CA LCULO Hoja 11. Integrales triples. Aplicaciones.
|
|
- Germán Navarrete Ramírez
- hace 5 años
- Vistas:
Transcripción
1 CA LCULO Hoj.. Clculr ls siguientes integrles triles en los recintos indicdos: () xzy x yzdxdydz, = (x, y, z) R : x, y, z. () zxy (d) y dxdydz, = (x, y, z) R : x, y, z. (c) π. z y zx zx dxdydz, con el cuo unidd [, ] [, ] [, ]. Solucio n: x RRR dxdydz, siendo el tetredro limitdo or los lnos coordendos y el lno x y z =. (El vlor de l integrl es el volumen del tetredro). 6 y z / x ) dxdydz, l esfer unidd centrd en el origen. Indiccio n: (e) e( Cmir vriles esfe rics. Solucio n: π(e ). dxdydz (f), siendo el recinto limitdo or ls esfers x y z = / (x y z ) y x y z = con < <. π ln RRR y x z (g) yzdxdydz, siendo l regio n limitd or el elisoide de ecucio n c = y los semiescios x, y y z. Solucio n: 5c.. Exresr en l form = (x, y, z) R :... y hcer un esozo de los recintos sore los cules se est n clculndo ls siguientes integrles: Z Z y Z y Z π Z π Z Z Z x Z x6y () sen y dzdydx, () dzdydx. dzdxdy, (c) x Finlmente lnter lgun otr de ls integrles iterds y hllr el vlor de dich integrl. (Not: en este ejercicio el orden de integrcio n ddo or dx, dy y dz jueg un el fundmentl). () ; () ; (c).. Se el so lido limitdo inferiormente or el roloide z = x y y sueriormente or l esfer x y z = 6. Se ide: () Exresr medinte un integrl trile en coordends crtesins el volumen de dicho so lido. () Medinte un cmio de coordends roido clculr dicho volumen. π
2 . Hllr el volumen limitdo entre ls suerficies x y = z r x. x y = y Clcul el volumen interior l suerficie x 9y z 6 = y exterior l suerficie x 9y 9 =. π. 6. Hllr el volumen de l regio n = {(x, y, z) R : x y z, x y z, z }. 9π 7. Hllr el volumen limitdo or los roloides de ecuciones z = x y y z = x y. Solucio n: Vol= π. x y. Hllr el volumen del cuero definido como = (x, y, z) R : z. 9 π. 9. Hllr el volumen comrendido entre x y z = y x y = z, z. π.. Se W l regio n cotd or los lnos x =, y =, z = y l suerficie z = x y, R x, y. Clculr W xdxdydz.. 5. Hllr el volumen limitdo entre ls suerficies z = x y x y = 5 π.. Clculr el volumen del recinto interior l elisoide x y z = l que se le hn quitdo los dos csquetes cortdos en e l or el hieroloide x y z 5 =.. Hllr el volumen limitdo entre ls suerficies x y z = x y = z 7 π.. Clcul el volumen interior l suerficie x 9y z 6 = y exterior l suerficie x 9y 9 =. 5. Hllr el volumen de l regio n = {(x, y, z) R : x y z, x y z, z }. 9π 6. Clculr l ms del so lido = {(x, y, z) R x y x, x y x, z x y } situdo en el rimer octnte (x, y, z ), siendo l densidd m(x, y, z) = y.
3 7. Clculr el centro de grvedd de un cilindro circulr recto de rdio de l se R, de ltur h y cuy densidd vrı roorcionlmente su distnci l se. Sol::,, h.. Clculr l ms del so lido de densidd d(x, y, z) = z limitdo or ls suerficies z =, (x ) y = y x y = z. Z π Z π 5π π 6 Indiccio n: cos t dt = y cos t dt = π π 6 5π Clculr el momento de inerci con resecto l eje OZ del volumen del roloide de revolucio n z = x y, limitdo or el lno z =. π. Clculr el momento de inerci del so lido interior l cono z = x y r z resecto de los ejes coordendos y resecto l origen (densidd µ =constnte). Ix = Iy = 5πµ, Iz = Io = 7 5 πµ, 5 πµ.. Clculr l ms del so lido limitdo or el hieroloide x y z = y el cilindro z x y 9 =, y cuy densidd en cd unto es m(x, y, z) =. 6 6 π. ( z= x y. Clculr l ms M del so lido definido or siendo l densidd en z x y cd unto el cudrdo de l distnci de su royeccio n sore el lno OXY l origen de coordends. (Se recomiend sr coordends esfe rics). π 6 5. x y z. do el elisoide = cuy densidd en cd unto es m(x, y, z) = c xyz, c clculr su ms. c π 6. Hllr el volumen del so lido cotdo sueriormente or el roloide z = 5 x y, e inferiormente or el roloide z = x y. Hllr tmie n su ms y su centro de grvedd siendo l densidd en cd unto m(x, y, z) = z. 5. Se consider el so lido interior l cilindro x y =, limitdo sueriormente or l suerficie z = x y, e inferiormente or z = x y. Hllr su ms siendo que l densidd en cd unto es m(x, y, z) = 6 (x y )z. π Hllr l ms del so lido = (x, y, z) R x y z, x y x, z que tiene como funcio n de densidd en cd unto m(x, y, z) = z. 5π 7. Clculr l ms y los momentos de inerci resecto de los ejes X e Y del so lido limitdo or l suerficie z = x y y el lno z = si l densidd en (x, y, z) es roorcionl l distnci de (x, y, z) l lno z =. Ms= kπ, Ix = Iy = kπ.. Se consider el so lido limitdo or el cilindro x y y = en l regio n z x y ; hllr l ms de suoniendo que l funcio n densidd es f (x, y, z) = x. 5.
4 9. Hllr l ms de l dovel = {(x, y, z) R : x y, x y, 6 x, y, z } siendo l funcio n de densidd m(x, y, z) = xy. π 5.. Se consider el so lido S = {(x, y, z) R : (x ) y, x, y, z } con funcio n densidd δ(x, y, z) = y. Hllr el momento de inerci de S resecto del lno coordendo z =. 9 π. Clculr l ms del so lido S = {(x, y, z) x y R : l densidd en cd unto m(x, y, z) = x y z. π( ). z, z } siendo. Clculr l ms del so lido S = {(x, y, z) R : z, z x y9, z x y9 } siendo l densidd en cd unto m(x, y, z) = z. π. x y z. do el elisoide = cuy densidd en cd unto es m(x, y, z) = c xyz, c clculr su ms. Clculr l ms y el centro de grvedd del so lido limitdo or el hieroloide de dos hojs x y z = y el cilindro x y 9 =, y cuy densidd en cd unto es 5z m(x, y, z) =. (Mle).. 5. Clculr l ms del so lido limitdo or el hieroloide de dos hojs x y z = y l esfer x y z 9 = en el semiescio z, y cuy densidd en cd unto es m(x, y, z) = z. π Clcul l ms del so lido definido or = (x, y, z) R x y z 6, z x y que tiene como funcio n de densidd en cd unto m(x, y, z) = z x z y. Sol: π. 7. Se retende instlr un equio de ire condiciondo en un estdio de deorte de lnt elı tic de semiejes = y = y redes lns erendiculres l suelo (es decir, el recinto limitdo or el cilindro de ecucio n x y =, z ). Adem s, l cuiert es un orcio n del elisoide z x y = Se utilizr n comresores y evorizdores de ire segu n cierts crterı stics te cnics. Pr determinr el nu mero de dichos rtos, se recis conocer el volumen de ire que hrı que enfrir. Clculr, or tnto, el volumen del estdio. (Sol: V = π ).. Hllr l ms del so lido = (x, y, z) R : x y z 9, x y z, z que tiene como funcio n de densidd en cd unto m(x, y, z) = z.! 5 ). (π
5 9. Un edificio tiene form de hieroloide regldo, de lnt circulr y cuiert ln (similr l ctedrl de Brsili). L ecucio n de dicho hieroloide es x y (z ) =. 5 5 Clculr el volumen que encierr el edificio. 5
INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.
INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
EJERCICIOS RESUELTOS
FUNAMENTOS MATEMÁTICOS E LA INGENIEÍA Ingerierí Técnic Industril. Esecilidd en Mecánic. Boletin 7. Integrción Múltile EJECICIOS ESUELTOS Curso -. Clculr ls siguientes integrles iterds: Z Z Z y ( + y)dyd.
8 - Ecuación de Dirichlet.
Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos
Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso
Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de
Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).
TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver
b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e.
MsMtescom Integrles Selectividd CCNN Murci [] [EXT-A] ) Clcule l integrl indefinid rctgd, donde rctg denot l función rco-tngente de ) De tods ls primitivs de l función f() = rctg, encuentre l que ps por
a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA
UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo
Aplicaciones de la integral
5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle
Grado en Biología Tema 3 Integración. La regla del trapecio.
Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con
2.3.1 Cálculo de primitivas
Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos
La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y
L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid
Aplicaciones de la derivada (II)
UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre
2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual
MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A
Cálculo II Volúmenes de Sólidos M. en C. Ricrdo Romero Deprtmento de Ciencis Básics, UAM-A Grupo CTG87 Trimestre 11-P Grupo CTG87 Trimestre 11-P 1 / Progrm 1 Cálculo de volúmenes prtir de secciones trnsversles
5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.
5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre
5.4. Longitud de un Arco de Curva (Rectificación)
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)
Cálculo de volúmenes II: Método de los casquetes cilíndricos
Sesión 6 II: Método de los csquetes cilíndricos Tems Método de los csquetes cilíndricos pr clculr volúmenes de sólidos de revolución. Cpciddes Conocer y plicr el método de los csquetes esféricos pr clculr
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
EJERCICIOS DE GEOMETRÍA
VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3
LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco
LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco
INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS
INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES
La Geometría de las Normas del Espacio de las Funciones Continuas
Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)
Integración. Capítulo 1. Problema 1.1 Sea f : [ 3, 6] IR denida por: e x 2 2 x 6. (i) Estudiar la continuidad y derivabilidad de f.
Cpítulo Integrción Problem. Se f : [, 6] IR denid por: + +
PRIMITIVA E INTEGRACIÓN INDEFINIDA
TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene
CAPÍTULO. La derivada
CAPÍTULO 5 L derivd 5. L derivd de un función A continución trtremos uno de los concetos fundmentles del cálculo, que es el de l derivd. Este conceto es un ite que está estrecmente ligdo l rect tngente,
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
PROBLEMAS DE OPTIMIZACIÓN
PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito
D I F E R E N C I A L
D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos
Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites
Cambio de Variables en las Integrales Dobles
E.E.I. CÁLCULO II Y ECUACIONES DIFEENCIALES Curso 20-2 Clse 3 (7 fe. 202) Cmio de Vriles en ls Integrles Doles. Ejemplo: Áre de l elipse. 2. Cmio de Vriles I. Punto de ist de l trnsformción. 3. Cmio de
MOMENTOS Y CENTROS DE MASA
MOMENTOS Y CENTROS DE MASA El objetivo de ests línes es explicr brevemente otr de ls numeross plicciones que posee el Cálculo Integrl. En este cso, considermos un plc pln y delgd con form culquier, y nos
Optimización de funciones
Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en
SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES
Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según
2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.
. Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto
SOLUCIONARIO Poliedros
SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
Aplicaciones de la Integral
Aplicciones de l Integrl Cálculo 6// Prof. José G. Rodríguez Ahumd de Se f, g dos funciones tl que pr todo vlor en [, ]. Entonces, el áre A entre sus gráfics en el intervlo [, ] es: ÁREA ENTRE DOS CURVAS
CAPÍTULO XII. INTEGRALES IMPROPIAS
CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9
Determinantes y la Regla de Cramer
Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos
Geometría del Espacio
Geometrí del Espcio GEMETRÍA DE ESPACI. Denomind tmbién Esterenometrí, estudi tods ls propieddes en Geometrí Pln, y plicds en plnos diferentes. ESPACI. El espcio geométrico euclidino es el conjunto de
Ejercicios de optimización
Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y
ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN
ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN Si hor colocmos l elipse horizontl con centro en el origen, oservremos que no cmin l form ni lgun de sus crcterístics. Si tenímos como ecución
Funciones de variable compleja
Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce
Introducción a la integración numérica
Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno
XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO
XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus
INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE
INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,
6. Variable aleatoria continua
6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo
FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:
FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de
Integrales dobles y triples
Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones
TEMA 5: INTEGRACIÓN. f(x) dx.
TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l
La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.
INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.
3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS
Colegio SSCC Concepción - Depto. de Mtemátics Eje Temático: SECCIONES CONICAS Unidd de Aprendizje: Ecución de l Elipse Cpciddes/Destrez/Hbiliddes: Resolver/Construir/ Decidir/Anlizr/ Identificr/ Verificr
Modelo 5 de sobrantes de Opción A
Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que
Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales
Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles
CI31A - Mecánica de Fluidos FUERZAS DE PRESIÓN
CI31A - Mecánic de Fluidos FUERZAS DE PRESIÓN Prof. Aldo Tmurrino Tvntzis HIDROSTÁTICA Si ls prt ículs de fluido no están en movimiento no hy fuerzs tngenciles ctundo sore ells. Consideremos un volumen
Aplicaciones de la integral indefinida
Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS
int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.
Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,
SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21
TEMA. NÚMEROS REALES SOLUCIONES DE LAS ACTIVIDADES Págs. Págin. Actividd personl, por ejemplo:,...,...,...,9...,8.... ) No, pues un deciml puede tener un número limitdo de cifrs o ser periódico. Por ejemplo,,
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis
ELECTRICIDAD Y MAGNETISMO. Electrostática-Vacío
ELECTRCDAD Y MAGNETSMO. Electrostátic-Vcío 1) Suponiendo un nue de electrones confind en un región entre dos esfers de rdios 2 cm y 5 cm, tiene un densidd de crg en volumen expresd en coordends esférics:
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±
CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I
Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente
CAPÍTULO 7 CÁLCULO INTEGRAL EN VARIAS VARIABLES
CAPÍTULO 7 CÁLCULO INTEGAL EN VAIA VAIABLE 1. INTEOGANTE CENTALE EL CAPÍTULO Clculr integrles dobles en coordends crtesins y polres, sobre dominios sencillos. Usr l integrl doble pr el cálculo de áres.
Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones
Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que
UNIDAD 4: INTEGRAL DEFINIDA
UNIDAD 4: INTEGRAL DEFINIDA ÍNDICE DE LA UNIDAD.- INTRODUCCIÓN.....- SUMAS SUPERIORES E INFERIORES....- LA INTEGRAL DEFINIDA.... 4.- PROPIEDADES DE LA INTEGRAL DEFINIDA... 5.- TEOREMA FUNDAMENTAL DEL CÁLCULO
Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor:
CAPÍULO - 8 Problem El estdo de tensiones de un punto de un sólido viene definido por el siguiente tensor: 7 6 ( ) 6 8 N / m XYZ 76 Hllr: ) ensiones direcciones principles sí como l mtri de pso entre el
153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental
L myorí de los omres ncen como originles y terminn como copis 15 ESO Orientl ÍNDICE: MILLA NÁUTICA PISTA DE ATLETISMO 1. FÓRMULAS FUNDAMENTALES PARA CÁLCULO DE LONGITUDES, SUPERFICIES Y VOLÚMENES. LONGITUDES
3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:
PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:
E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619
1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del
Examen de Admisión a la Maestría 8 de Enero de 2016
Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
de Thales y Pitágoras
8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:
Se traza la paralela al lado a y distancia la altura h a.
Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos
8. Calcule el área de la superficie lateral y total de los sólidos construidos en los numerales 1, 2, 3, 4, 6 y 7.
8 CAPÍTULO OCHO Ejercicios propuestos 8. Cuerpos geométricos 1. Construy un tetredro regulr con rist de 10cm de longitud. 2. Construy un hexedro regulr con rist de 12cm de longitud.. Construy un octedro
Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones
Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.
La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.
LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
Tema 11. La integral definida
Mtemátics II (Bchillerto de Ciencis) Análisis: Integrl definid 5 Integrl definid: áre jo un curv Tem L integrl definid L integrl definid permite clculr el áre del recinto limitdo, en su prte superior por
Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow
Universidd de l Repúblic Cálculo Fcultd de Ingenierí - IMERL Segundo semestre 6 Práctico 9 - Cálculo de integrles. Teorem fundmentl y regl de Brrow. Utilizndo los resultdos del ejercicio 9 del práctico
05Chapter 5-1 1/31/09 11:07 AM Page 233
5Chpter 5- //9 :7 AM Pge 5 Integrles múltiples Cundo l ren está sec, se puede juntr pr formr montones cónicos. Cundo l ren está húmed, sus propieddes físics cmbin se puede usr pr crer cstillos de ren como
Hl = {P = (x, y) 1 d(p, Fl) - d(p, 4) = -2a} 4.2 NOTACION Y PROPIEDADES
4.1 DEFINICION. Un hipérol es el conjunto de todos los puntos del plno euclideno R~ tles que que l diferenci de sus distncis dos puntos fijos es en vlor soluto un constnte. Así, si F, y F, son dos puntos
O(0, 0) verifican que. Por tanto,
Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O
Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m
Problem 5.54 A w A 4 kn 0 kn.8 m 0. m w L vig A soport dos crgs concentrds y descns sobre el suelo el cul ejerce un crg linelmente distribuid hci rrib como se muestr. Determine ) l distnci pr l cul w A
BLOQUE III Geometría
LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00
Fundamentos matemáticos. Tema 7 Integración. Aplicaciones
Fundmentos mtemáticos Grdo en Ingenierí grícol y del medio rurl Tem 7 Integrción. Aplicciones José Brrios Grcí Deprtmento de Análisis Mtemático Universidd de L Lgun jrrios@ull.es 16 Licenci Cretive Commons
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
7Soluciones a los ejercicios y problemas PÁGINA 161
7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre:
Nomre: FÍSICA APLICADA. EXAMEN A. ABRIL 03. MODELO A TEORÍA (.5 p) A) Teorem de Guss. Enuncido y explicción reve. B) Un crg de C se encuentr en el centro de un cuo de m de ldo. Cmirá el flujo eléctrico