EL DIODO DE POTENCIA
|
|
|
- Patricia Gómez Santos
- hace 9 años
- Vistas:
Transcripción
1 EL DIODO DE POTENCIA
2 Ideas generales sobre diodos de unión PN Ecuación característica del diodo: V V T i = I S (e -1) donde: V T = k T/q I S = A q n i2 (D p /(N D L p )+D n /(N A L n )) Operación con polarización directa con V O > V >> V T, siendo V O la tensión interna de equilibrio de la unión: i I S e V V T (dependencia exponencial) Operación con polarización directa con V > V O >> V T : i (V-V g )/r d donde V g es la tensión de codo del diodo y r d su resistencia dinámica Polarización inversa con V << -V T i -I S (corriente inversa de saturación que es muy pequeña y casi independiente de la tensión)
3 Ideas generales sobre diodos de unión PN Curva característica (recta) + V - P N i i [ma] V g pendiente = 1/r d (exponencial) 1 V [V] i [ A] -1 0 V [V] -0,8 (constante)
4 Ideas generales sobre diodos de unión PN Avalancha primaria P N i + V - La corriente aumenta fuertemente si se producen pares electrón-hueco adicionales por choque con la red cristalina de electrones y huecos suficientemente acelerados por el campo eléctrico de la zona de transición i [ A] V [Volt.] 0
5 Concepto de diodo ideal Ánodo i + En polarización directa, la caída de tensión es nula, sea cual sea el valor de la corriente directa conducida i V curva característica Cátodo - V En polarización inversa, la corriente conducida es nula, sea cual sea el valor de la tensión inversa aplicada
6 El diodo semiconductor encapsulado Ánodo Encapsulado (cristal o resina sintética) Ánodo Terminal Contacto metalsemiconductor P N Oblea de semiconductor Cátodo Marca señalando el cátodo Cátodo Terminal Contacto metalsemiconductor
7 Encapsulados de diodos Axiales DO 35 DO 41 DO 15 DO 201
8 Encapsulados de diodos Para usar radiadores
9 Encapsulados de diodos Para grandes potencias DO 5 B 44
10 Encapsulados de diodos Agrupaciones de 2 diodos 2 diodos en cátodo común 2 diodos en serie
11 Encapsulados de diodos Agrupaciones de 2 diodos (con varias conexiones)
12 Encapsulados de diodos Agrupaciones de 2 diodos (sin conectar) Nombre del dispositivo
13 Encapsulados de diodos Agrupaciones de 2 diodos. Diversos encapsulados para el mismo dispositivo Nombre del dispositivo Encapsulados
14 Encapsulados de diodos Agrupaciones de 4 diodos (puentes de diodos) Dual in line
15 Encapsulados de diodos Agrupaciones de 4 diodos (puentes de diodos) + -
16 Encapsulados de diodos Puentes de diodos. Toda la gama de Fagor
17 Encapsulados mixtos de diodos y otros dispositivos Dan origen a módulos de potencia - Adecuados para alta potencia y relativa alta frecuencia - Minimizan las inductancias parásitas del conexionado - Se usan en aplicaciones industriales, espaciales, militares, etc - Se pueden pedir a medida Control de Motores Electrónica militar
18 Circuito equivalente estático i Curva característica real Curva característica ideal Curva característica asintótica. Pendiente = 1/r d 0 V V g ideal Circuito equivalente asintótico r d Modelo asintótico V g
19 Características fundamentales de cualquier diodo 1ª -Máxima tensión inversa soportada 2ª -Máxima corriente directa conducida 3ª -Caída de tensión en conducción 4ª -Corriente de inversa en bloqueo 5ª -Velocidad de conmutación 1ª Máxima tensión inversa soportada Corresponde a la tensión de ruptura de la unión inversamente polarizada Baja tensión Media tensión Alta tensión 15 V 100 V 500 V Ejemplo de clasificación 30 V 45 V 55 V 150 V 200 V 400 V 600 V 800 V 1000 V 60 V 1200 V 80 V
20 1ª Máxima tensión inversa soportada El fabricante suministra (a veces) dos valores: - Tensión inversa máxima de pico repetitivo V RRM - Tensión inversa máxima de pico no repetitivo V RSM La tensión máxima es crítica. Superarla suele ser determinante del deterioro irreversible del componente
21 2ª Máxima corriente directa conducida El fabricante suministra dos (y a veces tres) valores: - Corriente eficaz máxima I F(RMS) - Corriente directa máxima de pico repetitivo I FRM - Corriente directa máxima de pico no repetitivo I FSM Depende de la cápsula
22 3ª Caída de tensión en conducción La caída de tensión en conducción (obviamente) crece con la corriente directa conducida. A corrientes altas crece linealmente r d ideal V g i I D 5 A V V D
23 3ª Caída de tensión en conducción La caída de tensión en conducción crece con la máxima tensión soportable por el diodo
24 3ª Caída de tensión en conducción Se obtiene directamente de las curvas tensión corriente I F(AV) = 4A, V RRM = 200V 25A I F(AV) = 5A, V RRM = 1200V 25A En escala lineal no son muy útiles Frecuentemente se representan en escala logarítmica
25 3ª Caída de tensión en conducción Curva característica en escala logarítmica I F(AV) = 25A, V RRM = 200V I F(AV) = 22A, V RRM = 600V 20A 20A
26 3ª Caída de tensión en conducción Los Schottky tienen mejor comportamiento en conducción para V RRM < 200 (en silicio) 10A
27 3ª Caída de tensión en conducción Schottky de V RRM relativamente alta 10A La caída de tensión en conducción no sólo va creciendo al aumentar V RRM, sino que se aproxima a la de un diodo PN
28 3ª Caída de tensión en conducción Schottky Schottky Similares valores de V RRM y similares caídas de tensión en conducción PN
29 4ª Corriente de inversa en bloqueo Depende de los valores de I F(AV) y V RRM, de la tensión inversa (poco) y de la temperatura (mucho) Crece con I F(AV) Algunos ejemplos de diodos PN I F(AV) = 8A, V RRM = 200V Crece con T j I F(AV) = 4A, V RRM = 200V I F(AV) = 5A, V RRM = 1200V
30 4ª Corriente de inversa en bloqueo Dos ejemplos de diodos Schottky I F(AV) = 10A, V RRM = 40V Crece con I F(AV) Crece con T j Decrece con V RRM I F(AV) = 10A, V RRM = 170V
31 5ª Velocidad de conmutación Comportamiento ideal de un diodo en conmutación R a b V 2 V 1 i V 1 /R i + V - t Transición de a a b, es decir, de conducción a bloqueo (apagado) V t -V 2
32 5ª Velocidad de conmutación Comportamiento real de un diodo en conmutación Transición de a a b, es decir, de conducción a bloqueo (apagado) a b V 1 V 2 R i + V t s = tiempo de almacenamiento (storage time ) t f = tiempo de caída (fall time ) - i -V 2 /R V 1 /R t rr V t s t t t f (i= -0,1 V 2 /R) t rr = tiempo de recuperación inversa (reverse recovery time ) -V 2
33 5ª Velocidad de conmutación Comportamiento real de un diodo en conmutación Transición de b a a, es decir, de bloqueo conducción (encendido) R i a b + V 2 V V 1-0,9 V 1 /R 0,1 V 1 /R i t d t r t d = tiempo de retraso (delay time ) t r = tiempo de subida (rise time ) t fr = t d + t r = tiempo de recuperación directa (forward recovery time ) t fr El tiempo de recuperación directa genera menos problemas reales que el de recuperación inversa
34 5ª Velocidad de conmutación Información suministrada por los fabricantes Corresponde a conmutaciones con cargas con comportamiento inductivo I F(AV) = 8A, V RRM = 200V
35 5ª Velocidad de conmutación Más información suministrada por STTA506D los fabricantes
36 5ª Velocidad de conmutación La velocidad de conmutación (valorada con la t rr ) ayuda a clasificar los diodos V RRM I F t rr Standard 100 V V 1 A 50 A > 1 s Fast 100 V V 1 A 50 A 100 ns 500 ns Ultra Fast 200 V V 1 A 50 A 20 ns 100 ns Schottky 15 V V 1 A 150 A < 2 ns Las características de todos los semiconductores (por supuesto, también de los diodos) se pueden encontrar en Internet (pdf) Direcciones web
37 Pérdidas en diodos Son de dos tipos: - Estáticas en conducción (en bloqueo son despreciables) - Dinámicas Pérdidas estáticas en un diodo i D i D Forma de onda frecuente ideal r d V g P Potencia instantánea perdida en conducción: p Dcond (t) = v D (t) i D (t) = (V g + r d i D (t)) i D (t) Potencia media en un periodo: Dcond 1 T T 0 p Dcond (t) dt P Dcond = V g I M + r d I ef 2 I M : Valor medio de i D (t) I ef : Valor eficaz de i D (t)
38 Pérdidas dinámicas (pérdidas de conmutación) en un diodo Las conmutaciones no son perfectas Hay instantes en los que conviven tensión y corriente La mayor parte de las pérdidas se producen en la salida de conducción 10 A i D t rr t 0,8 V V D 3 A Potencia instantánea perdida en la salida de conducción: t p Dsc (t) = v D (t) i D (t) = -200 V Potencia media en un periodo: P D 1 T trr 0 p Dsc (t) dt
39 Información de los fabricantes sobre pérdidas Estáticas (de las hojas de características (Datasheet) del diodo STTA506)
40 Información de los fabricantes sobre pérdidas Dinámicas (de las hojas de características (Datasheet) del diodo STTA506)
41 Información de los fabricantes sobre pérdidas Dinámicas (de las hojas de características (Datasheet) del diodo STTA506)
42 Características Térmicas Las pérdidas generan calor y éste debe ser evacuado El silicio pierde sus propiedades semiconductoras a partir de ºC Magnitudes térmicas: - Resistencias térmicas, R TH en ºC/W - Increm. de temperaturas, ΔT en ºC Si P (W) j Unión (oblea) R THjc R THca a Ambiente c Encapsulado - Potencia perdida, P en W Ley de Ohm térmica: ΔT=P R TH Magnitudes eléctricas: - Resistencias eléctricas, R en Ω - Difer. de tensiones, V en voltios - Corriente, I en A Equivalente eléctrico R TH R ΔT V P I
43 Características Térmicas Equivalente eléctrico R TH R ΔT V P I P (W) Si j Unión R THjc c Encapsulado R THca a Ambiente T J j R THjc T C c R THca P a T a 0º K Por tanto: ΔT = P ΣR TH T j -T a = P (R THjc + R THca ) Y también: T j -T C = P R THjc y T c -T a = P R THca
44 Características Térmicas La resistencia térmica unión-cápsula es baja ( 0,5-5 ºC/W) La resistencia térmica cápsula-ambiente es alta ( ºC/W) I F(AV) = 5A, V RRM = 1200V Cápsula TO 3 TO 5 TO 66 TO 220 TOP 3 R THca [ºC/W] Para reducir la temperatura de la unión hay que disminuir la resistencia térmica entre la cápsula y el ambiente. Para ello se coloca un radiador en la cápsula.
45 Características Térmicas R THrad j R THjc c a T J T C R THca T a P P (W) Si j Unión R THjc R THca R THrad a Ambiente 0º K c Encapsulado Por tanto: T j -T a = P [R THjc + (R THca R THrad )/(R THca +R THrad )] Y también: T j -T C = P R THjc y T c -T a = P (R THca R THrad )/(R THca +R THrad )]
LA ELECTRÓNICA DE POTENCIA
LA ELECTRÓNICA DE POTENCIA Definición: La electrónica de potencia es aquella parte de la electrónica que enlaza la electricidad con la electrónica. Dispositivos de potencia: Los dispositivos de potencia
Diodo. Materiales Eléctricos. Definición: Símbolo y Convenciones V - I: 10/06/2015
Materiales Eléctricos Diodo Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y Convenciones V - I: V F - - V R I F I R 1 Relación
Electrónica de Potencia Aplicada
Electrónica de Potencia Aplicada Unidad I 1.Semiconductores de potencia. 1.1. Diodos de potencia. 1.1.1 Características y parámetros. 1.1.2 Rectificadores monofásicos y polifásicos. 1.1.3 Aplicaciones
EL MOSFET DE POTENCIA
Ideas generales sobre el transistor de Efecto de Campo de MetalÓxido Semiconductor El nombre hace mención a la estructura interna: Metal Oxide Semiconductor Field Effect Transistor (MOSFET) Es un dispositivo
P A R T A D O. El diodo de potencia. Electrónica Industrial
A P A R T A D O El diodo de potencia 10 A Introducción A. Introducción Uno de los dispositivos más importantes de los circuitos de potencia son los diodos, aunque tienen, entre otras, las siguientes limitaciones:
Lección : El diodo de potencia
2.1 Construcción y encapsulado UNIÓN -N DE SEMICONDUCTOR: CÁTODO N ÁNODO CÁTODO ÁNODO Ecuación de Shockley V VT i IS e 1 Tensión Térmica V T k T q k: Constante de Boltzmann q: Carga del electrón T: Temperatura
DIODOS DE POTENCIA. Indice. Características estáticas. Características dinámicas. Disipación de potencia. Características térmicas
DIODOS DE POTENCIA Indice El diodo de potencia. Características estáticas Parámetros en bloqueo. Parámetros en conducción. Modelos estáticos de diodo. Características dinámicas Tiempo de recuperación inverso.
DIODOS SEMICONDUCTORES DE POTENCIA
DIODOS SEMICONDUCTORES DE POTENCIA Los diodos de potencia son de tres tipos: de uso general, de alta velocidad (o de recuperación rápida) y Schottky. Los diodos de uso general están disponibles hasta 6000
Interpretación de las hojas de datos de diodos
1 Interpretación de las hojas de datos de diodos En las hojas de datos dadas por el fabricante de cualquier dispositivo electrónico encontramos la información necesaria como para poder operar al dispositivo
SEMICONDUCTORES. Silicio intrínseco
Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.
A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal
A.1.1. Introducción A.1. El diodo - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.2. Caracterización del diodo - al unirse la zona n
El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL
TEMA 3 El Diodo El Diodo ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL 3.4. FENÓMENOS DE AVALANCHA Y ZENER 3.5. OTROS TIPOS DE DIODOS. MODELOS
FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica
FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 2 2. OBJETIVOS CARACTERIZACIÓN
ELECTRÓNICA Y AUTOMATISMOS
ELECTRÓNCA Y AUTOMATSMOS 2º Curso de nstalaciones Electromecánicas Mineras Tema 1: Componentes Electrónicos El diodo (Segunda parte) Profesor: Javier Ribas Bueno Nota: Esta segunda parte ha sido desarrollada
Parcial_1_Curso.2012_2013. Nota:
Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.
Electrónica Analógica I Prof. Ing. Mónica L. González. Diodo Zener: características y especificaciones en hojas de datos
Diodo Zener: características y especificaciones en hojas de datos Cuando la tensión inversa aplicada a un diodo de juntura PN excede cierto valor denominado tensión de ruptura la corriente inversa crece
RECTIFICADORES MONOFASICOS NO CONTROLADOS
UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERIA QUIMICA Y TEXTIL CONTROLES ELECTRICOS Y AUTOMATIZACION EE - 621 RECTIFICADORES MONOFASICOS NO CONTROLADOS TEMAS Diodos semiconductores, Rectificadores
UD6.- TEORIA DE SEMICONDUCTORES EL DIODO
UD6. TEORIA DE SEMICONDUCTORES EL DIODO Centro CFP/ES CONSTITUCIÓN INTERNA DE LA MATERIA Moléculas y Átomos 1 CONSTITUCIÓN INTERNA DE LA MATERIA Clasificación de los cuerpos CONSTITUCIÓN INTERNA DE LA
RECTIFICACIÓN DE MEDIA ONDA
RECTIFICACIÓN DE MEDIA ONDA I. OBJETIVOS Definir lo que es una fuente de baja tensión. Analizar los componentes a utilizar. Montaje del circuito. Análisis de tensión (AC-DC). Determinar las gráficas a
TEORÍA DEL DIODO. Tema Unión p-n. Diodo sin polarizar 2.- Polarización del diodo Polarización inversa Polarización directa.
Tema 2 TEORÍA DEL DIODO. 1.- Unión p-n. Diodo sin polarizar 2.- Polarización del diodo. 2.1.- Polarización inversa. 2.2.- Polarización directa. 3.- Curva característica del diodo. 4.- El diodo como elemento
1. Identificar los electrodos de un diodo (de Silicio o de Germanio).
EL DIODO SEMICONDUCTOR Objetivos 1. Identificar los electrodos de un diodo (de Silicio o de Germanio). 2. Probar el estado de un diodo utilizando un ohmetro. 3. Obtener curvas características de un diodo.
El símbolo y estructura del SCR se muestran en la figura. Este proceso regenerativo se repite hasta saturar Q1 y Q2 causando el encendido del SCR.
Reguladores (cont.) Para finalizar el tema teórico de los tiristores presentamos un resumen. SCR- Símbolo, estructura y funcionamiento básico. El SCR (Rectificador controlado de silicio) es un dispositivo
Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.
Electrónica Tema 2 Diodos Contenido Ideas básicas Aproximaciones Resistencia interna y Resistencia en continua Rectas de carga Diodo zener Dispositivos optoelectrónicos Diodo Schottky 2 Diodo Es un dispositivo
TEMA 1.2 UNIÓN PN. DIODO. TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA
TEMA 1.2 UNIÓN PN. DIODO. TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 09 de octubre de 2014 TEMA 1.2 UNIÓN PN. DIODO. Introducción. Unión PN en equilibrio térmico Unión PN polarizada Modelos
CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR
CURSO TALLER ACTIVIDAD 16 DIODOS I. DIODO RECTIFICADOR Un diodo es un dispositivo semiconductor. Los dispositivos semiconductores varían sus propiedades al variar la temperatura (son sensibles a la temperatura).
DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido
DIODO Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y convenciones V - I: V F - - V R I F I R DIODO Ideal vs. Semiconductor DIODO
Introducción a la Electrónica de Dispositivos
Universidad de Oviedo Área de Tecnología Electrónica Introducción a la Electrónica de Dispositivos Materiales semiconductores La unión PN y los diodos semiconductores Transistores Departamento de Ingeniería
Si un material tipo P y otro de tipo N se juntan mecánicamente para formar un único cristal, esa juntura se llama juntura PN o diodo de juntura.
CURSO: SEMICONDUCTORES UNIDAD 1: EL DIODO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN Los dispositivos de estado sólido, tales como los diodos de juntura y los transistores se fabrican de
Accionamientos eléctricos Tema VI
Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización
ELECTRONICA GENERAL. Tema 2. Teoría del Diodo.
Tema 2. Teoría del Diodo. 1.- En un diodo polarizado, casi toda la tensión externa aplicada aparece en a) únicamente en los contactos metálicos b) en los contactos metálicos y en las zonas p y n c) la
Rectificador Controlado de Silicio (SCR) Cuáles son las principales aplicaciones de los SCR?
GUÍA TÉCNICA INFORMATIVA Nro.3 2017 Rectificador Controlado de Silicio (SCR) Cuáles son las principales aplicaciones de los SCR? Qué es un SCR? El rectificador controlado de silicio SCR Silicon Controlled
CLASIFICACIÓN DE LOS CIRCUITOS ELECTRÓNICOS DE POTENCIA
CLASIFICACIÓN DE LOS CIRCUITOS ELECTRÓNICOS DE POTENCIA Aprovechando las características de conmutación de los dispositivos semiconductores de potencia, se puede controlar la potencia eléctrica de una
LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES
Diapositiva 1 LA UNÓN PN La unión pn en circuito abierto FUNDAMENTOS DE DSPOSTOS ELECTRONCOS SEMCONDUCTORES A K Zona de deplexión Unión p n Contacto óhmico ones de impurezas dadoras ones de impurezas aceptoras
Ing. Christian Lezama Cuellar
Ing. Christian Lezama Cuellar 1. Conducción en los materiales Diodo semiconductor: Componente electrónico formado por la unión de dos materiales semiconductores con distintos tipos de impurezas. Modelo
P A R T A D O. El tiristor. A. Introducción. Electrónica Industrial
A 3.3 P A R T A D O A. Introducción 45 3.3 Se denominan tiristores a todos aquellos componentes semiconductores con dos estados estables cuyo funcionamiento se basa en la realimentación regenerativa de
SEMICONDUCTORES DE POTENCIA
1 SEMICONDUCTORES DE POTENCIA 1. INTRODUCCION Electrónica de Potencia se refiere al control y conversión de la energía eléctrica por medio de dispositivos semiconductores de potencia que trabajan como
El Diodo. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica
El Diodo Lección 03.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez El Diodo 1 / 29 Contenido 1 Modelo del Diodo
Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. Recta de carga. 3- Tipos especiales de diodos
Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. ecta de carga. 3- Tipos especiales de diodos Zener Schottky Emisor de luz (LED) 4- Circuitos con diodos ecortadores ó
EL MOSFET DE EMPOBRECIMIENTO
MOSFET El MOSFET (Metal Oxide Semiconductor FET), tiene tres terminales fuente, puerta y drenador. Sin embargo, a diferencia del JFET, la puerta está aislada eléctricamente del canal. Por esta causa, la
EJERCICIO 1 EJERCICIO 2
EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la
DIODO DE UNIÓN P N TECNOLOGÍA ELECTRÓNICA (2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ TE (09/10). TEMA 2: DIODO DE UNIÓN PN.
DIODO DE UNIÓN P N TECNOLOGÍELECTRÓNIC(2009/2010) BRÉGAINS, JULIO IGLESIA, DANIEL LAMAS, JOSÉ DEPARTAMENTO DE ELECTRÓNICA Y SISTEMAS SÍMBOLO Y ESTRUCTURAS DEL DIODO PN 2 DE 30 CIRCUITO ABIERTO UNIÓN P
EJERCICIO 1 EJERCICIO 2
EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la
Tipos de Tiristores. SCR (Silicon Controlled Rectifier) A este dispositivo se le suele llamar Tiristor DIAC TRIAC GTO
Tipos de Tiristores SCR (Silicon Controlled Rectifier) A este dispositivo se le suele llamar Tiristor DIAC TRIAC GTO SCR (Silicon Controlled Rectifier) Es uno de los semiconductores más antiguos 1957 General
Tema 6. El diodo. Índice. 1. Introducción Principios de funcionamiento del diodo Estructura y funcionamiento del diodo...
El diodo Tema 6 Índice 1. Introducción... 2 2. Principios de funcionamiento del diodo... 2 3. Estructura y funcionamiento del diodo... 3 3.1. Modelo de gran señal y características estática... 4 3.2. Modelos
Semiconductores de potencia. José M. Cámara V 1.0
Semiconductores de potencia José M. Cámara V 1.0 Introducción Vamos a estudiar dispositivos semiconductores que se emplean en electrónica de potencia. Se caracterizan porque trabajan con tensiones y corrientes
LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica 1. TEMA
DIODOS ZENER DIODO GENERAL. Qué es un diodo Zéner? DISPOSITIVOS ELECTRONICOS 31/10/2017. Es un Diodo semiconductor. trabajar en polarización inversa.
Universidad Nacional de Misiones DSPOSTVOS EECTRONCOS DODOS ZENER Qué es un diodo Zéner? Es un Diodo semiconductor especialmente diseñando para trabajar en polarización inversa. SÍMBOO 2 DODO GENERA Diodo
INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA
UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR FACULTAD DE INFORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADASDEPARTAMENTO DE MATEMATICA Y CIENCIAS CATEDRA FISICA ASIGNATURA: FUNDAMENTOS DE FISICA APLICADA
Dispositivos de potencia y circuitos de aplicación
Dispositivos de potencia y circuitos de aplicación Contenido: 1. Introducción a la electrónica de potencia 2. Diodos de potencia 3. Modelo térmico y cálculo de disipadores 4. Tiristores 5. Transistores
FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica
FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 9 RECTIFICADOR MONOFÁSICO
CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA
CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA Joaquín Agulló Roca 3º ESO CIRCUITOS ELECTRICOS MAGNITUDES ELECTRICAS La carga eléctrica (q) de un cuerpo expresa el exceso o defecto
GUIA DE EXPERIMENTOS
GUIA DE EXPERIMENTOS LABORATORIO N. 03 CURSO: Tema: Dispositivos Electrónicos Curvas Características del Diodo Zener Alumnos Integrantes:...... Nota PAGINA 1 CARACTERISTICA DEL DIODO DE RUPTURA ZENER *
DIODOS. Área Académica: Licenciatura en Ingeniería Industrial. Profesor(a):Juan Carlos Fernández Ángeles. Periodo: Enero- Junio 2018
DIODOS Área Académica: Licenciatura en Ingeniería Industrial Profesor(a):Juan Carlos Fernández Ángeles Periodo: Enero- Junio 2018 Qué es un diodo? El diodo es un elemento semiconductor de estado sólido
Sesión 7 Fundamentos de dispositivos semiconductores
Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez
Controladores de Potencia Dispositivos Electrónicos de Potencia
Dispositivos Electrónicos de Potencia Prof. Alexander Bueno M. 17 de septiembre de 2011 USB Funciones Básicas de los Convertidores Electrónicos de Potencia USB 1 Diodos Es el dispositivo más básico de
CIRCUITO DE AYUDA A LA CONMUTACIÓN DE TRANSISTORES
CIRCUITO DE AYUDA A LA CONMUTACIÓN DE TRANSISTORES Las redes de ayuda a la conmutación sirven para proteger a los transistores mediante la mejora de su trayectoria de conmutación. Hay tres tipos básicos
3.1. Conceptos básicos sobre semiconductores
1 3.1. Conceptos básicos sobre semiconductores Estructura interna de los dispositivos electrónicos La mayoría de los sistemas electrónicos se basan en dispositivos semiconductores Resistencia: R=ρL/S Materiales
Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser
Ley de Ohm La resistencia se define como la razón entre la caída de tensión, entre los dos extremos de una resistencia, y la corriente que circula por ésta, tal que 1 Teniendo en cuenta que si el voltaje
-. ZENER. - DIODOS DE RUPTURA
1 -. ZENER. - DIODOS DE RUPTURA ó DIODOS ZENER En muchas aplicaciones prácticas es necesario mantener una tensión sensiblemente constante sobre una carga, o mantener la tensión de un punto fijo respecto
Interruptores Electrónicos de Potencia
Interruptores Electrónicos de Potencia Dra. Victoria Serrano II Semestre 2018 Electrónica de Potencia 1 Clasificación Diodos: conexión/desconexión controlados por el circuito de potencia Tiristores: activados
SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO METALMECANICO
SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO METALMECANICO CURSO VIRTUAL ELECTRONICA BASICA MATERIAL DE APOYO EL DIODO EL DIODO Introducción En este tema estudiaremos el comportamiento del diodo con polarización
RECTIFICANDO SEÑALES ALTERNAS MEDIANTE EL USO DE DIODOS
RECTIFICANDO SEÑALES ALTERNAS MEDIANTE EL USO DE DIODOS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA TECNOLOGÍA. ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Debido al gran interés que suscita el funcionamiento
Diodo Zener. Figura 1 a)
1 Diodo Zener Cuando la tensión inversa aplicada a un diodo de juntura PN excede cierto valor denominado tensión de ruptura la corriente inversa crece muy rápidamente mientras que la tensión sobre el diodo
Conversión CA-CC: Rectificadores
Conversión CA-CC: Rectificadores Electrónica de Potencia Autores (orden alfabético): A. Barrado, C. Fernández, A. Lázaro, E. Olías, M. Sanz, P. Zumel Índice tema Conversión CA-CC y clasificación rectificadores
Unidad temática 1: Tema 1 FUENTES DE CORRIENTE CONTINUA NO REGULADAS
Unidad temática 1: Tema 1 FUENTES DE CORRIENTE CONTINUA NO REGULADAS APUNTE TEÓRICO Profesor: Ing. Aníbal Laquidara. J.T.P.: Ing. Isidoro Pablo Perez. Ay. Diplomado: Ing. Carlos Díaz. Ay. Diplomado: Ing.
Principios Básicos Materiales Semiconductores
Principios Básicos Materiales Semiconductores Definición De Semiconductor Los semiconductores son materiales cuya conductividad varía con la temperatura, pudiendo comportarse como conductores o como aislantes.
TIRISTORES. Dispositivos pnpn RECTIFICADOR CONTROLADO DE SILICIO (SCR)
TIRISTORES INTRODUCCION El diodo semiconductor de dos capas ha dado lugar a dispositivos de tres, cuatro e incluso cinco capas. Se considerará primero una familia de dispositivos pnpn de cuatro capas:
LABORATORIO DE ELECTRÓNICA1 PRACTICA Nº 2 El Diodo. Estudio del componente
LABORATORIO DE ELECTRÓNICA1 PRACTICA Nº 2 El Diodo. Estudio del componente Objetivos: 1. Comprobar el estado de un diodo semiconductor e identificar el cátodo (zona N) y el ánodo (zona P). 2. Realizar
Física de semiconductores. El diodo
Fundamentos Físicos y Tecnológicos de la Informática Física de semiconductores. El diodo El diodo. Ley del diodo. Curvas características. Modelos eléctricos. Otros tipos de diodos: Zener y LED. Aplicación
PROBLEMA DE LA DISIPACIÓN TÉRMICA EN COMPONENTES
TEMA 7 PROBLEMA E LA ISIPACIÓN TÉRMICA EN COMPONENTES 1. GENERALIAES. 2 2. EVACUACIÓN EL CALOR PROUCIO. 3 2.1. Evolución de la T j con el tiempo. 3 2.2. Ley de Ohm térmica. 4 2.3. Circuitos térmicos en
Dispositivos semiconductores de potencia. Interruptores. Radiadores
Tema VII. Lección 22 Dispositivos semiconductores de potencia. Interruptores. Radiadores 22.1 Generalidades 22.2 Modelo estático de la trasferencia térmica 22.3 Cálculo estático de radiadores 22.4 Modelo
Práctica 1.- Característica del diodo Zener
A.- Objetivos Práctica 1.- Característica del diodo ener 1.-Medir los efectos de la polarización directa e inversa en la corriente por el diodo zener. 2.-Determinar experimentalmente y representar la característica
INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N
INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y
Diodos, Tipos y Aplicaciones
Diodos, Tipos y Aplicaciones Andrés Morales, Camilo Hernández, David Diaz C El diodo ideal es un componente discreto que permite la circulación de corriente entre sus terminales en un determinado sentido,
Dispositivos semiconductores de potencia. Interruptores. El diodo de potencia
Tema VII. Lección 16 Disposiivos semiconducores de poencia. Ineupores El diodo de poencia 16.1 Consrucción y encapsulado 16.2 Caracerísicas esáicas 16.2.1 Curvas caracerísicas 16.2.2 Esados de bloqueo
Presentación y objetivos
Presentación y objetivos Uno de los avances tecnológicos que más ventajas y recursos ofrece en la actualidad es la electrónica, y dentro de ésta, la electrónica analógica. Sus aplicaciones van aumentando
Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.
Electrónica Tema 1 Semiconductores Contenido Consideraciones previas: Fuentes de corriente Teorema de Thevenin Teorema de Norton Conductores y Semiconductores Unión p-n Fundamentos del diodo 2 Fuente de
Contactos metal-semiconductor
Contactos metal-semiconductor Lección 02.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez
DESCRIPCIÓN DEL TIRISTOR
DESCRIPCIÓN DEL TIRISTOR El tiristor (SCR, silicon controlled rectifier) es un dispositivo semiconductor de cuatro capas, PNPN con tres terminales: ánodo (A), cátodo (K) y puerta (G), Puede conmutar de
TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS
UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo EL DIODO
TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV CIRCUITOS AMPLIFICADORES
TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV EB 21 TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV EB 22 CIRCUITOS AMPLIFICADORES MOD. MCM5/EV EB 23 CIRCUITOS OSCILADORES
Configuraciones "entrelazadas" o "en contrafase".
Configuraciones "entrelazadas" o "en contrafase". Cuando se opera con corrientes elevadas, y/o se desea minimizar el rizado, es posible llegar a requerir filtros cuyos componentes resultan inaceptables
CONVERTIDOR ELEVADOR Y CONVERTIDOR REDUCTOR
CAPITUO 2 CONVERTIDOR EEVADOR Y CONVERTIDOR REDUCTOR 2.1 Introducción os convertidores de CD-CD son circuitos electrónicos de potencia que transforman un voltaje de corriente continua en otro nivel de
Transistor BJT: Fundamentos
Transistor BJT: Fundamentos Lección 05.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT 1 / 48 Contenido
Unidad didáctica: "Electrónica Analógica"
Unidad didáctica: "Electrónica Analógica" 1.- Introducción. 2.- La resistencia. 3.- El condensador. 4.- El diodo. 5.- El transistor. 1.- Introducción. La electrónica se encarga de controlar la circulación
Circuitos: Circuitos electrónicos. Circuitos electrónicos
Circuitos: CIRCUITOS ELECTRÓNICOS 1. Introducción. 2. Magnitudes. Unidades. Medidas. 3. Leyes. 4. El circuito eléctrico. Elementos. 4.1. Generadores. 4.2. Receptores. 4.3. Elementos control. 4.4. Elementos
SCR, TRIAC Y DIAC. Electrónica de Potencia
SCR, TRIAC Y DIAC Electrónica de Potencia INTRODUCCIÓN Para comprender cada uno de los dispositivos a exponer debemos saber que un tiristor tiene tres terminales un ánodo, un cátodo y una compuerta. Cuando
Resultado: V (Volt) I (A)
Ejercicios relativos al diodo de unión pn 1. Una unión pn abrupta de germanio tiene las siguientes concentraciones de impurezas: N A = 5 10 14 cm -3. N D = 10 16 cm -3 ε r = 16.3 ε 0 = 8.854 10-12 F m
