MÉTODOS MATEMÁTICOS PARA LA ECONOMÍA CON EXCEL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MÉTODOS MATEMÁTICOS PARA LA ECONOMÍA CON EXCEL"

Transcripción

1 MÉTODOS MATEMÁTICOS PARA LA ECONOMÍA CON EXCEL LÓPEZ ARES, SUSANA SÁNCHEZ ALVAREZ, ISIDRO Departamento de Economía Cuanttatva - Unversdad de Ovedo Dentro de las múltples opcones de las hojas de cálculo para la modelzacón de problemas de matemátcas económcas y empresarales, se ha selecconado un grupo representatvo de dversos ámbtos, no ncluyendo n los modelos de optmzacón n fnanceros, cuya ampltud y carácter específco han aconsejado un tratamento separado. I. OPERACIONES MATRICIALES Las hojas de cálculo suelen dsponer de buen número de funcones predefndas para el análss matrcal. En concreto, Excel 97 dspone de las sguentes funcones: TRASPONER(matrz: Permte hallar la matrz traspuesta. MDETERM(matrz: Calcula el determnante de una matrz. MINVERSA(matrz: Obtene la matrz nversa. MMULT(matrz1;matrz: Multplca dos matrces en el orden ndcado. Ahora ben, la ntroduccón de matrces en Excel requere un proceso que suele resultar extraño al alumno. Para ser consderada como matrz es precso sombrearla y presonar la combnacón de teclas: Control+Mayúsculas+Entrar. Además, es precso tener en cuenta los errores de redondeo, no sólo en los cálculos matrcales sno en general en todas las operacones realzadas con la hoja de cálculo. La precsón fnta se traduce en el caso de la Excel 97 en tan solo 15 cfras sgnfcatvas, lo cual puede producr resultados erróneos tales como los que se 1 3 lustran a contnuacón. Sea la matrz: S se calcula su determnante con la hoja de cálculo se obtene: 6,66134E-16 que, s ben es próxmo a cero parece ndcar que la matrz es nversble. S se calcula la nversa se obtene: 4,5036E ,007E ,5036E ,007E ,80144E ,007E ,5036E ,007E ,5036E + 15 y s se multplca la matrz ncal por la nversa se obtene una matrz M que evdentemente no es la matrz untara dado que la matrz no es nversble.

2 M = Los errores de redondeo producen un determnante no nulo, s ben su valor exacto es cero. Se podría haber ntudo este problema observando el orden de magntud del valor del determnante, que supera el número de decmales máxmo. La posbldad de programar macros en Vsual Basc ncrementa además las posbldades de cálculos matrcales y la automatzacón de procesos. A modo de ejemplo, se presenta una funcón defnda por el usuaro para el cálculo de potencas n-ésmas de una matrz y un ejemplo de su aplcacón. Functon PotMatrz(matrz, n If n = 1 Then PotMatrz = matrz Else PotMatrz = Applcaton.MMult(PotMatrz(matrz, n - 1, matrz End If End Functon II. SISTEMAS DE ECUACIONES LINEALES Las posbldades matrcales de que dspone la hoja de cálculo permten la resolucón matrcal de sstemas de ecuacones lneales. Ahora ben, tambén es posble su solucón planteando el sstema con una estructura smlar a la requerda para los modelos de optmzacón y utlzando el «Solver». En el gráfco sguente se presenta la solucón del sstema: 4*x+10*y+5*z=7; x+5*y+4*z=17; 3*x+3*y+z=5 Se asgnan celdas cambantes para las varables (rango B3:D3 se construye la parte zquerda de las ecuacones tal como se refleja en el gráfco para el caso de la prmera ecuacón.

3 Posterormente se ejecuta el «Solver» colocando como celdas cambantes el rango B3:D3 y como restrccones E5:E7=F5:F7. La celda objetvo se deja en blanco. III. APROXIMACIÓN NUMÉRICA DE RAÍCES. Las hojas de cálculo dsponen de macros predefndas que permten enfocar el problema de la aproxmacón numérca de raíces. La estratega de búsqueda consste en este caso en la representacón gráfca de la ecuacón en el ntervalo de análss para conocer ntutvamente los posbles puntos de corte con el eje de abscsas. Posterormente, con la macro «Buscar objetvo» se realzará un proceso de búsqueda numérca, cuya solucón dependerá en buena medda del punto de partda. Para obtener una raíz determnada será necesaro ncar el proceso en un punto cercano al objetvo deseado, s ben el proceso de aproxmacón - una varacón del método de Newton - presenta comportamentos caótcos y no sempre converge. En el gráfco 3

4 anteror se presenta un ejemplo numérco. Una vez analzada gráfcamente la ecuacón, se dseña una celda donde se ntroduce la msma (C3 en funcón del valor de x (C1. A contnuacón, con la macro «Buscar objetvo» se ndca que la celda C3 llegue a obtener el valor numérco 0 realzando cambos en la celda C1. Una vez que obtene una solucón con el grado de exacttud fjado aparecerá un mensaje para confrmar el valor obtendo en C1, que será una de las raíces de la ecuacón. El grado de exacttud y el máxmo de teracones a realzar se puede controlar en la seccón Herramentas/Opcones/Calcular. IV. CÁLCULO NUMÉRICO DE INTEGRALES Y ECUACIONES DIFERENCIALES. La obtencón de aproxmacones numércas de ntegrales se puede llevar a cabo ben creando una hoja de trabajo tpo o ben automatzando el proceso medante un módulo en Vsual Basc. En nuestro caso, hemos optado por lustrar esta segunda posbldad dado que permte mayor flexbldad e ntegracón en otras aplcacones. Los datos de entrada son los límtes de ntegracón (a, b y el número de subntervalos en que se dvde el ntervalo de ntegracón (n. Un posble enfoque para el cálculo aproxmado de una ntegral es la aproxmacón por rectángulos tomando su valor en el punto medo, es decr, consderando que: b a f dx h n 1 = 0 h f ( a + + h donde el ntervalo de ntegracón (a,b se dvde en n subntervalos de longtud h=(b-a/n. Para recoger el proceso de ntegracón se crea el módulo sguente. 'Introducr la funcón a ntegrar Prvate Functon fun1(x fun1 = x ^ + 1 End Functon Functon Integral(Inferor, Superor, Intervalos Suma = 0 h = (Superor - Inferor / Intervalos For = 0 To (Intervalos - 1 Suma = Suma + fun1(inferor + (h / + * h Next Integral = h * Suma End Functon 4

5 Con ello se dspone de una funcón defnda por el usuaro que permte aproxmar una ntegral. Para cambar la funcón es precso modfcarla en fun1, dentro del módulo. Los límtes de ntegracón y el número de subntervalos se han ntroducdo a través de la hoja de trabajo tal como se puede observar en el gráfco sguente. De forma smlar se puede automatzar el cálculo numérco de ecuacones dferencales, en este caso por el método de Euler. Dada una ecuacón dferencal de prmer orden y ' = f, que satsface la condcón y = y, su solucón y = y(x se puede aproxmar, en un ntervalo 0 0 x0 x m, a través del polígono cuyos vértces, venen dados por: y x + 1 = x + h ; y + 1 = y + h f = 0,1,,... n sendo b x h = n o 5

6 Creando una hoja tpo como la presentada en el gráfco anteror se pueden analzar dferentes grados de aproxmacón a la solucón de la ecuacón dferencal. Báscamente, el método consste en construr los conjuntos de puntos (x para cada aproxmacón, representando posterormente la funcón medante un dagrama de dspersón. Para ello se requere crear el módulo sguente, donde se recoge la expresón analítca de la ecuacón dferencal que será precso modfcar para cada caso concreto. 'Modfcar drectamente la ecuacón dferencal de la forma y'=f(x, sendo x=x1 e y=x Functon fun(x1, x fun = -x / x1 End Functon V. GRÁFICOS AVANZADOS. Las hojas de cálculo ofrecen una gran capacdad gráfca para el análss de problemas económcos: desde el sencllo gráfco de líneas, barras o áreas hasta la representacón de ecuacones paramétrcas, funcones en coordenadas polares o dagramas de fase de ecuacones dferencales. A modo de ejemplo, plantearemos una representacón gráfca de los campos de dreccón sguendo el esquema planteado en Sjöstrand(1997. Sean f, y g, dos funcones defndas en un domno D R y sea (x y la funcón solucón de la ecuacón dferencal: f, + g( x, y' = 0 que puede escrbrse como f, dx + g( x, dy = 0. La pendente de esta funcón y (x vene dada por la ecuacón: dy f, y' = = válda en los puntos donde g, 0. El vector dx g( x, de dreccón en el punto de la funcón y (x se defne como aquel que es tangente a la msma en dcho punto. Este vector vene defndo, para 0, por las componentes: ( dx, d = ( g( x,, f,. El campo de dreccón de la anteror ecuacón dferencal se defne como el conjunto de vectores de dreccón en todos los puntos, del domno. Para crear una hoja de trabajo que permta su representacón se sabe que el segmento que une los puntos A y B representa el vector de dreccón con longtud 'a' en el punto x para =0,,... m; =0,,... n. El punto medo de dcho segmento es el punto x. ( ( A = x B = x + a a g g g( x g( x + f + f a + a g g f f + f + f 6

7 Para construr estos segmentos se crean grupos de cuatro celdas con fórmulas como: D4=D$3+0,5*a*g_4(D$3;$C4/RAIZ(f_4(D$3;$C4^+g_4(D$3;$C4^ D5=D$3-0,5*a*g_4(D$3;$C5/RAIZ(f_4(D$3;$C5^+g_4(D$3;$C5^ E4=$C4-0,5*a*f_4(E$3;$C4/RAIZ(f_4(E$3;$C4^+g_4(E$3;$C4^ E5=$C5+0,5*a*f_4(E$3;$C5/RAIZ(f_4(E$3;$C5^+g_4(E$3;$C5^ y se representan como un dagrama de dspersón en el ntervalo deseado tal como se refleja en el gráfco sguente. La ecuacón dferencal se ntroduce a través de un módulo sguendo el formato ndcado ncalmente f 1, x dx1+ g( x1, x dx = 0 Functon f_4(x1, x f_4 = x1-x End Functon Functon g_4(x1, x g_4 = x End Functon VI. LÓGICA Y TEORÍA DE CONJUNTOS. La dsponbldad de funcones lógcas permte analzar la equvalenca lógca de dversas sentencas, s ben la ausenca de utldades smbólca mpde análss avanzados. A modo de ejemplo, se descrbe a contnuacón la comprobacón de que «no((no p o q» y «p y (no q» son lógcamente equvalentes. 7

8 Además, es posble realzar operacones sobre conjuntos numércos (nterseccón, suma, conjuntos complementaros, etc. a través de la opcón de fltros avanzados. Ejemplos al respecto pueden consultarse en Sjöstrand(1997. VII. MODELOS ECONÓMICOS. Las posbldades para modelzar fenómenos económcos y empresarales son muy extensas y dependen en gran medda de la magnacón del nvestgador. En Gully(1996 se analzan algunas aplcacones a la teoría económca especalmente sgnfcatvas son las aplcacones a modelos de nvestgacón operatva: programacón, teoría de colas, smulacón, teoría de la decsón, programacón de proyectos, etc. Con el objeto de lustrar las posbldades en estos campos analzaremos la mplementacón de un modelo de PERT smplfcado. En el gráfco sguente se presentan los datos báscos referdos a las actvdades del proyecto. La columna «Tempo» recoge las duracones de cada una de las actvdades. 8

9 La columna «early» recoge los menores tempos de nco posbles. Estas celdas se consderan como celdas cambantes e ncalmente toman valores cualesquera. La celda D10 recoge la suma de tempos «early». Las columnas F y G establecen la ordenacón temporal de las actvdades, cuando exste algún condconamento entre ellas. En la columna H se ntroducen los tempos actuales entre comenzos de actvdades a través de la fórmula - referda a la celda H3 -: =BUSCARV(G3;$B$3:$D$9;3-BUSCARV(F3;$B$3:$D$9;3 De forma smlar, la columna I recoge los tempos entre comenzos de actvdades que como mínmo deben cumplrse, que venen dados por las duracones de las tareas. Se calculan a través de la fórmula - referda a la celda I3 -: =BUSCARV(F3;$B$3:$C$9; Con el objeto de calcular los tempos «early» se optmza la hoja a través del Solver tal y como se presenta en el gráfco sguente. El objetvo es mnmzar la suma de tempos de nco, cambando las celdas que recogen dchos tempos de nco sujeto a las restrccones que establecen que los tempos entre actvdades debe ser guales o superores a los mínmos. 9

10 De forma smlar se plantea una hoja de trabajo para los tempos «last» y se optmza con el msmo esquema que los tempos «early» añadendo una restrccón en la que se ndca que la últma tarea -G- se nca en el msmo momento que el prevsto en los tempos «early» (D9=1. En el gráfco sguente se presenta una hoja donde se resumen todos los aspectos de las dos hojas de trabajo anterores, ndcando las actvdades crítcas (se detectan analzando s la holgura entre los tempos early de fnalzacón -EFT- y los tempos last de fnalzacón -LFTes nula. Además, se representa gráfcamente la sucesón de tareas medante un dagrama de barras combnada de los tempos y los tempos early de comenzo cambando el orden de las seres y ocultando la prmera de ellas. REFERENCIAS BIBLIOGRÁFICAS GULLY, A.(1997: Modellng Economc Systems. A spreadsheet-based approach. Internatonal Thomson Busness Press. London. MEDINA, A.(199: Manual de Excel 4.0. Anaya Multmeda. Madrd. SJÖSTRAND, D.(1997: Matemátcas con Excel. Unversdad Pontfca de Comllas. Madrd. 10

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,.

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,. º. a Deducr la expresón de la fórmula de dervacón numérca de tpo x,x,x,x,. nterpolatoro que permte aproxmar f (x* con el soporte { } 3 x 4 b Demostrar que en el caso de que el soporte sea de la forma:

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

El diodo Semiconductor

El diodo Semiconductor El dodo Semconductor J.I. Hurcán Unversdad de La Frontera Aprl 9, 2012 Abstract Se plantean procedmentos para analzar crcutos con dodos. Para smpl car el trabajo, el dodo semconductor es reemplazado por

Más detalles

ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor

ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor el blog de mate de ada: ESTADÍSTICA pág. 1 ESTADÍSTICA La estadístca es la cenca que permte acer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que aorra tempo y dnero. Poblacón

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria Economía Industral Tema. La demanda de la ndustra Objetvo del tema Entender el modelo económco de comportamento del consumdor, fnalmente resumdo en la funcón de demanda. Comprender el carácter abstracto

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena. UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun Práctca 1 - Programacón en C++ Pág. 1 Práctcas de C++ Practca Nº 1 Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Práctca 1 - Programacón en C++ Pág. 1 INDICE ÍNDICE... 1 1.1 Ejercco

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

Análisis Matemático en la Economía: Optimización y Programación. Augusto Rufasto

Análisis Matemático en la Economía: Optimización y Programación. Augusto Rufasto Análss Matemátco en la Economía: Optmzacón y Programacón arufast@yahoo.com-rufasto@lycos.com www.geoctes.com/arufast-http://rufasto.trpod.com La optmzacón y la programacón están en el corazón del problema

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR En esta práctca se llevará a cabo un estudo de modelado y smulacón tomando como base el ntercambador de calor que se ha analzado en el módulo de teoría.

Más detalles

Tema 6 El mercado de bienes y la función IS

Tema 6 El mercado de bienes y la función IS Tema 6 El mercado de benes y la funcón IS Macroeconomía I Prof. Anhoa Herrarte Sánchez Curso 2007-08 Bblografía para preparar este tema Apuntes de clase Capítulo 3, Macroeconomía, O. Blanchard Prof. Anhoa

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

5 Centrales Hidráulicas

5 Centrales Hidráulicas Curso SmSEE IIE 2012 Cap. 5 pág 1/6 5 Centrales Hdráulcas 5.1 Centrales Hdráulcas con Embalse En el caso de centrales con embalses, tendremos que agregar restrccones adconales para mponer los límtes de

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI Undad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI 3.1. DINÁMICA DE LA GESTIÓN DE PROYECTOS. 3.1.1. GESTIÓN DE PROYECTOS. La gestón

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

1.1 INTRODUCCIÓN: LA INTEGRAL DEFINIDA

1.1 INTRODUCCIÓN: LA INTEGRAL DEFINIDA 3. INTEGRALES OBLES En este trabao se extende el concepto de la ntegral de una funcón real de varable real a funcones de varas varables, comenzando en este capítulo con ntegrales de funcones de dos varables;

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN SOLUCION NUMERICA Una solucón de esta ecuacón ncal con CI es una funcón ϕ : ( x ε, x + ε ) R tal que 0 0 ϕ '( x) = f ( x, ϕ( x)),

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES EN INGENIERIA Y CIENCIAS FISICO MATEMATICAS

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES EN INGENIERIA Y CIENCIAS FISICO MATEMATICAS ESCUELA: CARRERA: ESPECALDAD: COORDNACON: DEPARTAMENTO: UPCSA NGENERA EN TRANSPORTE ACADEMAS DE MATEMATCAS CENCAS BASCAS ASGNATURA: MATEMATCAS APLCADAS : TMMA SEMESTRE: 4 CREDTOS: 8 VGENTE: ENERO 2000

Más detalles

PRÁCTICA 3. Programación de ficheros M

PRÁCTICA 3. Programación de ficheros M PRÁCTICA 3. Programacón de fcheros M Perodo de realzacón: Semanas 3 y 4 del curso Fecha límte de entrega: 5 de marzo de 0 Se pde subr al Moodle un únco fchero apelldo_p3.pdf con la solucón de los sguentes

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

3.- Programación por metas.

3.- Programación por metas. Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del

Más detalles

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos:

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos: UNIDAD 2: Gráfcos estadístcos Los gráfcos muestran vsualmente y de forma rápda la dstrbucón de los datos y sus prncpales característcas, consttuyen un mportante complemento en la presentacón de la nformacón.

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES

SISTEMAS DE ECUACIONES DIFERENCIALES DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS AROXIMADOS EN ING. QUÍMICA TF-33 SISTEMAS DE ECUACIONES DIFERENCIALES Esta guía fue elaborada por: rof.

Más detalles

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos.

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos. PRÁCTICA INTEGRACIÓN Práctcas Matlab Práctca : Integracón Objetvos o Calcular ntegrales defndas de forma aproxmada, utlzando sumas de Remann. o o o Profundzar en la comprensón del concepto de ntegracón.

Más detalles

Números Complejos II. Ecuaciones

Números Complejos II. Ecuaciones Complejos 1º Bachllerato Departamento de Matemátcas http://selectvdad.ntergranada.com Raúl González Medna Ecuacones 1. Resolver las sguentes ecuacones y determnar en qué campo numérco tenen solucón: a)

Más detalles

Teléfonos Avaya T3 para conexión a Integral 5 Configurar y utilizar la sala de conferencias Apéndice del Manual del usuario

Teléfonos Avaya T3 para conexión a Integral 5 Configurar y utilizar la sala de conferencias Apéndice del Manual del usuario Teléfonos Avaya T3 para conexón a Integral 5 Confgurar y utlzar la sala de conferencas Apéndce del Manual del usuaro Issue 1 Integral 5 Software Release 2.6 Septembre 2009 Utlzar la sala de conferencas

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente en el análss y dseño de sstemas de control. Otro procedmento alternatvo

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization)

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization) Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multobjectve Optmzaton) Patrca Jaramllo A. y Rcardo Smth Q. Insttuto de Sstemas y Cencas de la Decsón Facultad de Mnas Unversdad Naconal de Colomba, Medellín,

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

Facultad de Química. UNAM Alejandro Baeza

Facultad de Química. UNAM Alejandro Baeza Facultad de Químca. UNM lejandro Baeza.006 Químca nalítca Instrumental I nálss de mezclas por espectrofotometría. Documento de apoyo. Dr. lejandro Baeza. Semestre 007-I.0 Selectvdad espectral en espectrofotometría

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Tema 6 El mercado de bienes y la función IS

Tema 6 El mercado de bienes y la función IS Tema 6 El mercado de benes y la funcón IS Macroeconomía I Sánchez Curso 2008-09 Bblografía para preparar este tema Apuntes de clase Capítulo 5, Macroeconomía, O. Blanchard, pp. 81-100 Objetvo del tema

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

3 LEYES DE DESPLAZAMIENTO

3 LEYES DE DESPLAZAMIENTO eyes de desplazamento EYES DE DESPAZAMIENTO En el capítulo dos se expone el método de obtencón de las leyes de desplazamento dseñadas por curvas de Bézer para mecansmos leva palpador según el planteamento

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

ESTÁTICA DEL SÓLIDO RÍGIDO

ESTÁTICA DEL SÓLIDO RÍGIDO DSR-1 ESTÁTICA DEL SÓLIDO RÍGIDO DSR-2 ESTÁTICA DEL SÓLIDO RÍGIDO La estátca estuda las condcones bajo las cuales los sstemas mecáncos están en equlbro. Nos referremos úncamente a equlbro de tpo mecánco,

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

Facultad de Ciencias Básicas

Facultad de Ciencias Básicas Facultad de Cencas Báscas ANÁLISIS GRÁFICO DE DATOS EXPERIMENTALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos expermentales. Establecer un crtero para el análss de grafcas

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado.

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado. Termodnámca del equlbro Equlbro fásco Profesor: lí Lara En el área de Ingenería Químca exsten muchos procesos ndustrales en los cuales está nvolucrado el equlbro entre fases. Una de estas operacones es

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud Unversdad de Pamplona Facultad de Cencas Báscas Físca para cencas de la vda y la salud AÁLISIS GRÁFICO DE DATOS EXPERIMETALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos

Más detalles

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza EL ANÁLSS DE LA VARANZA (ANOVA). Estmacón de componentes de varanza Alca Maroto, Rcard Boqué Grupo de Qumometría y Cualmetría Unverstat Rovra Vrgl C/ Marcel.lí Domngo, s/n (Campus Sescelades) 43007-Tarragona

Más detalles

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton ema II Crcutos eléctrcos en corrente contnúa Indce Introduccón a los crcutos resstvos Ley de Ohm Leyes de Krchhoff Ley de correntes (LCK) Ley de voltajes (LVK) Defncones adconales Subcrcutos equvalentes

Más detalles

UNIDAD 1: Tablas de frecuencias

UNIDAD 1: Tablas de frecuencias UIDAD : Tablas de recuencas Cuando sobre una poblacón hemos realzado una encuesta o cualquer regstro para conocer los valores que toman las varables, nos encontramos ante una gran cantdad de datos que

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

Sistemas de Amortización de Deudas MATEMÁTICA FINANCIERA

Sistemas de Amortización de Deudas MATEMÁTICA FINANCIERA Sstemas de Amortzacón de Deudas MATEMÁTICA FINANCIERA SISTEMA FRANCÉS Lus Alcalá UNSL Segundo Cuatrmeste 2016 Como hpótess ncal de trabajo suponemos que la tasa de nterés cobrada por el prestamsta (acreedor)

Más detalles

Guía para el Trabajo Práctico N 5. Métodos Estadísticos en Hidrología

Guía para el Trabajo Práctico N 5. Métodos Estadísticos en Hidrología Guía para el Trabajo Práctco 5 Métodos Estadístcos en Hdrología er. PASO) Realzar el ajuste de la funcón de dstrbucón normal a una muestra de datos totales anuales de una varable (caudal, precptacón, etc.)

Más detalles

Capítulo Estimación del modelo de Nelson y Siegel Introducción Estimación del modelo de Nelson y Siegel

Capítulo Estimación del modelo de Nelson y Siegel Introducción Estimación del modelo de Nelson y Siegel Capítulo 4... 91 Estmacón del modelo de Nelson y Segel... 91 4.1. Introduccón... 91 4.2. Estmacón del modelo de Nelson y Segel... 92 4.2.1. Tratamento prevo a la estmacón... 92 4.2.2. Defncón del crtero

Más detalles

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales Métodos Matemá5cos en la Ingenería Tema. Ecuacones no lneales Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA prada@autom.uva.es mn J() h() = g() Problema general NPL Para encontrar una solucón al

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles