relaciones intenta buscar? Refleja el problema que está intentando resolver las directivas o procesos de la empresa? Desea realizar predicciones a partir del modelo de minería de datos o solamente buscar asociaciones y patrones interesantes? Qué resultado o atributo desea predecir? Qué tipo de datos tiene y qué tipo de información hay en cada columna?. En caso de que haya varias tablas, cómo se relacionan? Necesita limpiar, agregar o procesar los datos antes de poder usarlos? Cómo se distribuyen los datos? Los datos son estacionales? Los datos representan con precisión los procesos de la empresa? Investigar la disponibilidad de datos 7

8 Qué es Minería de datos? Filtrado de datos Con base al algoritmo seleccionado se eliminan valores incorrectos, no válidos, desconocidos. Se obtienen muestras para aplicarlas al proceso como prueba. Selección de Variables Elegir las que más influencia tengan en el problema o las de mayores atributos del problema. Variables independientes con base en la práctica. 8

9 Qué es Minería de datos? Algoritmos de extracción Patrones de comportamiento o de relación entre los valores observados o de las variables en estudio. Obtención de resultados Se obtiene un modelo de conocimiento de los patrones de comportamiento entre las variables observadas. Con base en el algoritmo utilizado se obtienen distintos modelos que deberán ser probados y comparados. 9

10 Algoritmos Reglas de decisión: Detecta asociaciones entre elementos comunes. Uso en compras: : si compra cerveza compra botana. Qué hace? : Recomendaciones al realizar las compras, ejm: Ya compraste botana? Clustering: Busca elementos afines entre elementos de un conjunto. Uso en segmento de mercados o validaciones: Mujeres y Hombres de edad joven entonces tendremos: Mujeres y hombres jóvenes solteras y casadas asi como Mujeres y hombres jóvenes divorciados y viudos.pero no hombres mayores viudos. Qué hace? : Las entradas que no pertenecen a un cluster son anómalas. 10

11 Algoritmos Sequence Clustering: Detecta secuencias típicas en un conjunto de eventos. Uso en secuencias : Uso del mouse sobre una página web del banco. Qué hace? : Detecta anomalías de comportamiento. Árbol de decisión: Construye un diagrama de árbol del que se sacan reglas, patrones o estilos. Uso predecir valores de un atributo con precisión: Qué hace? : Clasificación en general de datos y validación. 11

12 Algoritmos Series temporales Clustering: Predecir el valor de una magnitud en el tiempo. Uso análisis bursátiles: comportamiento del tipo de cambio, bajará o subirá el salario, etc. Qué hace? : Específico para predicción de magnitudes en función del tiempo. Naive Bayes: Busca correlación entre atributos Uso que atributos están en función de otros: Qué hace? : Exploración inicial de datos. Tareas de clasificación de rendimiento crítico. 12

13 Algoritmos Redes Neuronales: Detectar patrones no lineales. Uso análisis bursátiles: Igual que los árboles de decisión pero para grupos de la población no se describen por reglas lineales. Qué hace? : Clasificación y regresión, 13

14 Árboles de Decisión Técnica utilizada para tomar decisiones secuenciales que se basa en sus resultados y probabilidades asociadas. Ayuda para la elección entre varios cursos de acción. Proveen una estructura efectiva con la cual se estima cuáles son las opciones e investigar las posibles consecuencias de seleccionar cada una de ellas. También ayudan a construir una imagen balanceada de los riesgos y recompensas asociados con cada posible curso de acción. Generalmente son binarios, aunque pueden existir árboles de mas opciones. 14

15 Árboles de Decisión PARTES DEL ÁRBOL Alternativas de decisión en cada punto de decisión. Eventos que pueden ocurrir como resultado de cada alternativa de decisión. Probabilidad de que ocurran los eventos posibles como resultado de la decisión. Resultados de las posibles acciones entre las alternativas de decisión y los eventos (presentado en términos económicos). Nodo de decisión Alternati vas de decisión Nodo de Azar Ramas de estado Resultados 15

16 Árboles de Decisión CONSTRUYENDO UN ÁRBOL Escribir cuál es la decisión que necesitamos tomar en un rectángulo. Desde este rectángulo dibujar líneas para cada posible solución, y escribir cuál es la solución sobre cada línea. Se debe mantener las líneas lo más apartadas posibles para poder expandir tanto como se pueda el esquema. Al final de cada línea estimar cuál puede ser el resultado. Si el resultado es incierto, se puede dibujar un pequeño círculo. Si el resultado es otra decisión que necesita ser tomada, se debe dibujar otro recuadro. Los recuadros representan decisiones, y los círculos representan resultados inciertos. 16

17 Árboles de Decisión CONSTRUYENDO UN ÁRBOL Escribir la decisión o el causante arriba de los cuadros o círculos. Si se completa la solución al final de la línea, se puede dejar en blanco. Comenzando por los recuadros de una nueva decisión en el diagrama, dibujar líneas que salgan representando las opciones que podemos seleccionar. Desde los círculos se deben dibujar líneas que representen las posibles consecuencias. Nuevamente se debe hacer una pequeña inscripción sobre las líneas que digan que significan. Seguir realizando esto hasta que tengamos dibujado tantas consecuencias y decisiones como sea posible ver asociadas a la decisión original. 17

18 Árboles de Decisión EVALUANDO UN ÁRBOL. Cuál opción tiene el mayor valor para nosotros? Asignar un costo o puntaje a cada posible resultado ( cuánto creemos que podría ser el valor para nosotros si estos resultados ocurren?). Ver cada uno de los círculos que representan puntos de incertidumbre y estimar la probabilidad de cada resultado. Realizar nuestra mejor suposición para calcular la probabilidades 18

19 Árboles de Decisión CALCULAR LOS VALORES DEL ÁRBOL Comenzar por la parte final del árbol de decisión, y recorremos el mismo hacia el inicio. Cuando se completa un conjunto de cálculos en un nodo anotar el resultado. Para calcular el valor de resultados inciertos hay que multiplicar el costo por la probabilidad asociada. El total para esos nodos del árbol lo constituye la suma de todos estos valores. 19

20 CALCULANDO EL VALOR DE LOS NODOS DE DECISIÓN Cuando evaluamos los nodos de decisión, debemos escribir el costo de la opción sobre cada línea de decisión. Luego, debemos calcular el costo total basado en los valores de los resultados que ya hemos calculado. Esto nos dará un valor que representa el beneficio de tal decisión. Hay que tener en cuenta que la cantidad ya gastada no cuenta en este análisis - estos son costos ya perdidos y (a pesar de los argumentos que pueda tener un contador) no deberían ser imputados a las decisiones. Cuando ya hayamos calculado los beneficios de estas decisiones, deberemos elegir la opción que tiene el beneficio más importante, y tomar a este como la decisión tomada. Este es el valor de este nodo de decisión. 20

21 21

En resumen, los árboles de decisión proveen un método efectivo para la toma de decisiones debido a que:

En resumen, los árboles de decisión proveen un método efectivo para la toma de decisiones debido a que: Matriz de árbol de decisiones El árbol de decisiones proveen una estructura sumamente efectiva dentro de la cual estimar cuales son las opciones e investigar las posibles consecuencias de seleccionar cada

Más detalles

La Técnica del Árbol para la Toma de Decisiones

La Técnica del Árbol para la Toma de Decisiones La Técnica del Árbol para la Toma de Decisiones El árbol, es una excelente ayuda para la elección entre varios cursos de acción. Proveen una estructura sumamente efectiva dentro de la cual estimar cuáles

Más detalles

La Identificación de Condiciones señala aquellas que son relevantes.

La Identificación de Condiciones señala aquellas que son relevantes. Matriz de árbol de decisiones La tabla de decisión es una matriz de renglones y columnas que indican condiciones y acciones. Las reglas de decisiones, incluidas en una tabla de decisión establecen el procedimiento

Más detalles

Arbol de Decisiones-Investigación de Operaciones II

Arbol de Decisiones-Investigación de Operaciones II Árbol de Decisiones De forma más concreta, refiriéndonos al ámbito empresarial, podemos decir que los árboles de decisión son diagramas de decisiones secuenciales nos muestran sus posibles resultados.

Más detalles

MATRIZ DE ARBOLES DE DECISION

MATRIZ DE ARBOLES DE DECISION MATRIZ DE ARBOLES DE DECISION Los árboles son un subconjunto importante de los grafos, y son una herramienta útil para describir estructuras que presentan algún tipo de jerarquía. Las dificultades de las

Más detalles

Gestión de los Riesgos del Proyecto basado en los estándares del PMI. Ing. Osvaldo Martínez Gómez, MSc, MAP

Gestión de los Riesgos del Proyecto basado en los estándares del PMI. Ing. Osvaldo Martínez Gómez, MSc, MAP Gestión de los Riesgos del Proyecto basado en los estándares del PMI Ing. Osvaldo Martínez Gómez, MSc, MAP San José, Costa Rica - 2012 1 Análisis Cualitativo de los Riesgos Evaluación de la Probabilidad

Más detalles

APLICACIONES DE MINERA DE DATOS EN ADUANA DE PERU. Luis Azaña Bocanegra

APLICACIONES DE MINERA DE DATOS EN ADUANA DE PERU. Luis Azaña Bocanegra APLICACIONES DE MINERA DE DATOS EN ADUANA DE PERU Luis Azaña Bocanegra TEMARIO CONCEPTOS DEFINICION DE MINERIA DE DATOS USOS DE LA MINERIA DE DATOS TECNICAS DE MINERIA DE DATOS ETAPAS DE UN PROYECTO DE

Más detalles

Gestión de la Planificación de los Riesgos del Proyecto

Gestión de la Planificación de los Riesgos del Proyecto Áreas del conocimiento para la AP III Gestión de la Planificación de los Riesgos del Proyecto Basado en los estándares del PMI Ing. Fausto Fernández Martínez, MSc, MAP Análisis Cuantitativo de los Riesgos

Más detalles

Introducción a la minería de datos. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR

Introducción a la minería de datos. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Introducción a la minería de datos CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Minería de datos Detección, interpretación y predicción de patrones cuantitativos y cualitativos

Más detalles

INTRODUCTION TO MACHINE LEARNING ISABELLE GUYON

INTRODUCTION TO MACHINE LEARNING ISABELLE GUYON INTRODUCTION TO MACHINE LEARNING ISABELLE GUYON 2008-02-31 Notas tomadas por: María Eugenia Rojas Qué es Machine Learning? El proceso de aprendizaje de maquina consiste en tener una gran base de datos

Más detalles

Introducción a la minería de datos

Introducción a la minería de datos Introducción a la minería de datos 1 Temario Qué es minería de datos? Quién usa minería de datos? Por qué de la minería de datos? Ciclo virtuoso de la minería de datos 2 Definición de minería de datos

Más detalles

DATA MINING CONCEPTOS Y EXPERIENCIA EN LA FISCALIZACIÓN DEL MERCADO DE VALORES DE CHILE

DATA MINING CONCEPTOS Y EXPERIENCIA EN LA FISCALIZACIÓN DEL MERCADO DE VALORES DE CHILE VII Reunión sobre casos prácticos de inspección y vigilancia de mercados y entidades. Santiago de Chile DATA MINING CONCEPTOS Y EXPERIENCIA EN LA FISCALIZACIÓN DEL MERCADO DE VALORES DE CHILE Marcelo García

Más detalles

Introducción. Qué es Machine Learning?

Introducción. Qué es Machine Learning? Introducción Qué es Machine Learning? Introducción Hay problemas en Informática que se pueden definir concretamente y son simples de convertir en un algoritmo Ejemplo: Ordenar alfabéticamente una lista,

Más detalles

INTELIGENCIA ARTIFICAL COMO HERRAMIENTA EN LA TOMA DE DECISIONES. Tecnología i3b

INTELIGENCIA ARTIFICAL COMO HERRAMIENTA EN LA TOMA DE DECISIONES. Tecnología i3b INTELIGENCIA ARTIFICAL COMO HERRAMIENTA EN LA TOMA DE DECISIONES Tecnología i3b G R U P O I B E R M Á T I C A Introducción Objetivos Puntos de información y de estudio Tipos de análisis Análisis proactivo

Más detalles

Inteligencia Artificial: Su uso para la investigación

Inteligencia Artificial: Su uso para la investigación Inteligencia Artificial: Su uso para la investigación Dra. Helena Montserrat Gómez Adorno Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas helena.adorno@iimas.unam.mx 1 Introducción

Más detalles

10 EXÁMENES

10 EXÁMENES 10 EXÁMENES 2014-2018 Convocatoria Extraordinaria de Septiembre 1 de Septiembre de 2014 1. (1 pto.) a) Aunque por abuso del lenguaje hemos hablado de minería de datos y de KDD como sinónimos, indica las

Más detalles

Analizando patrones de datos

Analizando patrones de datos Analizando patrones de datos SQL Server DM, Excel DM, Azure ML y R Ana María Bisbé York @ambynet http://amby.net/ Temario Introducción a Minería de datos MS Office Excel Herramientas de tabla y Minería

Más detalles

TEMA 1: INTRODUCCIÓN N AL PROCESADO Y ANÁLISIS DE DATOS

TEMA 1: INTRODUCCIÓN N AL PROCESADO Y ANÁLISIS DE DATOS Procesado y Análisis de Datos Ambientales. Curso 2009-2010. José D. Martín, Emilio Soria, Antonio J. Serrano TEMA 1: INTRODUCCIÓN N AL PROCESADO Y ANÁLISIS DE DATOS ÍNDICE Introducción. Selección de variables.

Más detalles

Introducción Aprendizaje de Máquina. Gerardo Gutiérrez Gutiérrez Alexis Rodríguez Gutiérrez

Introducción Aprendizaje de Máquina. Gerardo Gutiérrez Gutiérrez Alexis Rodríguez Gutiérrez Introducción Aprendizaje de Máquina Gerardo Gutiérrez Gutiérrez Alexis Rodríguez Gutiérrez Qué es Aprendizaje de Máquina? "Field of study that gives computers the ability to learn without being explicitly

Más detalles

Minería de Datos, Análisis Predictivo con Microsoft Analysis Services y PowerPivot Excel (Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot) Duración: 24 horas Código:

Más detalles

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación Clasificación (discriminación) Empareja

Más detalles

MODELOS DE DECISIÓN. L.A. y M.C.E. Emma Linda Diez Knoth. 1 Colcio.j

MODELOS DE DECISIÓN. L.A. y M.C.E. Emma Linda Diez Knoth. 1 Colcio.j MODELOS DE DECISIÓN 1 Colcio.j MODELOS DE DECISIÓN a) Decisiones empresariales: Alcanzar las metas de la organización. Utilizar algún criterio o medida del rendimiento. La medida más común del rendimiento

Más detalles

Machine Learning y su Utilización en Riesgo de. Seemant Teotia Sr. Director International Analytics Equifax Inc. USA. Crédito

Machine Learning y su Utilización en Riesgo de. Seemant Teotia Sr. Director International Analytics Equifax Inc. USA. Crédito Machine Learning y su Utilización en Riesgo de Seemant Teotia Sr. Director International Analytics Equifax Inc. USA Crédito Principios de Machine Learning Qué es? Por qué lo usamos? Cuándo lo usamos? Ejemplos

Más detalles

Anexo I CUESTIONARIO UTILIZADO PARA LA RECOGIDA DE INFORMACIÓN

Anexo I CUESTIONARIO UTILIZADO PARA LA RECOGIDA DE INFORMACIÓN Anexo I CUESTIONARIO UTILIZADO PARA LA RECOGIDA DE INFORMACIÓN 165 ENCUESTA DE COMPORTAMIENTOS Y TIPOLOGÍAS DE VISITANTES EN EUSKADI 166 ANEXO I. CUESTIONARIO UTILIZADO PARA LA RECOGIDA DE INFORMACIÓN

Más detalles

1.-DATOS DE LA ASIGNATURA

1.-DATOS DE LA ASIGNATURA 1.-DATOS DE LA ASIGNATURA Nombre de la asignatura: Minería de Datos Carrera: Ingeniería en Sistemas Computacionales Clave de la asignatura: ADM-0701 Horas teoría-horas práctica-créditos: 3-2-8 2.-HISTORIA

Más detalles

Aprendizaje Automatizado

Aprendizaje Automatizado Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto

Más detalles

Ing. Fausto Fernández Martínez, MSc, MAP

Ing. Fausto Fernández Martínez, MSc, MAP Áreas del conocimiento para la AP III Gestión de los Riesgos del Proyecto Basado en los estándares del PMI Ing. Fausto Fernández Martínez, MSc, MAP San José, Costa Rica - 2013 Realizar el Análisis Cuantitativo

Más detalles

LA MINERÍA DE DATOS APLICADA A LA BÚSQUEDA DE PATRONES DE SUPERVIVIENCIA EN LA NEOPLASIA MALIGNA DE TRÁQUEA, BRONQUIOS Y PULMÓN

LA MINERÍA DE DATOS APLICADA A LA BÚSQUEDA DE PATRONES DE SUPERVIVIENCIA EN LA NEOPLASIA MALIGNA DE TRÁQUEA, BRONQUIOS Y PULMÓN LA MINERÍA DE DATOS APLICADA A LA BÚSQUEDA DE PATRONES DE SUPERVIVIENCIA EN LA NEOPLASIA MALIGNA DE TRÁQUEA, BRONQUIOS Y PULMÓN Miguel Ángel Negrín; Christian González; Jaime Pinilla; Francisco-José Vázquez-Polo

Más detalles

RESUMEN PROGRAMACIÓN ESTADÍSTICA I. 3. Diseñar tablas estadísticas para coleccionar y ordenar datos.

RESUMEN PROGRAMACIÓN ESTADÍSTICA I. 3. Diseñar tablas estadísticas para coleccionar y ordenar datos. RESUMEN PROGRAMACIÓN ESTADÍSTICA I OBJETIVOS 1. Conocer los principales conceptos usados en Estadística: población, muestra e individuo. 2. Diferenciar los tres tipos de variables estadísticas: cualitativas,

Más detalles

UNIDAD 1. CONCEPTOS DE LA ADMINISTRACIÓN DE PROYECTOS (3)

UNIDAD 1. CONCEPTOS DE LA ADMINISTRACIÓN DE PROYECTOS (3) UNIDAD 1. CONCEPTOS DE LA ADMINISTRACIÓN DE PROYECTOS (3) ADMINISTRACIÓN DE PROYECTOS Inicio, selección y planeación de un proyecto Ana Cristina Palacios García VALOR COMERCIAL ESPERADO (VCE) (1) El VCE

Más detalles

Minería de Datos Para la Inteligencia de Negocios

Minería de Datos Para la Inteligencia de Negocios Minería de Datos Para la Inteligencia de Negocios Luis Francisco Zaldivar, MSE www.modelacionderiesgos.com Porqué el Análisis de Datos Tradicional es Limitado? 1. Tremenda y creciente cantidad de información

Más detalles

Valor esperado: ejemplo

Valor esperado: ejemplo Simulación de Negocios Internacionales Teoría de la Decisión Valor esperado: ejemplo. International Negotiation CARLOS MARIO CALDERÓN OSSA INGENIERO DE SISTEMAS. ESPECIALISTA EN MERCADEO ESPECIALISTA GERENCIA

Más detalles

Mapa Curricular / Matemáticas Quinto Grado

Mapa Curricular / Matemáticas Quinto Grado ESTADO LIBRE ASOCIADO DE PUERTO RICO DEPARTAMENTO DE EDUCACIÓN Programa de Matemáticas Mapa Curricular / Matemáticas Quinto Grado Estándar, Dominio UNIDAD I : Conociendo más los números y las operaciones

Más detalles

Introducción Definición Procesos Técnicas y Algoritmos Principales Usos Software Metodología CRISP - DM Conclusión

Introducción Definición Procesos Técnicas y Algoritmos Principales Usos Software Metodología CRISP - DM Conclusión Introducción Definición Procesos Técnicas y Algoritmos Principales Usos Software Metodología CRISP - DM Conclusión Introducción Día a día generamos información y esto nos lleva a tener una gran cantidad

Más detalles

Tema 1(parte 2): Introducción a la Estadística 1.1-1

Tema 1(parte 2): Introducción a la Estadística 1.1-1 1 Tema 1(parte 2): Introducción a la Estadística 1.1-1 Muestreo Muestra Es un subconjunto de la población. Objetivo del muestreo: El objetivo del muestreo es obtener la mayor cantidad de información posible

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ H. R. Alvarez A., Ph. D.

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ H. R. Alvarez A., Ph. D. H. R. Alvarez A., Ph. Modelos y la toma de decisiones El proceso racional de toma de decisiones utiliza modelos y reglas matemáticas Estos modelos y reglas permiten un proceso sistemático y ordenado de

Más detalles

Preparar: Proyecto de Analysis Service, Origen de datos y Vista al origen de datos.

Preparar: Proyecto de Analysis Service, Origen de datos y Vista al origen de datos. 1 Preparar: Proyecto de Analysis Service, Origen de datos y Vista al origen de datos. El primer paso para poder implementar los escenarios de minería de datos es preparar el Proyecto de Analysis Service,

Más detalles

Pronósticos Automáticos

Pronósticos Automáticos Pronósticos Automáticos Resumen El procedimiento de Pronósticos Automáticos esta diseñado para pronosticar valores futuros en datos de una serie de tiempo. Una serie de tiempo consiste en un conjunto de

Más detalles

Tema 2. Regresión Lineal

Tema 2. Regresión Lineal Tema 2. Regresión Lineal 3.2.1. Definición Mientras que en el apartado anterior se desarrolló una forma de medir la relación existente entre dos variables; en éste, se trata de esta técnica que permite

Más detalles

Identificación de variables asociadas al éxito académico en Estudiantes de la Facultad de Informática Mazatlán

Identificación de variables asociadas al éxito académico en Estudiantes de la Facultad de Informática Mazatlán Your logo Identificación de variables asociadas al éxito académico en Estudiantes de la Facultad de Informática Mazatlán Universidad Autónoma de Sinaloa M.C. Rogelio Estrada Lizárraga Abril 16, 2013 Introducción

Más detalles

Taller Minería de datos aplicados a la educación

Taller Minería de datos aplicados a la educación Taller Minería de datos aplicados a la educación 2ª parte Presentación del software PASW Modeler 27 de junio de 2011 Mercedes Torrado Departamento Métodos de Investigación y Diagnóstico en Educación (MIDE)

Más detalles

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Introducción al aprendizaje supervisado Profesor: Dr. Wilfrido Gómez Flores 1 Conceptos básicos Desde la antigüedad, el problema de buscar patrones en datos es fundamental en diversas

Más detalles

1º E.S.O. Criterios de evaluación y contenidos mínimos (septiembre 2018)

1º E.S.O. Criterios de evaluación y contenidos mínimos (septiembre 2018) 1º E.S.O. y contenidos mínimos (septiembre 2018) Bloque 1: Procesos, métodos y actitudes matemáticas 1.2 Utilizar procesos de razonamiento y estrategias de resolución de problemas, realizando los cálculos

Más detalles

DIPLOMADO EN DATA MINING

DIPLOMADO EN DATA MINING DIPLOMADO EN DATA MINING DIPLOMADO EN DATA MINING Los datos que tienen relevancia para las decisiones de gestión, se están acumulando a un ritmo increíble, debido a una serie de avances tecnológicos. La

Más detalles

Computación distribuida e inteligencia computacional aplicadas a ciudades inteligentes

Computación distribuida e inteligencia computacional aplicadas a ciudades inteligentes Computación distribuida e inteligencia computacional aplicadas a ciudades inteligentes Sergio Nesmachnow, Renzo Massobrio, Sebastián Baña Universidad de la República, Uruguay AGENDA Ciudades inteligentes

Más detalles

Unidad Temática 3: Estadística Analítica. Unidad 9 Regresión Lineal Simple Tema 15

Unidad Temática 3: Estadística Analítica. Unidad 9 Regresión Lineal Simple Tema 15 Unidad Temática 3: Estadística Analítica Unidad 9 Regresión Lineal Simple Tema 15 Estadística Analítica CORRELACIÓN LINEAL SIMPLE Indica la fuerza y la dirección de una relación lineal proporcional entre

Más detalles

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Introducción al aprendizaje supervisado Profesor: Dr. Wilfrido Gómez Flores 1 Conceptos básicos Reconocimiento de patrones (RP): clasificar objetos en un número de categorías o clases.

Más detalles

MASTER DE INGENIERÍA BIOMÉDICA. Métodos de ayuda al diagnóstico clínico. Tema 6: Árboles de decisión.

MASTER DE INGENIERÍA BIOMÉDICA. Métodos de ayuda al diagnóstico clínico. Tema 6: Árboles de decisión. MASTER DE INGENIERÍA BIOMÉDICA. Métodos de ayuda al diagnóstico clínico. Tema 6: Árboles de decisión. 1 Objetivos del tema Conocer en qué consiste un árbol de decisión. Aprender los problemas que pueden

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

ESTADISTICA PARA LA CALIBRACIÓN Y VALIDACIÓN DE METODOLOGÍAS ANALÍTICAS

ESTADISTICA PARA LA CALIBRACIÓN Y VALIDACIÓN DE METODOLOGÍAS ANALÍTICAS ESTADISTICA PARA LA CALIBRACIÓN Y VALIDACIÓN DE METODOLOGÍAS ANALÍTICAS QUÍMICA ANALÍTICA EXPERIMENTAL III SILVIA CITLALLI GAMA GONZÁLEZ PROBLEMA Cuando la cantidad de materia del analito que se encuentra

Más detalles

Minería de datos 1. por José A. Lozano, Universidad del País VascoEuskal Herriko. 1. Introducción

Minería de datos 1. por José A. Lozano, Universidad del País VascoEuskal Herriko. 1. Introducción Minería de datos 1 por José A. Lozano, Universidad del País VascoEuskal Herriko Unibertsitatea 1. Introducción La minería de datos (ver [1] y [2]) es un área que se encuentra en la intersección de diversas

Más detalles

Predicción de potencia en el parque eólico de Villonaco, Loja, Ecuador. Alberto Reyes y Tania Guerrero INER Ecuador

Predicción de potencia en el parque eólico de Villonaco, Loja, Ecuador. Alberto Reyes y Tania Guerrero INER Ecuador Predicción de potencia en el parque eólico de Villonaco, Loja, Ecuador Alberto Reyes y Tania Guerrero INER Ecuador INTRODUCCIÓN El comportamiento del viento presenta alto grado de aleatoriedad, incertidumbre

Más detalles

Selección de fuentes de datos y calidad de datos

Selección de fuentes de datos y calidad de datos Selección de fuentes de datos y calidad de datos ESCUELA COMPLUTENSE DE VERANO 2014 MINERIA DE DATOS CON SAS E INTELIGENCIA DE NEGOCIO Juan F. Dorado José María Santiago . Valores atípicos. Valores faltantes.

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 11 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 11 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 11 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Resolución manual de clasificación bayesiana

Más detalles

Diagnóstico. Dirección de Cómputo para la Docencia. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Dirección General de Servicios de Cómputo Académico

Diagnóstico. Dirección de Cómputo para la Docencia. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Dirección General de Servicios de Cómputo Académico TALLER DE APLICACIONES ESTADÍSTICAS CON EXCEL Diagnóstico Elaborado por Mónica Patricia Ballesteros Chávez 1. Es una expresión en Excel que puede incluir operadores, referencias a celdas, valores, funciones

Más detalles

CRITERIOS DE SELECCIÓN DE MODELOS

CRITERIOS DE SELECCIÓN DE MODELOS Inteligencia artificial y reconocimiento de patrones CRITERIOS DE SELECCIÓN DE MODELOS 1 Criterios para elegir un modelo Dos decisiones fundamentales: El tipo de modelo (árboles de decisión, redes neuronales,

Más detalles

SESIÓN 10 REGLAS BÁSICAS PARA COMBINAR PROBABILIDADES

SESIÓN 10 REGLAS BÁSICAS PARA COMBINAR PROBABILIDADES SESIÓN 10 REGLAS BÁSICAS PARA COMBINAR PROBABILIDADES I. CONTENIDOS: 1. Reglas básicas para combinar probabilidades.. Diagramas de Venn. II. OBJETIVOS: Al término de la Sesión, el alumno: Distinguirá e

Más detalles

Carrera: Ingeniería Civil CIM 0531

Carrera: Ingeniería Civil CIM 0531 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Probabilidad y Estadística Ingeniería Civil CIM 0531 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

La Simulación es un sistema complejo de carácter fundamentalmente estadístico destino a la gestión de la incertidumbre.

La Simulación es un sistema complejo de carácter fundamentalmente estadístico destino a la gestión de la incertidumbre. La Simulación es un sistema complejo de carácter fundamentalmente estadístico destino a la gestión de la incertidumbre. Para ello utiliza los cash flows mediante un modelo mátematico de forma repetitiva

Más detalles

Aprendizaje Automatizado

Aprendizaje Automatizado Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto

Más detalles

en concreto los objetivos que van del 6 al 9 (aplicaciones, tecnología, implicaciones morales, sociales y éticas, y dimensión internacional)

en concreto los objetivos que van del 6 al 9 (aplicaciones, tecnología, implicaciones morales, sociales y éticas, y dimensión internacional) El componente de la evaluación interna en estos cursos es una exploración matemática. Consiste en un breve informe escrito por el alumno, basado en un tema elegido por este, y que debe centrarse en las

Más detalles

Delia S. G. 1, 2, 3 y 4 de octubre de 2017 Buenos Aires Argentina

Delia S. G. 1, 2, 3 y 4 de octubre de 2017 Buenos Aires Argentina Delia S. G 1, 2, 3 y 4 de octubre de 2017 Buenos Aires Argentina DELIA SIOMARA GARCIA VEGA MBA SOCIA AG ACCOUNTING & CONSULTING,S.A. ( Una firma independiente, en asociación con Moore Stephens International

Más detalles

ÍNDICE. Introducción... Capítulo 1. Técnicas de minería de datos y herramientas... 1

ÍNDICE. Introducción... Capítulo 1. Técnicas de minería de datos y herramientas... 1 ÍNDICE Introducción... XI Capítulo 1. Técnicas de minería de datos y herramientas... 1 Clasificación de las técnicas de minería de datos y herramientas más comunes... 1 Modelado originado por la teoría

Más detalles

Recuperación prueba extraordinaria septiembre:

Recuperación prueba extraordinaria septiembre: Recuperación prueba extraordinaria septiembre: El departamento de Matemáticas del IES Poeta Sánchez Bautista llevará a cabo una evaluación extraordinaria para aquellos alumnos con calificaciones negativas

Más detalles

BLOQUE 1: PROCESOS, MÉTODOS Y ACTITUDES MATEMÁTICAS.

BLOQUE 1: PROCESOS, MÉTODOS Y ACTITUDES MATEMÁTICAS. Criterios de evaluación y estándares de aprendizaje en 4º de la ESO (Matemáticas Aplicadas) Se detallan a continuación los criterios de evaluación junto con sus estándares asociados. BLOQUE 1: PROCESOS,

Más detalles

Lingüística computacional

Lingüística computacional Lingüística computacional Definición y alcance Escuela Nacional de Antropología e Historia (ENAH) Agosto diciembre de 2015 Lingüística Ciencias de la computación Lingüística computacional Estudio del lenguaje

Más detalles

Itinerario: Inteligencia Computacional

Itinerario: Inteligencia Computacional Máster Universitario en Investigación e Innovación en Tecnologías de la Información y las Comunicaciones Itinerario: Inteligencia Computacional Escuela Politécnica Superior Universidad Autónoma de Madrid

Más detalles

Índice general. Prefacio...5

Índice general. Prefacio...5 Índice general Prefacio...5 Capítulo 1 Introducción...13 1.1 Introducción...13 1.2 Los datos...19 1.3 Etapas en los procesos de big data...20 1.4 Minería de datos...21 1.5 Estructura de un proyecto de

Más detalles

Reconocimiento de Patrones DRA. LETICIA FLORES PULIDO

Reconocimiento de Patrones DRA. LETICIA FLORES PULIDO Reconocimiento de Patrones DRA. LETICIA FLORES PULIDO 2 CONTENIDO TEMA1: INTRODUCCIÓN TEMA2: APRENDIZAJE MÁQUINA TEMA3: REDES NEURONALES MULTICAPA TEMA4: PROGRAMACIÓN EVOLUTIVA 3 TEMA 2 : APRENDIZAJE MÁQUINA

Más detalles

PROGRAMACIÓN DE AULA MATEMÁTICAS 5.º CURSO

PROGRAMACIÓN DE AULA MATEMÁTICAS 5.º CURSO PROGRAMACIÓN DE AULA MATEMÁTICAS 5.º CURSO Página 1 UNIDAD 1: SISTEMAS DE NUMERACIÓN CEIP El Parque Conocer los nueve primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer

Más detalles

Caracterización del funcionamiento adecuado de equipos aplicando redes neuronales

Caracterización del funcionamiento adecuado de equipos aplicando redes neuronales Caracterización del funcionamiento adecuado de equipos aplicando redes neuronales Angel Marín, Nuria López, Miguel Ángel Rodríguez y Antonio José Fernández Iberdrola Ingeniería y Construcción, SAU ÍNDICE

Más detalles

Consultor en investigación social y de mercados y analista web.

Consultor en investigación social y de mercados y analista web. Consultor en investigación social y de mercados y analista web 23 años de experiencia en investigación de mercados Amplio conocimiento de metodologías Manejo de SPSS y de modelos multivariantes Analista

Más detalles

Minería de Datos. Índice. Raquel M. Crespo García. Julio Villena Román. Definición y conceptos Técnicas y modelos

Minería de Datos. Índice. Raquel M. Crespo García. Julio Villena Román. Definición y conceptos Técnicas y modelos Inteligencia en Redes de Comunicaciones Minería de Datos Raquel M. Crespo García Julio Villena Román {rcrespo, jvillena}@it.uc3m.es Índice Definición y conceptos Técnicas y modelos IRC - JVR, RCG - 1 1

Más detalles

Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos

Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Probabilidad y Estadística Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 3-2-8 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Psicometría Tema 7 VALIDEZ DE LAS INFERENCIAS II

Psicometría Tema 7 VALIDEZ DE LAS INFERENCIAS II Psicometría Tema 7 VALIDEZ DE LAS INFERENCIAS II Psicometría Mª Isabel García Barbero, UNED. Universidad Nacional de Educación a Distancia, 2006 1 I. Validación con varios predictores y un solo indicador

Más detalles

Sesión 14: Redes de Decisión

Sesión 14: Redes de Decisión Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 14: Redes de Decisión un agente racional ideal es aquel que, para cada posible secuencia de percepciones, realiza la acción que maximiza su

Más detalles

TALLER DE INTRODUCCIÓN A LOS NEGOCIOS

TALLER DE INTRODUCCIÓN A LOS NEGOCIOS REGRESIÓN LINEAL SIMPLE INTRODUCCIÓN Si sabemos que existe una relación entre una variable denominada dependiente y otras denominadas independientes (como por ejemplo las existentes entre: la experiencia

Más detalles

ADMINISTRACION DE OPERACIONES

ADMINISTRACION DE OPERACIONES Sesión4: Métodos cuantitativos ADMINISTRACION DE OPERACIONES Objetivo específico 1: El alumno conocerá y aplicara adecuadamente los métodos de pronóstico de la demanda para planear la actividad futura

Más detalles

ANÁLISIS DE DATOS. Ricardo Aler Mur

ANÁLISIS DE DATOS. Ricardo Aler Mur ANÁLISIS DE DATOS Ricardo Aler Mur EXAMEN DE ANÁLISIS DE DATOS GRADO EN INFORMÁTICA ENERO 2014 10 puntos, 1 hora y media de duración. Responder cada pregunta con respuestas breves (unas pocas líneas).

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

SISTEMA INTEGRAL PARA LA PROYECCIÓN Y DETECCIÓN DE LA PREVENCIÓN DEL DELITO, MEDIANTE MINERÍA DE DATOS.

SISTEMA INTEGRAL PARA LA PROYECCIÓN Y DETECCIÓN DE LA PREVENCIÓN DEL DELITO, MEDIANTE MINERÍA DE DATOS. SISTEMA INTEGRAL PARA LA PROYECCIÓN Y DETECCIÓN DE LA PREVENCIÓN DEL DELITO, MEDIANTE MINERÍA DE DATOS. MTIE. Erik Guerrero Bravo. Universidad Tecnológica Tula - Tepeji. Introducción Sistemas Transaccionales

Más detalles

Nombre de la asignatura: Probabilidad y Estadística. Créditos: Aportación al perfil

Nombre de la asignatura: Probabilidad y Estadística. Créditos: Aportación al perfil Nombre de la asignatura: Probabilidad y Estadística Créditos: 3-2-5 Aportación al perfil Seleccionar y aplicar herramientas matemáticas para el modelado, diseño y desarrollo de tecnología computacional.

Más detalles

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE ESCUELA UNIVERSITARIA DE ENFERMERIA DE TERUEL 1 er CURSO DE GRADO DE ENFERMERIA Estadística en Ciencias de la Salud 7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE PROFESOR Dr. Santiago

Más detalles

Mapas de decisiones Qué debemos tener en cuenta en la toma de decisiones

Mapas de decisiones Qué debemos tener en cuenta en la toma de decisiones Mapas de decisiones Qué debemos tener en cuenta en la toma de decisiones Presenta: Dr. Augusto Castellano Autor: Thomas Köttner Mapas de decisión Poder, estrategia y decisión Libertad, temor y decisiones

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

Problemas de Estadística

Problemas de Estadística Problemas de Estadística I Una variable Resolver con GeoGebra las preguntas que sean posibles 1 1. Saldo de las cuentas de ahorro Un banco de la ciudad desea información respecto del saldo de las cuentas

Más detalles

4. Regresión Lineal Simple

4. Regresión Lineal Simple 1 4. Regresión Lineal Simple Introducción Una vez conociendo las medidas que se utilizan para expresar la fuerza y la dirección de la relación lineal entre dos variables, se tienen elementos base para

Más detalles

VIII Jornadas de Usuarios de R

VIII Jornadas de Usuarios de R VIII Jornadas de Usuarios de R Análisis del Abandono en el Sector Bancario Predicción del abandono de clientes Albacete, 17 de Noviembre de 2016 I. INDICE : Modelo Abandonos I. COMPRENSIÓN DEL NEGOCIO

Más detalles

Guía de Ejercicios Aprendizaje de Máquinas Inteligencia Articial (CC52A)

Guía de Ejercicios Aprendizaje de Máquinas Inteligencia Articial (CC52A) Guía de Ejercicios Aprendizaje de Máquinas Inteligencia Articial (CC52A) 6 de noviembre de 2007 1. Arboles de Decision 1. Investigue las ventajas y desventajas de los árboles de decisión versus los siguientes

Más detalles

3. RELACION ENTRE DOS CONJUNTOS DE DATOS.

3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. 1 Introducción En la búsqueda de mejoras o en la solución de problemas es necesario, frecuentemente, investigar la relación entre variables. Para lo cual existen

Más detalles

PLANES CURRICULARES GRADO9º/ 01 PERIODO

PLANES CURRICULARES GRADO9º/ 01 PERIODO PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento

Más detalles

Minería de Datos Web. Cursada 2018

Minería de Datos Web. Cursada 2018 Minería de Datos Web Cursada 2018 Proceso de Minería de Texto Clustering de Documentos Clasificación de Documentos Es un método supervisado para dividir documentos en base a categorías predefinidas Los

Más detalles

MÉTODOS DE PRONÓSTICO TEMA 1: ANÁLISIS DE SERIES DE TIEMPO Y ELABORACIÓN DE PRONÓSTICOS

MÉTODOS DE PRONÓSTICO TEMA 1: ANÁLISIS DE SERIES DE TIEMPO Y ELABORACIÓN DE PRONÓSTICOS UNIDAD 4 MÉTODOS DE PRONÓSTICO TEMA 1: ANÁLISIS DE SERIES DE TIEMPO Y ELABORACIÓN DE PRONÓSTICOS Predicción de lo que sucederá en el futuro. 1 Predicción de lo que sucederá en el futuro. Los métodos de

Más detalles

Tema: Recorrido de Grafos. Ruta más corta

Tema: Recorrido de Grafos. Ruta más corta PED104. Guía N 12 Página 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación con Estructuras de Datos Tema: Recorrido de Grafos. Ruta más corta Competencia Desarrolla sistemas de información

Más detalles

Desarrollo de un Agente Inteligente para el Pronóstico Utilizando la Teoría de Regresión Múltiple

Desarrollo de un Agente Inteligente para el Pronóstico Utilizando la Teoría de Regresión Múltiple Desarrollo de un Agente Inteligente para el Pronóstico Utilizando la Teoría de Regresión Múltiple Graciano Ramírez Bravo Tecnológico Nacional de México. Instituto Tecnológico de León. Av. Tecnológico S/N

Más detalles

CI5438. Inteligencia Artificial II Clase 4: Aprendizaje en Árboles. Cap 18.3: RN

CI5438. Inteligencia Artificial II Clase 4: Aprendizaje en Árboles. Cap 18.3: RN CI5438. Inteligencia Artificial II Clase 4: Aprendizaje en Árboles de Decisión Cap 18.3: RN Universidad Simón Boĺıvar 5 de octubre de 2009 Árboles de Decisión Un árbol de decisión es un árbol de búsqueda

Más detalles

Inteligencia de Negocio Curso

Inteligencia de Negocio Curso Inteligencia de Negocio Curso 2018-2019 La asignatura Inteligencia de Negocio se centrará el estudio y diseño de técnicas de extracción de conocimiento utilizadas en el área de Business Analytics/ciencia

Más detalles

Apellidos:... Nombre:...

Apellidos:... Nombre:... Apellidos:....................................... Nombre:........................................ Introducción a la Inteligencia Artificial 1 er Parcial de Teoría 12 Noviembre 2004 Ejercicio 1: Responder

Más detalles