Serie 4. Dinámica de Procesos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Serie 4. Dinámica de Procesos"

Transcripción

1 Sri 4 Dinámica d Proco

2 unción d ranfrncia S dfin como G Y / X prna un modlo normalizado d un proco, dond Y la variabl d alida y X una d la nrada. Y and X án xprada como variabl dviación. La forma d la función d ranfrncia rprna l comporamino dinámico dl proco. X POCESO G Y / X Y

3 Pao para allar la G Planar l balanc corrpondin Enrada Salida± Gnración Acumulación Ecuación difrncial ED

4 Ecuación difrncial ED Sí Linal? No Linalizar Ecuación difrncial linal

5 Linalizar con xpanión n ri d aylor Si la cuación difrncial no linal, ay qu linalizar lo érmino no linal d la mima por jmplo, xpa, a, a*b, b /. y x y dy x x x dx x x... Ea xprión prov una aproximación linal d la función yx alrddor d xx. Cuano má crcano a x a x, má xaca rá la aproximación. Cuano mno linal a la cuación original, mno xaca rá la aproximación.

6 Ecuación difrncial linal ar balanc n ado acionario Ecuación difrncial Sí linal n No variabl dviación Aplicar ranformada d Laplac Ecuación algbraica n Y f X, Z, W,

7 Ecuación algbraica n Y f X, Z, W, Aplicar principio d uprpoición Ecuación Sí algbraica Y No f X ordnar unción d ranfrncia G Y / X

8 unción d ranfrncia G Y / X Aplicar cambio n X y aniranformar Sípua mporal No y Aplicar VI Aplicar V y y

9 orma dl Valor inal [ f ] lim [ ] lim Prmi uar la ranformada d Laplac d una función para drminar l valor final d ado acionario d a función.

10 orma dl Valor Inicial [ f ] lim [ ] lim Prmi uar la ranformada d Laplac d una función para drminar l valor inicial d a función.

11 pua Dinámica G a A Y a b c B b c C d a p y A B in C ω d d Sindo a, b, c y d, conan poiiva, la función d ranfrncia mura rpua d caída xponncial, ocilaoria y crcimino xponncial, rpcivamn.

12 Polo n l plano compljo aíc érmino para > a,b 3,b 3 4 a 4,b 4, 3, 3 a a ± co b nb a ± cob 3 ± 4 nb 3 3 -a, 6, 5 a 5, 4, co b 4 6 nb 4 a ± 4 a a,-b 3,-b 3 4 a 4,-b 4 a i y b i on conan poiiva. i on conan arbiraria y pudn drminar por xpanión n fraccion impl.

13 aíc y rpua al ngaiva Caída xponncial Complja conjugada con par ral ngaiva Sinuoid Amoriguada Complja conjugada con par ral poiiva Sinuoid crcin inabl

14 Comporamino Inabl Si la alida d un proco crc ilimiadamn para una nrada acoada, l proco inabl. Si la par ral d cualquir polo d una función d ranfrncia poiiva, l proco inabl. Si algún polo á localizado n l plano drco, l proco inabl.

15 Ejmplo d d M θ θ θ θ Balanc Ec. dif. Linalización θ θ θ θ θ θ θ θ θ θ θ θ θ d d M / / d d d d θ θ θ θ θ θ θ Mzcla d do corrin con cp. Nivl conan. Ө v. Ө? Variabl dviación ar BEE. ED linalizada n variabl dviación.

16 Aplicar ranformada d Laplac para obnr una cuación algbraica f,. θ θ θ [ M ] Uar principio d uprpoición y rordnar para allar la función d ranfrncia. Drminar l ordn dl ima. G θ θ M Ganancia alida nrada Τ Conan d impo Vlocidad d rpua C Capaciancia Τ C incia dfurza impulora dflujo

17 Concpo d rincia Difrncia d poncial - incia Innidad d / d dv / di Alura Difrncia d poncial urza impulora rincia Caudal innidad d corrin

18 cribindo l balanc ando l balanc n.. y ranformando G Sima d primr ordn d A d A f d d d b d b b d A d A

19 Sima capaciivo puro A d d f A A Aplicando l principio d uprpoición, quda: G A G A

20 ardo puro f f L G L

21 Sima d primr ordn n ri a Sima no inracuan Balanc A d A d b A Balanc d A d b

22 d d Linalizando, quda: d d b b b b b b

23 d d A Balanc linalizado, xprado n variabl dviación - ranformada d Laplac d d A A unción d ranfrncia A G

24 Balanc linalizado, xprado n Variabl dviación ranformada d Laplac A unción d ranfrncia A G d d A - d d A

25 unción d ranfrncia dl ima d gundo ordn A A A A G A A G G G

26 b Sima inracuan Balanc Balanc d A d d A d b b

27 d d d d Linalizar idm cao a b b b b

28 d d A Balanc linalizado, xprado n variabl dviación - ranformada d Laplac d d A A # A

29 Balanc linalizado, xprado n Variabl dviación ranformada d Laplac d d A - d d A * A A

30 Eliminando d * y #, quda: A A A A A τ τ τ τ τ τ Son olamn la olución mamáica. No inn nido fíico. llaman conan d impo fciva. τ τ y

31 Lo ima d gundo ordn cribn gnéricamn n función d la frcuncia naural y l facor d amoriguamino G ξ ω ω n n ξ> ξ ξ< aíc ral y diina aíc ral igual aíc complja conjugada

32 ξ ω n ω n n ξ ω ω n ξ Como la mdia ariméica impr mayor qu la mdia gomérica, l facor d amoriguamino n ima d gundo ordn formado por do ima d primr ordn n ri rá impr mayor qu.

33 Ejmplo: Manómro n U D Diámro d la columna P Prión mayor P Prión mnor L Longiud d la columna d líquido H Nivl por ncima d la lína d quilibrio Sima d gundo ordn Balanc macrocópico d furza: Inrcial Exrior Vicoa - Hidroáica d ma ρla d P A P P A d A d ρag 3Lµ A D d d para flujo laminar

34 d d gd L d d g L g P g d d D L d d L P Ag d d A D L A P d d LA ρ µ ρ ρ µ ρ ρ µ ρ Sima d gundo ordn ranformando, quda: 6 gd L g L g P n ω n ξ ω ρ µ ρ

35 Sobrvalor y oro parámro / SV SV Sobrvalor máximo ovroo ME impo d máxima lvación E impo d lvación vz qu llga al valor final η lación d dcaimino P πξ ME ω n π ξ SV M ξ SVn η SV n πξ ξ E ME

36 pua d ima Τ Τ X Y G Τ X Y G Τ X y Τ Τ y A X Y G X A y Τ X Y G Τ Τ Τ y Τ X Y G Τ Τ y

37 Idnificación d ima Lo ima ral pudn claificar n r grand grupo:.- E rolubl analíicamn y pudn calcular lo parámro. Por lo ano, conoc l comporamino dinámico..- E rolubl analíicamn, pro no pudn calcular lo parámro. Hay qu rcurrir a la xprincia para allarlo. 3.- No rolubl analíicamn ó rolubl con olución complja. S oma l ima como caja ngra y upon un modlo. Vamo a analizar ima como lo dl grupo.

38 Sima d primr ordn G Y X Τ Ecalón Τ y X Si, y y.63* X y X 63.% X

39 Sima d primr ordn y X Τ X Y G X x y Τ X y Ecalón Drivada n l orign

40 Sima d primr ordn. rca cuya pndin obin una, v. ln X y Graficando Τ X Y G X y ln Τ X y Ecalón Eliminar xponncial

41 Sima d primr ordn G Y X Τ ln [ y ] Impulo X ln X Τ y Τ Si, y y.368* X,,8,6 y,4.368,,,4,6,8,,4,6,8,,4,6,8 3

42 Sima d primr ordn G Y X Τ ampa y Τ a Τ x y a a Τ Τ El rror dinámico la difrncia nr la rpua, cuando xinguió la par xponncial., x,8,6 y,4 Error dinámico x y a a Τ x, y,,,9,8,7,36,45,55,64,73,8,9,

43 Sima d primr ordn con rardo puro y y 63 G L y.63 y f 63 y y u f f y u L

44 Sima d gundo ordn G Y X ω ξ ω n n ω n rcuncia naural ξ acor d amoriguamino ξ > ξ Sgundo ordn obramoriguado. aíc ral y diina. Sgundo ordn cíicamn amoriguado. aíc ral igual En ambo cao, la función d ranfrncia dl ima pud cribir como do ima d primr ordn n ri, inracuan ó no inracuan. G Y X Τ Τ ω n ΤΤ ξ Τ ω n Τ ξ < Sgundo ordn ubamoriguado. aíc complja conjugada

45 pua d ima d gundo ordn ubamoriguado An alo calón ξ < ξ < ξ < ξ. ξ. ξ.4 ξ ξ.4.7

46 y Obnción d parámro A y u ω P f f y u n ω ω ξ P π ω ξ u Valor inicial d nrada u f Valor final d nrada y Valor inicial d alida y f Valor final d alida A A Ampliud d pico A n Ampliud d pico n ω impo nr do pico ucivo ω P rcuncia propia rcuncia con qu ocila l ima. 4π ln A n / A ln A n n / A n

47 Obnción d parámro y SV Sobrvalor SV Sobrvalor P impo nr do pico ucivo η lación d dcaimino A SV 3 P ω n π P ξ SV η SV 3 ξ πξ ξ 4π SV ln SV SV ln SV

48 pua d ima d gundo ordn obramoriguado An alo calón > ξ ξ. ξ ξ > ξ 5

49 Méodo d la curva complmnaria * Τ Τ > X y Aplicabl a ima d gundo ordn obramoriguado, dond conoc la rpua dl ima oal an un alo calón. La xprión d la mima : Prndmo allar lo valor d amba conan d impo. Eablcmo la condición d qu aprciablmn mayor qu. A mdida qu l impo va aumnando, l gundo xponncial dcrc má rápido. Habrá un impo dd l cual nga: * * * * * * * Τ Τ Τ Τ X y X y

50 Méodo d la curva complmnaria * ln * * * X y X y Τ Τ prnando gráficamn, obndrá una rca qu rá ainóica a la curva d la función oal para impo grand. El puno dond la rca cora al j d ordnada rá, Y. En l cao paricular d, l valor d la ordnada rá.368y. Eo prmiirá obnr.

51 Méodo d la curva complmnaria La difrncia nr la rca y la curva d la función oal, rá: d Τ * prnando n l mimo gráfico d v., obndrá una rca. La coordnada dl puno para, rán,y. En l cao paricular d l valor d la ordnada rá.368y. Eo prmiirá obnr. E méodo pud uilizar para ima d ordn uprior.

52 Méodo d la curva complmnaria y ln,8 * X,6 Y Y,4,.368 Y,8,6,4.368 Y, Difrncia Aínoa unción oal

53 Méodo d Harrio Aplica a ima obramoriguado o críicamn amoriguado. G Aplicando un calón d magniud A y graficando y/a v. /, obrvó qu n oda la curva alcanzaba l 73% dl cambio n la alida para.3. O a, qu oda la curva coraban n un puno qu nía coordnada.3,.73. Lugo, drminó qu la curva aban má parada nr í o, prmiían mjor aprciación cuando /.5. Harrio ralizó un gráfico normalizado d y/a v. / para un valor d /.5.

54 Méodo d Harrio y y u f f y u u Valor inicial d nrada u f Valor final d nrada 73 y.6 Valor inicial d alida y f Valor final d alida y Valor d alida a impo impo n qu aparc l calón 73 impo n qu la alida alcanza l 73%

55 Méodo d Harrio y A.73 y A y y impo

56 Méodo d Harrio y A.5

57 Méodo d Harrio El procdimino coni n lo iguin: D la rpua mporal dl ima, obin gráfica o analíicamn, l impo para l cual la rpua l 73% dl cambio n la alida. D aí obinn 73 y. y y / A y

58 Méodo d Harrio S calcula l impo.5. D la rpua mporal l l valor d alida y.5 y calcula y.5 / A. y y / A y.5 y.5 / A 73.73

59 Méodo d Harrio Con l valor d y.5 / A nra al gráfico normalizado d Harrio y obin /. Como ya conoc, pudn obnr lo valor d y. Si la ordnada dl gráfico normalizado d Harrio, y.5 / A, rula mayor a.39 ó mnor a.6, ignifica qu la rpua no corrpond a un ima d gundo ordn obramoriguado, pudindo r probablmn d gundo ordn ubamoriguado, ó d ordn uprior.

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN UNIVERSIDD TECNOÓGIC DE JISCO DIVISIÓN EECTRÓNIC Y UTOMTIZCIÓN NO VERSIÓN: FECH: GOSTO TITUO DE PRCTIC: Tranformada invra d aplac SIGNTUR: Mamáica III HOJ: DE: UNIDD TEMTIC: Tranformada d aplac Invra FECH

Más detalles

Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia.

Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia. lgbra d diagrama n bloqu y ranformada d aplac. Función d ranfrncia. Diagrama n bloqu. En o quma l lmno n udio prna a modo d caa ngra n la cual una alida á rlacionada con una nrada a ravé d modificacion

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL 1 FACULTAD REGIONAL MENDOZA

UNIVERSIDAD TECNOLÓGICA NACIONAL 1 FACULTAD REGIONAL MENDOZA TEORÍA DE OS CIRCUITOS I CAPÍTUO 6 REV. 8..8 S. ENRIQUE PUIAFITO UNIVERSIDAD TECNOÓGICA NACIONA FACUTAD REGIONA MENDOZA APUNTES DE A CÁTEDRA DE TEORÍA DE OS CIRCUITOS I Prof. Dr. Ing. S. Enriqu Puliafio

Más detalles

TEMA 3 TRANSFORMADA DE LAPLACE 3.1. MOTIVACIÓN 3.2. TRANSFORMADA DE LAPLACE

TEMA 3 TRANSFORMADA DE LAPLACE 3.1. MOTIVACIÓN 3.2. TRANSFORMADA DE LAPLACE TEMA TRANSFORMADA DE APACE MOTIVACIÓN En ma anrior aprndió cómo rolvr cuacion difrncial linal con coficin conan uja a condicion dada llamada d fronra o condicion inicial S rcordará qu l méodo coni n nconrar

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

Universidad Simón Bolívar Departamento de Procesos y Sistemas. Guía de Ejercicios de Sistemas de Control Avanzados PS-4313

Universidad Simón Bolívar Departamento de Procesos y Sistemas. Guía de Ejercicios de Sistemas de Control Avanzados PS-4313 Unvrdad Smón Bolívar Dparamno d Proco y Sma Guía d Ejrcco d Sma d Conrol Avanzado PS-433 Pro. Alxandr Hoyo hp://pro.ub.v/ahoyo ahoyo@ub.v ÍNDICE Pág. Tranormada d Laplac 3 Tranormada Invra d Laplac y Rolucón

Más detalles

Última modificación: 21 de agosto de 2010. www.coimbraweb.com

Última modificación: 21 de agosto de 2010. www.coimbraweb.com LÍNEA DE TRANSMSÓN EN EL DOMNO DEL TEMPO Connido 1.- nroducción. 2.- Campos lécrico y magnéico n una LT. 3.- Modlo circuial d una LT. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Vlocidad d propagación

Más detalles

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h

El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h INERCAMBIO DE CALOR ENRE DOS FLUIDOS El calor tranfrido d un fluido a otro a travé d la pard d un tubo : πl( - ln( r / r + + hr k h r ( Eta cuación la ba dl diño d intrcambiador d calor tubular. Si dfin

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

Contenido de la parte II

Contenido de la parte II UTN Roario Elcrocnia II Connido d la par II rion.... La Tranormada d Laplac.... Inroducción.... Dinición d Tranormada d Laplac.... Principal propidad... Circuio quialn d Laplac... 8. Circuio quialn d cada

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia: .4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs Univeridad Carlo III de Madrid Señale y Siema TRANSFORMADAS OBJETIVOS Reviión de la herramiena maemáica que e uilizan para la obención del modelo maemáico en forma de función de ranferencia. Reviión de

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

PRÁCTICA LTC-15: ANÁLISIS ESPECTRAL DE UN CABLE COAXIAL

PRÁCTICA LTC-15: ANÁLISIS ESPECTRAL DE UN CABLE COAXIAL PRÁCTICA LTC-15: ANÁLISIS ESPECTRAL DE UN CABLE COAXIAL 1.- Dcripción d la práctica Excitar un cabl coaxial d 5 mtro d longitud con una tnión inuoidal d 5 voltio d amplitud n un rango amplio d valor rcuncia.

Más detalles

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005 OCUMNO INSIGACIÓN ÓRICA L MOLO SCUNO IINOS M. Marco Anonio Plaza idaurr Julio 5 l Modlo d scuno d ividndos (Ms M. Marco Anonio Plaza idaurr Rsumn s documno dsarrolla y xplica l modlo d dscuno d dividndos,

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

Ing. Mario R. Modesti

Ing. Mario R. Modesti UNIVERSIDAD ECNOLOGICA NACIONAL FACULAD REGIONAL CORDOBA DEPARAMENO ELECRONICA Carrra Asignaura : Ingniría Elcrónica : Análisis d Sñals y Sismas.P.N : Sris y ransformada d Fourir, ransformada invrsa d

Más detalles

CASO PRACTICO Nº 127

CASO PRACTICO Nº 127 CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo Tma 5. Eficincia dl mrcado d divisas: la paridad d inrss y l ipo d cambio a coro plazo Macroconomía Abira Docorado Nuva Economía Mundial Profsor: Ainhoa Hrrar Sánchz Curso 2006-2007 5.1. La paridad no

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

( ) = T. Onda senoidal que avanza en dirección +x. v f T = f k. Se puede reescribir la función de onda de varias formas distintas:

( ) = T. Onda senoidal que avanza en dirección +x. v f T = f k. Se puede reescribir la función de onda de varias formas distintas: Se puede reecribir la unción de onda de aria orma diina: T 1 T coπ Si deinimo el número de onda: π π π co Onda enoidal que aanza en dirección + Onda enoidal que aanza en dirección - co co co T π π + +

Más detalles

Tema 9. Modelos de equilibrio de cartera

Tema 9. Modelos de equilibrio de cartera Tma 9. Modlos d quilibrio d carra Caracrísicas gnrals En la drminación dl ipo d cambio no sólo incid l mrcado monario: ambién l mrcado d bonos y l mrcado d bins No xis susiuibilidad prca nr los acivos

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 4

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 4 AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Indutrial. Epecialidad en Electrónica Indutrial Boletín n o. Hallar la tranformada de Laplace de cada una de la iguiente funcione: a) n Ch n + Sh n) b) en c)

Más detalles

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS SISEMAS INÁMICOS IEMº - Modelo de Sitema Mecánico PROBLEMAS P. Para lo itema mecánico de tralación motrado en la figura, e pide: a uncione de tranferencia entre la fuerza f y la velocidade de la maa. b

Más detalles

ORGANIZACIÓN INDUSTRIAL EUROPEA

ORGANIZACIÓN INDUSTRIAL EUROPEA ORGNIZCIÓN INDUSTRIL EUROPE TEM COMPLEMENTRIO 5B PRODUCCION, COSTES Y MERCDOS 1 Dciión humana: l rcto balanc ntr apcto poitivo (pro) y ngativo (contra) El comportaminto racional corrpond con l modlo d

Más detalles

Respuesta Transitoria de Sistemas Lineales e Invariantes en el Tiempo

Respuesta Transitoria de Sistemas Lineales e Invariantes en el Tiempo apíulo 3 3. 3. Iroduió Rpua Traioria d Sima Lial Ivaria l Timpo Ua vz obido l modlo d u ima, xi vario méodo para l aálii dl dmpño dl ima. E la práia, la ñal d rada para u ima d orol o oo o aiipaió, pro

Más detalles

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS Cuál s su opinión? Influyn las xpcaivas n sus dcisions conómicas, como por jmplo, a la hora d comprar un coch, coninuar con su ducación, o abrir una cuna d ahorros

Más detalles

(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL

(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL (Apns n risión para orinar l aprndizaj) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL Fnción logarimo naral S sa q n+ n d + C ; n n + S comnzará con la dfinición d na ingral indfinida pariclar d

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Cód. 80607 TEMA INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN. INTEGRAL INDEFINIDA Dfinición: S dic qu una función F() s una primiiva d la función f() si y sólo si F () = f() Ejmplo: F () = y F ()= son primiivas

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

MA26A, Auxiliar 5, 26 de Abril, 2007

MA26A, Auxiliar 5, 26 de Abril, 2007 MA26A, Auxiliar 5, 26 de Abril, 27 Profeor Cátedra: Raúl Manaevich Profeor Auxiliar : Alfredo Núnez. Tranformada de Laplace... Sea f : [, ) R función continua a trozo y de orden exponencial. Demuetre que

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles

Décimas Jornadas de Economía Monetaria e Internacional La Plata, 12 y 13 de mayo de 2005

Décimas Jornadas de Economía Monetaria e Internacional La Plata, 12 y 13 de mayo de 2005 Univrsidad Nacional d La Plaa Décimas Jornadas d Economía Monaria Inrnacional La Plaa, y 3 d mayo d 5 Una Rconsidración Mamáica dl Modlo d "Ovrshooing" dl Tipo d Cambio Aljo Macaya (Univrsidad d Bunos

Más detalles

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS.

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. 1.- En ausncia d autoabsorción, la intnsidad d fluorscncia d una mustra s proporcional a la concntración, solo a concntracions bajas. Calcular

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 9 Expcaivas, Consumo Invrsión Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo

Más detalles

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

CÁLCULO DE LÍNEAS ELÉCTRICAS

CÁLCULO DE LÍNEAS ELÉCTRICAS El cálculo d línas consis n drminar la scción mínima normalizada qu saisfac las siguins condicions: a) Capacidad érmica: Innsidad máxima admisibl. Vin drminada n ablas dl Rglamno Elcroécnico para Baja

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

LA TRANSFORMACION DE LAPLACE

LA TRANSFORMACION DE LAPLACE LA TRANSFORMACION DE LAPLACE. INTRODUCCION En ta publicación prnta la tranformación d Laplac y alguna d u aplicacion, principalmnt n la rolución d problma d valor inicial qu incluyn cuacion o itma d cuacion

Más detalles

Problemas de difusión

Problemas de difusión Probla d difuión PROBLEMA 1 Un acro contin 8,5 % n po d Ni n l cntro d un grano d F... y 8,8% n l líit dl grano. Si lo do punto tán parado 0 μ ual l flujo d átoo ntr to punto a 0 º?. a 0,65 n Ma Ni 58,71

Más detalles

TEMA 3 MODULACIÓN QAM. Inmaculada Hernáez Rioja

TEMA 3 MODULACIÓN QAM. Inmaculada Hernáez Rioja EMA 3 MODULACIÓN QAM Inmaulada Hrnáz Rioa EMA 3 MODULACIÓN QAM... 3-1 3.1 Inroduión.... 3-1 3.2 ranmior QAM báio... 3-1 3.3 Anho d banda oupado... 3-5 3.4 Emplo: QAM-16... 3-6 3.5 Rpor QAM: Dripión gnral...

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE LA RANSFORMADA DE LAPLACE (pun crio por Dr. Mnul Prgd). INRODUCCIÓN Enr l rnformcion má uul qu oprn con funcion f(x) cumplindo condicion dcud n I[,b, pr obnr or funcion n I, án por jmplo : L oprción D

Más detalles

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

MODELOS DE REGIMENES CAMBIANTES ESTOCÁSTICOS Markov switching regimes

MODELOS DE REGIMENES CAMBIANTES ESTOCÁSTICOS Markov switching regimes MODELOS DE REGIMENES CAMBIANES ESOCÁSICOS Markov wiching regime Comporamieno dinámico de la variable dependen del eado de la economía Modelo AR y SAR: vario regímene en función del valor de una variable

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

8 TRANSFORMADAS DE LAPLACE

8 TRANSFORMADAS DE LAPLACE 8 TRANFORMADA DE LAPLACE 8 TRANFORMADA DE LAPLACE...89 8. INTRODUCCIÓN....9 8. DEFINICIONE...9 8.3 TRANFORMADA DE LAPLACE DE FUNCIONE ENCILLA...94 8.3. TRANFORMADA DE LA FUNCIÓN IMPULO:...94 8.3. TRANFORMADA

Más detalles

I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l. U l a d i s l a o G á m e z S o l a n o

I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l. U l a d i s l a o G á m e z S o l a n o 1 A n t o l o g í a : P r o m o c i ó n y A n i m a c i ó n d e l a l e c t u r a M i n i s t e r i o d e E d u c a c i ó n P ú b l i c a I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l.

Más detalles

Una colección para aprender y divertirse con un esqueleto, los órganos y los músculos de nuestro cuerpo

Una colección para aprender y divertirse con un esqueleto, los órganos y los músculos de nuestro cuerpo El C UE RPOHUM O ANO Una colcción para aprndr y divrtir con un qulto, lo órgano y lo múculo d nutro curpo CUERPO HUMANO El La colcción má complta obr l curpo humano. Para conocr nutro curpo y aprndr cómo

Más detalles

Tema 12. Microestructura del mercado de divisas

Tema 12. Microestructura del mercado de divisas Tma 12. Microsrucura dl mrcado d divisas Microsrucura dl mrcado d divisas Orign: allo mpírico gnral n simacions modlos monarios y modlos d quilibrio d carra Taylor (2002: inno d comprndr los mcanismos

Más detalles

A C T I N O M IC O S I S Ó r g a n o : M u c o s a b u c a l T é c n i ca : H / E M i c r o s c o p í a: L o s c o r t e s h i s t o l ó g i c oms u e

A C T I N O M IC O S I S Ó r g a n o : M u c o s a b u c a l T é c n i ca : H / E M i c r o s c o p í a: L o s c o r t e s h i s t o l ó g i c oms u e T R A B A J O P R Á C T I C O N º 4 I N F L A M A C I Ó N E S P E C Í F I C A. P A T O L O G Í A R E G I O N A L P r e -r e q u i s i t o s : H i s t o l o g ída e l t e j i d oc o n e c t i v o( c é l

Más detalles

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x ( ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas Ecacions difrncials Ejrcicios d Ecacions Difrncials Homogénas Rdcibls a Homogénas. arsolvr: ' r b Drminar para q valors d r in solcions d la forma la cación ''' '' ' 0 Solción a Hacmos l cambio: ' ' Rmplaando

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.. Mdiáno d Málg Junio Jun Clo lono Ginoni OPCIÓN.- Conido l unción dinid n l inlo [ ]. Din l cución d l c ngn l cu qu pll l c qu p po lo puno P( Q(. ( puno..- Clcul l ingl indinid iguin d d ( puno.

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida

Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida ntgral indfinida achillrato ntgral indfinida. Primitiva d una función Dfinición: Sa f() una función dfinida n l intrvalo (a,b), llamarmos primitiva d la función f() a toda función ral d variabl ral, F(),

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r. (Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar

Más detalles

4.2 Solución de un sistema de ecuaciones diferenciales lineales con condiciones iniciales por medio de la trasformada de Laplace

4.2 Solución de un sistema de ecuaciones diferenciales lineales con condiciones iniciales por medio de la trasformada de Laplace . Solución de un iema de ecuacione diferenciale lineale con condicione iniciale por medio de la raformada de Laplace 0. Solución de un iema de ecuacione diferenciale lineale con condicione iniciale por

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de LA SUSTITUCIÓN IMPFCTA D ACTIVOS LA SUSTITUCIÓN IMPFCTA D ACTIVOS l mrcado d divisas s ncunra n quilibrio cuando la rnabilidad d los acivos nacionals s igual qu la rnabilidad d los acivos xranjros. sa

Más detalles

GUÍA Nº 04. son constantes, estamos en presencia de una EDO lineal de segundo orden, que será homogénea si 0 y no homogénea en caso contrario.

GUÍA Nº 04. son constantes, estamos en presencia de una EDO lineal de segundo orden, que será homogénea si 0 y no homogénea en caso contrario. Dirión d Formaión Gnral Programa d Mamáia Cálulo II GUÍA Nº 04 Euaions Difrnials Linals d Sgundo Ordn Rordamos qu una EDO linal d ordn n n gnral pud sribirs omo: n n d d d an a... a a0 g n n n d d d Si

Más detalles

PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015)

PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015) PRÁCTICA TRANSFORMADA DE LAPLACE CURSO 4-5 CÁLCULO II Prácica Malab Prácica (9/5/5) Objeivo o Calcular ranformada de Laplace y ranformada invera de Laplace, uilizando cálculo imbólico. o Comprobar propiedade

Más detalles

EFECTOS DE LA INMIGRACION SOBRE EL CRECIMIENTO DEL PAIS RECEPTOR

EFECTOS DE LA INMIGRACION SOBRE EL CRECIMIENTO DEL PAIS RECEPTOR EFECTOS DE LA INMIGRACION SOBRE EL CRECIMIENTO DEL PAIS RECEPTOR Albro Alonso Gonzalz Virginia Villaamil Cabzudo Faculad d Cincias Económicas y Emrsarials Univrsidad Comluns 2. INTRODUCCIÓN Los fcos d

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8 Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula

Más detalles

Ejemplo DII.1 Resolver el sistema formado por dx x y dt = + y dy. dx =, para. Transformando ambas ecuaciones (1) (2)

Ejemplo DII.1 Resolver el sistema formado por dx x y dt = + y dy. dx =, para. Transformando ambas ecuaciones (1) (2) traformada de Laplace 5 Apéndice DII_UIV Má Ejercicio de Solución de un itema de ecuacione diferenciale lineale con condicione iniciale por medio de la traformada de Laplace. (ecc. 4.) [4] Ejemplo DII.

Más detalles

Investigación Económica ISSN: 0185-1667 invecon@servidor.unam.mx Facultad de Economía México

Investigación Económica ISSN: 0185-1667 invecon@servidor.unam.mx Facultad de Economía México Invsigación Económica ISSN: 085-667 invcon@srvidor.unam.mx Faculad d Economía México ÁNGELES CASRO, GERANDO; VENEGAS-MARÍNEZ, FRANCISCO Valuación d opcions sobr índics bursáils y drminación d la srucura

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS Problema 1 Un fluido de propiedades constantes (densidad ρ, viscosidad µ, conductividad térmica k y calor específico c) se encuentra confinado entre dos paredes horizontales infinitas separadas una distancia

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

Tema 2. Amplificadores Operacionales

Tema 2. Amplificadores Operacionales Tma. mplificador Opracional Joaquín aquro Lópz Elctrónica, 007 Joaquín aquro Lópz mplificador Opracional (O): Índic.) Introducción a lo O.) Modlo implificado. Modlo Idal.3) Circuito Linal con O.4.) mplificador

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

168 Termoquímica y Cinética. Aspectos Teóricos

168 Termoquímica y Cinética. Aspectos Teóricos 168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin

Más detalles

SISTEMAS ELECTRICOS EJEMPLO 1.- CIRCUITO ELECTRICO DE COMPONENTES EN SERIE CON UNA FUENTE DE TENSIÓN

SISTEMAS ELECTRICOS EJEMPLO 1.- CIRCUITO ELECTRICO DE COMPONENTES EN SERIE CON UNA FUENTE DE TENSIÓN SISTEMAS EETIOS EJEMPO.- IUITO EETIO DE OMPONENTES EN SEIE ON UNA FUENTE DE TENSIÓN ircuito eléctrico con un componente pasivo y un componente almacenador de energía, ambos en serie con una fuente de voltaje

Más detalles