Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:"

Transcripción

1 EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58. Resuelve ls siguientes ecuciones: ) x 4-5x +4 bi x + x -4x Resuelve ls siguientes ecuciones y comprueb ls soluciones obtenids: ) b) x x- 5. Resuelve l ecución: ) 4 x -9. x +8 b) log(x-)+log log(4x) 6. Un grupo de migs suben l utobús y pgn por el totl de los billetes. Como dos no tienen dinero, ls demás deben pgr,5 más de los que les corresponderí cd un. Cuánts migs son? Cuánto pg cd un? 7. Sbemos que l sum del dinero que poseen tres migos es de, si sbemos que el primero tiene más que el segundo y entre mbos el doble de lo que tiene el tercero. Hll cuánto dinero tiene cd uno de ellos. 8. Resuelve el sistem de ecuciones: log (x y)-log(x- y) x y Resuelve l inecución x -6x+4 < x. Resuelve l inecución x (En los ejercicios del l 5 sólo debes elegir un de ls opciones)

2 Solución del exmen. Hll el vlor de log log ), b) log log -log log 7 log log 4 6 ) Aplicndo ls propieddes de los logritmos reltivs los cocientes, potencis y ríces y tomndo log como fctor común obtenemos: log-log log - log - log- log log b) Expresmos los números en form de potenci de ls bses de los respectivos logritmos: - -4/ log4 4 -log -log log Utilizndo l definición de logritmo y sumndo los resultdos obtenidos: ( - ) - -. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58, 6 5 ) log 6,45,5 6,5,45x, 45 b) 5 +x log,58,58 + log 5,58 log 5,58- -, log5. Resuelve ls siguientes ecuciones: ) x 4-5x +4 bi x + x -4x + 4 ) Se efectú el cmbio de vrible z x obteniendo l ecución: z -5z + 4 Se resuelve l ecución nterior: z Luego ls soluciones de l ecución originl son: 4 y 4 b) Hy que encontrr ls ríces del polinomio del primer miembro, pero ests ríces, si son enters deben dividir l término independiente, luego pueden ser, y 4. Comprobmos el vlor numérico del polinomio en estos números: (-) + (-) 4.(-) + 4 El vlor - es un ríz plicmos l regl de Ruffini pr fctorizr:

3 L expresión que qued como cociente es L fctorizción es x -4 que es un diferenci de cudrdos que fctoriz como sum por diferenci: x +x -4x+4 (x+)(x -4) (x+)(x-)(x+) Luego ls soluciones son: x -, x - y x 4. Resuelve ls siguientes ecuciones y comprueb ls soluciones obtenids: ) b) x x x + ) Psmos l primer miembro los términos necesrios pr igulr l ecución cero: Reducimos común denomindor: -(x ) -x -6 -x - 7 x + Multiplicmos mbos miembros por el denomindor: -x-7-7 Comprobmos que -7 es solución de l ecución de prtid: b) Se isl el rdicl en el primer miembro: x x Se elevn mbos miembros l cudrdo pr eliminr el rdicl: x (x ) x x -6x+9 Se obtiene l ecución de segundo grdo: x -7x+ con soluciones: Se comprueb que no es un solución válid, siéndolo sólo Resuelve l ecución: ) 4 x -9. x +8 b) log(x-)+log log(4x) ) Expresmos ls potencis con l mism bse y exponente pr poder efectur un cmbio de vrible: x -9. x +8 Efectumos el cmbio de vrible y x : y -9y Obteniendo un ecución de º grdo con soluciones: y Hllmos los vlores: 8 x x x x b) Como l sum de logritmos es el logritmo del producto: Log[(x-).x] log(4x) Elimindo logritmos en mbs expresiones: (x-). 4x x - 4x x -7 x (x-7) L solución no es válid pues sólo existen logritmos de números positivos. L solución 7 si es válid.

4 6. Un grupo de migs suben l utobús y pgn por el totl de los billetes. Como dos no tienen dinero, ls demás deben pgr,5 más de los que les corresponderí cd un. Cuánts migs son? Cuánto pg cd un? Se x el número de migs. Cd un deberí pgr. Como dos no pgn qued: x (x-) ( +,5) (x-)(+,5x) x x+,5x --,5 x x Reordenmos monomios y multiplicmos por 4:,5x -,5x- x -x-8 Aplicndo l fórmul de l ecución de segundo grdo: Ls soluciones son: x -8 (que no sirve) y x. Son migs y cd un pg +,5,5. 7. Sbemos que l sum del dinero que poseen tres migos es de, si sbemos que el primero tiene más que el segundo y entre mbos el doble de lo que tiene el tercero. Hll cuánto dinero tiene cd uno de ellos utilizndo el método de Guss. Sen x los euros que tiene l primer person, y los euros que tiene l segund person, z los euros que tiene l tercer person. Obtenemos el sistem: x y +z y x + yz Reordenmos miembros obteniendo: x y + z x - y x + y -z Restmos l ª y ª fils l ª: x y + z -y -z - -z - Obteniendo un sistem tringulr del cuál despejmos ls soluciones. - z - - -y- - -y - y - x++ Por lo tnto y y z. 8. Resuelve el sistem de ecuciones log (x y)-log(x- y) x y 5 5 Aplicmos l propiedd de l diferenci de los logritmos y que el logritmo de es y l propiedd de l potenci de un potenci: 4

5 x y x log log y x x -y y x -y x - y x y 5 5 x y x y Sustituyendo el vlor de x en l primer ecución: (y ) y (y+) +y 4y ++4y+y 4y +5y-9 y - y Con soluciones: y -9/4 8 8 Sustituyendo en l ecución y+: y ; x 4 y ; x y + Siendo mbs válids. 9. Resuelve l inecución x -6x+4 < Resolución: Pr resolver inecuciones de segundo grdo se clculn ls ríces de ecución socid: x -6x+4 < x -8x+ < obteniendo y 6. Representmos en l rect rel ls soluciones encontrds y estudimos el signo de l expresión x -6x+4 (x-).(x-6) en cd uno de los intervlos formdos: - Si x < (x-).(x-6) > - Si < x < 6 (x-).(x-6) < - Si x > 6 (x-).(x-6) > Seleccionmos el conjunto solución, como l inecución pide el conjunto de números reles donde el polinomio es negtivo l solución es (,6) x. Resuelve l inecución x Resolvemos l inecución verigundo cundo es positivo el cociente ddo: ó x - x - Pr resolverlos debemos hllr ls soluciones de cd inecución por seprdo. L solución de cd sistem es l intersección de ls soluciones. x (, )(, ) x Es decir el intervlo (,) tl como se ve en l figur. x (-,)(-,) x Es decir el intervlo (-, ). 6 Por lo tnto l solución complet es l unión de ls soluciones de los dos sistems (-, )(,) 5

T1 Números. 2. Escribe en forma de inecuaciones o sistemas de inecuaciones e intervalos los números que verifican las desigualdades:

T1 Números. 2. Escribe en forma de inecuaciones o sistemas de inecuaciones e intervalos los números que verifican las desigualdades: T Números. Escribe en form de intervlos los números que verificn ests desigulddes y represéntlos: ) x < o x 6 x > y x < 6 x - y x > x < o x -. Escribe en form de inecuciones o sistems de inecuciones e

Más detalles

2) (No para quienes tengan suspendida la 1ª evaluación) Resolver la ecuación siguiente:

2) (No para quienes tengan suspendida la 1ª evaluación) Resolver la ecuación siguiente: ) (No pr quienes tengn suspendid l ª evlución) Resolver l ecución siguiente: 6 ) (No pr quienes tengn suspendid l ª evlución) Resolver l ecución siguiente: + + 6 ) (No pr quienes tengn suspendid l ª evlución)

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tem : Números reles. Ejercicio. Representr los siguientes conjuntos numéricos: ) Números myores que. b) x / x c) x / x x d) Números menores que excluyendo el 0. e) / x x / x x / x ) (, ) b) [,) 0 c) [,]

Más detalles

DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES

DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES REPASO Y APOYO OBJETIVO DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES IDENTIDADES Y ECUACIONES Un iguldd lgebric está formd por dos expresiones lgebrics seprds por el signo igul (=). Un identidd es

Más detalles

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es:

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es: TEMA : ECUACIONES ECUACIONES DE º GRADO Ls ecuciones de º grdo son de l form +b+c=0 y su solución es: b b 4c Cundo b=o o c=0 son incomplets y se resuelven de l siguiente form. Cso b=0, por ejemplo: 6 7=0

Más detalles

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE:

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE: IES Fernndo de Herrer Curso 01 / 1 Primer trimestre º ESO 16 de octubre de 01 Números reles. Potencis rdicles NOMBRE: 1) ) Representr en un mism rect rel: 1 9 1/ 0 1 Decir qué números representn b: 0 1

Más detalles

Funciones Algebraicas

Funciones Algebraicas 1 1r Unidd s 1. Dominio de Polinomiles y Rcionles Cundo los pensmientos brumn nuestr mente es momento de tomr un pus, respirr, y reformulr ides. Unos minutos pr desconectrse resultn de provecho pr volver

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m.

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m. Álgebr 1 de Secundri: I Trimestre I: EXPRESIONES ALGEBRAICAS R Sen 1 Son epresiones lgebrics T 1 log R',, z 3 z A 1 TÉRMINO ALGEBRAICO TÉRMINOS SEMEJANTES ) 3z ; - 3z ; 6z Son términos semejntes b) b;

Más detalles

IES Fernando de Herrera Curso 2012/13 Global 1ª evaluación 4º ESO 28 de noviembre de 2012 NOMBRE

IES Fernando de Herrera Curso 2012/13 Global 1ª evaluación 4º ESO 28 de noviembre de 2012 NOMBRE IES Fernndo de Herrer Curso 01/1 Globl 1ª evlución º ESO 8 de noviembre de 01 NOMBRE 1) Simplificr ls siguientes expresiones, rcionlindo el denomindor, en su cso: ( 1) ( ) ) ( puntos) 19 0 ( ) b) 8 c)

Más detalles

T2 Álgebra. 6. Resuelve la ecuación log(x-3)+logx = log(4x) y comprueba las soluciones obtenidas. x 2 x+2 = 6x2 y comprueba las soluciones obtenidas.

T2 Álgebra. 6. Resuelve la ecuación log(x-3)+logx = log(4x) y comprueba las soluciones obtenidas. x 2 x+2 = 6x2 y comprueba las soluciones obtenidas. T Álgebra 1. Resuelve la ecuación x 4-5x +4 0.. Resuelve la ecuación x + x -4x + 4 0.. Resuelve la ecuación x 1 y comprueba las soluciones obtenidas. x+ 4. Resuelve la ecuación x 1 +1 x- y comprueba las

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

c Ejemplo: 25 9x 2 = 0 x

c Ejemplo: 25 9x 2 = 0 x 1.- ECUACIONES POLINÓMICAS Ecuciones de º grdo Son ecuciones donde l incógnit está elevd. Ecuciones de º grdo complets Son del tipo x + bx + c = 0, con b, c 0. Pr resolverls usmos l fórmul b b 4c x L expresión

Más detalles

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE:

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE: IES Fernndo de Herrer de enero de 04 Primer trimestre Exmen de utoevlución º Bch CCSS NOMBRE: 7 ) ) Representr en l rect rel: b) Qué número es el indicdo en el gráfico? 0 ) Clculr el resultdo simplificdo

Más detalles

TEMA 0: CONCEPTOS BÁSICOS.

TEMA 0: CONCEPTOS BÁSICOS. TEMA : CONCEPTOS BÁSICOS.. Intervlos:. Intervlos. 2. Propieddes de ls potencis.. Propieddes de los rdicles. Operciones con rdicles. Rcionlizción. 4. Conceptos de un polinomio. Fctorizción de polinomios..

Más detalles

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando: Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre

Más detalles

NÚMEROS REALES 1º Bachillerato CC. SS.

NÚMEROS REALES 1º Bachillerato CC. SS. Números Reles NÚMEROS REALES 1º Bchillerto CC. SS. Reles R Irrcionles I Enteros Rcionles Z Q Nturles Nturles N 1,,,... EnterosZ, 1, 0, 1,... Rcionles Q 7,, 6'... 5 N Irrcionles I π,, 7'114... Números Reles

Más detalles

ACTIVIDADES VERANO 4º ESO opción A a b) 3 2 x. 121x 169y. 8 y. a Expresa en forma de potencia: a) Expresa en forma de radical:

ACTIVIDADES VERANO 4º ESO opción A a b) 3 2 x. 121x 169y. 8 y. a Expresa en forma de potencia: a) Expresa en forma de radical: ACTIVIDADES VERANO º ESO opción A 01 NOMBRE: Grupo: 1.- Expres en form de potenci: ) 1 x c) b b.- Expres en form de rdicl: ) = =.- Reduce común índice: ) x,, 8.- Clcul ls siguientes ríces: 1 ) 81 0, 000081.-

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

IES Capellanía 4º ESOB Departamento de Matemáticas. Alumno: Ejercicios Temas 1 y 2: Números Reales. Potencias y Radicales

IES Capellanía 4º ESOB Departamento de Matemáticas. Alumno: Ejercicios Temas 1 y 2: Números Reales. Potencias y Radicales IES Cpellní º ESOB Deprtmento de Mtemátics Alumno: Efectú el cociente Ejercicios Tems y : Números Reles Potencis y Rdicles,,0, 0, psndo frcciones genertrices Represent en l rect rel, utilizndo el teorem

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

IES Fernando de Herrera Curso 2012/13 Primer Examen 2ª evaluación 4º ESO 30 de enero de 2013 NOMBRE

IES Fernando de Herrera Curso 2012/13 Primer Examen 2ª evaluación 4º ESO 30 de enero de 2013 NOMBRE IES Fernndo de Herrer Curso 0/ Primer Emen ª evlución º ESO 0 de enero de 0 NOMBRE ) Resolver: 7 ( punto) ) Resolver: + 9 + + (, puntos) ) Resolver: log + log 6 ( punto) 6 ) Resolver: (, puntos) 8 8 )

Más detalles

Conceptos bá sicos. Sumá, restá y producto de polinomios

Conceptos bá sicos. Sumá, restá y producto de polinomios Unidd. Álgebr: polinomios, ecuciones, inecuciones y sistems Mtemátics I - º Bchillerto Conceptos bá sicos. Sumá, restá y producto de polinomios Un monomio en un vrible o indetermind es un n epresión de

Más detalles

Def: Un polinomio es la suma o diferencia de varios monomios no semejantes, a cada uno de ellos se les denomina términos del polinomio.

Def: Un polinomio es la suma o diferencia de varios monomios no semejantes, a cada uno de ellos se les denomina términos del polinomio. º Bchillerto Mtemátics I Tem : Álgebr An Pscu Grcí.- POLINOMIOS: OPERACIONES CON POLINOMIOS Def: Un polinomio es l sum o diferenci de vrios monomios no semejntes, cd uno de ellos se les denomin términos

Más detalles

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

ECUACIONES (4º ESO Op B)

ECUACIONES (4º ESO Op B) ECUACIONES ( ESO Op B) IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Un iguldd lgebric está formd por dos epresiones lgebrics (un de ells puede ser un número), seprds por el signo. Ejemplos.- + + 1 ( +

Más detalles

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P. Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:

Más detalles

Polinomios. 68 Ejercicios para practicar con soluciones. 1 Efectúa las siguientes divisiones usando la Regla de Ruffini. Cuál es exacta?

Polinomios. 68 Ejercicios para practicar con soluciones. 1 Efectúa las siguientes divisiones usando la Regla de Ruffini. Cuál es exacta? Polinomios Ejercicios pr prcticr con soluciones Efectú ls siguientes divisiones usndo l Regl de Ruffini Cuál es ect? ( ) : ( ) ( ) : ( ) ( ) : ( ) c() = c() = c() = r() = r() = r() = 0 ect Efectú ls siguientes

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

Ejercicio Ejercicio 70 Se tiene: Ejercicio 71 Dato del problema: Sabemos que:

Ejercicio Ejercicio 70 Se tiene: Ejercicio 71 Dato del problema: Sabemos que: CEPRU ALGEBRA Ejercicio b 0b mn 9b m n mn Llmndo: = b ; 0 9 y = mn y y y = 0y y 9 y + 0 Por sp doble: Volviendo l notción nterior: 0y y 9 y + 0 y y 0 ( y )( + y) (b + mn )(b + mn ) Luego, l sum de uno

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

POLINOMIOS: PROPIEDADES DE LOS EXPONENTES

POLINOMIOS: PROPIEDADES DE LOS EXPONENTES A.PR.0.5. INDICADOR DE ALGEBRA QUE SE ENFOCA: POLINOMIOS: PROPIEDADES DE LOS EXPONENTES Producto de potencis: problems Potenci de un producto: problems Potenci l cero: problems Potenci con exponentes negtivos:

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez Polinomios Operciones Regl de Ruffini Ríces o ceros Descomposición Frcciones lgebrics Ecuciones rcionles Repso de polinomios Ejercicios Ddos los polinomios P(, Q( R( clculr: P( Q( Q( R( P( Q( R( d P( Q

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I Mtemátics Nivel Medio Mtemátics Ap.CC.SS.I Mrtes 0 de noviembre de 01 1 hor NOMBRE APELLIDOS CALIFICACIÓN 1. Oper medinte notción rdicl y simplific l máximo: (0 puntos). Resuelv ls siguientes cuestiones

Más detalles

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1 TEMA : Logritmos y ecuciones rítmics Tem : Logritmos y ecuciones rítmics ESQUEMA DE LA UNIDAD.- Logritmos...- Logritmo de un número rel...- Logritmos decimles y neperinos..- Propieddes de los ritmos..-

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

Nivelación de Cálculo

Nivelación de Cálculo Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,

Más detalles

PENDIENTE MATEMÁTICAS DE 2º ESO CUADERNILLO I

PENDIENTE MATEMÁTICAS DE 2º ESO CUADERNILLO I PENDIENTE MATEMÁTICAS DE º ESO CUADERNILLO I Fech de entreg de enero Fech del primer emen de enero NOMBRE CURSO Bloques temáticos Criterios de evlución Ejercicios.- Números enteros. I, II Del l.- Sistem

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

open green road Guía Matemática ECUACIONES DE SEGUNDO GRADO profesor: Nicolás Melgarejo .cl

open green road Guía Matemática ECUACIONES DE SEGUNDO GRADO profesor: Nicolás Melgarejo .cl Guí Mtemátic ECUACIONES DE SEGUNDO GRADO profesor: Nicolás Melgrejo.cl 1. Ecución de segundo grdo Es un iguldd donde l vrible incógnit está l cudrdo, l cul puede tener soluciones diferentes, 1 solución

Más detalles

Función Cuadrática. 1. Si f ( x) x x 2, determine su forma canónica

Función Cuadrática. 1. Si f ( x) x x 2, determine su forma canónica Función Cudrátic. Si f ( ), determine su form cnónic. Determine el ámbito de l función ( 4). Hlle l ecución de l prábol que tiene vértice V (,) y cort l eje y en el punto (0,5). 4. Grfique l función f

Más detalles

Clase 2: Expresiones algebraicas

Clase 2: Expresiones algebraicas Clse 2: Expresiones lgebrics Operr expresiones lgebrics usndo ls propieddes lgebrics de ls operciones sum y producto, propieddes de ls potencis, regls de signos y préntesis. Evlur expresiones lgebrics

Más detalles

0 x+2y=1. x+(a+4)y+(a+1)z=0 -(a+2)y +(a 2 +3a+2)z=a+4. a+1 a 2 +3a ± ±2

0 x+2y=1. x+(a+4)y+(a+1)z=0 -(a+2)y +(a 2 +3a+2)z=a+4. a+1 a 2 +3a ± ±2 JUNIO DE 8. PROBLEMA A. Estudi el siguiente sistem de ecuciones lineles dependiente del prámetro rel resuélvelo en los csos en que es comptible: x+ x+(+4)+(+)z (+) +( +3+)z+4 (3 PUNTOS) Aplicmos el método

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática 12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +

Más detalles

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números: I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes

Más detalles

RECUPERACIÓN DE MATEMÁTICAS 1ª EVALUACIÓN. 4º DE ESO

RECUPERACIÓN DE MATEMÁTICAS 1ª EVALUACIÓN. 4º DE ESO RECUPERACIÓN DE MATEMÁTICAS ª EVALUACIÓN. 4º DE ESO TEMA ª.- Nos dicen que l medid de un cmpo de form rectngulr es de 4,6 m de lrgo por 8,4 m de ncho. Sin embrgo, no estmos seguros de que ls cifrs decimles

Más detalles

Bloque I. Aritmética y álgebra

Bloque I. Aritmética y álgebra Mtemátics plicds ls Ciencis Sociles I Autoevlución Págin 0 Explic si es verdder o fls cd un de ests frses: ) Todo número deciml se puede expresr como frcción. ) L sum de dos números irrcionles es siempre

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS 4º E.S.O.

MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS 4º E.S.O. 4º E.S.O. UNIDAD 1: LOS NÚMEROS REALES Ejercicio nº 1.- ) Escribe en form de intervlo, di su nombre y represent en cd cso:.1) { R / x 4}.) { R / < x } x (0.5 puntos) x (0.5 puntos) b) Escribe en form de

Más detalles

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1 el log de mte de id: Mtemátics I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores de l incógnit (o

Más detalles

IES Fernando de Herrera 28 de octubre de 2013 Primer trimestre - Primer examen 1º Bach CCSS NOMBRE:

IES Fernando de Herrera 28 de octubre de 2013 Primer trimestre - Primer examen 1º Bach CCSS NOMBRE: IES Fernndo de Herrer 8 de octure de 01 Primer trimestre - Primer exmen 1º Bch CCSS NOMBRE: 1) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

Factorización 3. FACTORIZACION

Factorización 3. FACTORIZACION UNIDAD Fctorizción. FACTORIZACION Sbemos que el orden de los fctores no lter el producto (propiedd conmuttiv). Recordemos que si (5)()=15 decimos que el 5 el son fctores de 15. Anteriormente recordmos

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

Es una función exponencial con base 2. Veamos con la rapidez que crece:

Es una función exponencial con base 2. Veamos con la rapidez que crece: Funciones eponenciles y ritmics Doc. Luis Hernndo Crmon R Funciones Eponenciles Ejemplos: f ( ) Es un función eponencil con bse. Vemos con l rpidez que crece: f () 8 f (0) 0 04 f (0) 0,07,74,84 Funciones

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

2 Números reales: la recta real

2 Números reales: la recta real Unidd. Números reles ls Enseñnzs Aplicds Números reles: l rect rel Págin. ) Justific que el punto representdo es. 0 Represent 7 (7 ) y 0 (0 + ). ) Aplicndo Pitágors: x x + x + x x 0 7 7 0 0 7 0 0 7. Qué

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

Tema: Polinomios y fracciones algebraicas

Tema: Polinomios y fracciones algebraicas Polinomios frcciones lgerics Ejercicios resueltos en los videos: www.josejime.com/videosdemtemtics Ejercicios pr cs resueltos en http://cursosieslsuncion.edu.gv.es/moodle Tem: Polinomios frcciones lgerics.

Más detalles

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1. DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)

Más detalles

LÍMITE DE UNA FUNCIÓN

LÍMITE DE UNA FUNCIÓN LÍITE DE UNA FUNCIÓN. Limite de un unción en un punto.. Límites lterles.. Limites ininitos.. Límites en el ininito.. Propieddes de los límites. 6. Operciones con ininito. 7. Cálculo de límites. 8. Cálculo

Más detalles

Departamento de Matemática

Departamento de Matemática Deprtmento de Mtemátic Trjo Práctico N : Tercer Año Números Reles Ddos los siguientes números clsificrlos en nturles, enteros, rcionles, irrcionles, reles o no reles. 9 7 ;, ; - ; e- ; + ; - ; ; 0,7 ;

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

1Soluciones a los ejercicios y problemas

1Soluciones a los ejercicios y problemas Soluciones los ejercicios y problems ) 8 : 8 ) 8 8 : ) 8 8 : Pág PÁGINA 8 Clcul y comprueb con l clculdor ) ) : : ) ) ) 8 [ 0 )] ) ) : ) [ 0 ] : : 0 88 8 ) ) ) 8 [ ) 0) : ) ] : ) 8 8 Reduce un frcción

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO EJERCICIOS RECOLECTADOS EN LA RED. (MATEMÁTICA I ADMINISTRACIÓN) INECUACIONES Y VALOR ABSOLUTO INTERVALOS DESIGUALDADES INECUACIONES INTERVALOS EN LA RECTA REAL Ddos dos números culesquier y b, tles que

Más detalles

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1 TEMA Epresiones lgerics. Polinomios Tem Epresiones lgerics. Polinomios ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum rest de polinomios...- Producto de polinomios...- Potenci de polinomios..-

Más detalles

a) Determínense los valores de a y b que hacen que f sea continua en x = 1 y que f = ( ) ( ) ( ) 1 b

a) Determínense los valores de a y b que hacen que f sea continua en x = 1 y que f = ( ) ( ) ( ) 1 b Modelo 4. Problem B.- (Cliicción máim: puntos) Se b > ) Determínense los vlores de y b que hcen que se continu en y que 4. Pr que l unción se continu en, se debe cumplir: ( ) ( b) b b : b b Además, b 4

Más detalles

y B = + Qué valores han de tener "x" e "y" para que las dos matrices sean iguales?

y B = + Qué valores han de tener x e y para que las dos matrices sean iguales? DP. - AS - Mtemátics ISSN: - X www.ulmtemtic.com. Actividd propuest Sen ls mtrices A B Qué vlores hn de tener "" e "" pr que ls dos mtrices sen igules? Aplicndo l definición de iguldd de mtrices, ésts

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

IES Fernando de Herrera Curso 2014 / 15 Primer trimestre - Primer examen 1º Bach CT NOMBRE:

IES Fernando de Herrera Curso 2014 / 15 Primer trimestre - Primer examen 1º Bach CT NOMBRE: IES Fernndo de Herrer Curso 0 / Primer trimestre - Primer emen º Bch CT NOMBRE: ) Clculr y simplificr sin clculdor, denomindores rcionlizdos, eponentes positivos): 6 6 ) ) ) b) ) Siendo > 0,, hllr el vlor

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES Unidd didáctic 7. Funciones reles de vrible rel Autors: Glori Jrne, Espernz Minguillón, Trinidd Zbl CONCEPTOS BÁSICOS Se llm función rel de vrible rel culquier plicción f : D R con D Œ R, es decir, culquier

Más detalles

1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO

1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Límite de funciones. Continuidd MATEMÁTICAS II 1 1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor? En generl, pr tener un ide de l respuest

Más detalles

DETERMINANTES. Cálculo. Menor de una matriz.

DETERMINANTES. Cálculo. Menor de una matriz. DETERMINNTES Tods ls mtrices cudrds tienen erminnte. El erminnte de un mtriz ermin si los elementos de está tienen o no solución únic. Un erminnte de un mtriz de orden n se obtiene medinte el sumtorio

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles