x x = 0 es una ecuación compatible determinada por que sólo se

Tamaño: px
Comenzar la demostración a partir de la página:

Download "x x = 0 es una ecuación compatible determinada por que sólo se"

Transcripción

1 Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: Denominmos euión lgeri tod euión del tipo: n n n n. n n 0 en l que n es el grdo de l euión, represent l vrile (o inógnit) los ftores en son números reles. Cundo l euión se verifi pr lgunos vlores del onjunto de todos los vlores posiles que dmite l vrile denominmos est omo euión omptile determind. Ejemplos: 0 es un euión omptile determind por que sólo se verifi l iguldd pr: + 5 es un euión omptile determind por que sólo se verifi l iguldd pr: 5 0 es un euión omptile determind por que sólo se verifi l iguldd pr: ; 0 0 El onjunto formdo por los vlores que verifin l iguldd se denomin onjunto soluión de l euión. Cd vlor, o elemento, de diho onjunto se denomin ríz de l euión. Si ourrier que ningún vlor stisfe l euión plnted, denominmos est omo euión inomptile. Ejemplo: es un euión inomptile, pues no se verifi pr ningún vlor EJERCICIOS: ) Resolver ls siguientes euiones e indir su onjunto soluión: Págin

2 ) Dr respuest los siguientes enunidos:. L sum de números onseutivos es igul 6. Cuáles son esos números? (Simólimente los números onseutivos son: ; + +). L sum de dos múltiplos onseutivos de 6 es igul 66. Cuáles son esos números?. En un ul on 9 lumnos, entre vrones mujeres. Si h 6 vrones más que mujeres. Cuántos lumnos h de d uno?. Tres lumnos de un urso hn resuelto ejeriios en totl. El lumno A resolvió n + ejeriios, B resolvió n 5 ejeriios C relizó n +. Cuántos ejeriios resolvió d uno? 5. El promedio de ls lifiiones de dos lumnos es de 7,50 puntos. Si l lifiión de uno de ellos es un urto de l del otro más ino Qué lifiión tiene d uno de ellos? 6. De utro migos: A, B, C D; A tiene hermnos, B tiene, C tiene + D: 6. Se se demás, que uno de ellos es hijo únio. Cuántos hermnos tienen los demás? 7. De un rut se hn inugurdo de su longitud; de l mism está en onstruión quedn ún por onstruir 0 Km. Cuál es l longitud totl de l rut? 8. L se mor de un trpeio es el dole de l otr l ltur del trpeio es de,5 m. Cuánto mide d un de ls ses si l superfiie de l figur es 75,00 m 9. En un terreno tringulr ABC de 5,00 m de perímetro, el ldo es del ldo el ldo es,00 m más lrgo que el ldo. Clulr l longitud de d ldo. Págin

3 0. El áre de un plz, on form de romo, es de 0,- m. Un de sus digonles D 9,- m Cuál es l longitud de l digonl D? Qué puedes deir del romo?. Clulr l se menor (B ) Bse mor 0,80 m (B ) ltur 5,00 m (h) Áre,50 m h B B. Hllr l se l ltur de un retángulo, siendo que l ltur es l mitd de l se el áre de su superfiie es de,00 m.. Hllr l longitud de ls digonles del prlelogrmo. AO + BO 5 CO 5 B O C A D. Clulr AB CD siendo ABCD un retángulo 8 AB 5 5,5 CD 0, + ( tiene soluión?) 5. Clulr l longitud de los tetos de l hipotenus AB + AC + BC + 7 A B B C D 7 SISTEMA DE ECUACIONES LINEALES Euiones de Primer Grdo on dos Inógnits Y hemos visto que: Si P() es un polinomio on un vrile indetermind, l epresión: P() 0; es un euión on un inógnit. Si demás, P() es un polinomio de primer grdo, entones result: P() 0; es un euión de primer grdo on un inógnit. A C Ejemplo: S {} L euión de primer grdo on un inógnit tiene un sol ríz. El onjunto soluión es unitrio. Págin

4 Considermos hor el polinomio P(; ) on dos vriles indeterminds. P(; ) 0 es un euión de dos inógnits. Si en prtiulr, P(; ) es un polinomio de primer grdo, entones l epresión: P(; ) 0 es un euión de primer grdo on dos inógnits. Si onvertimos dih euión en: P(); d pr ordendo (; ) que verifique l iguldd plnted, será un ríz de l euión. Sistems de Euiones de Primer Grdo on dos Inógnits Se denomin sistem de euiones, undo se onsider un onjunto de dos o más euiones us ríes son omunes. Al onjunto de dos euiones P(; ) 0 Q(; ) 0 se llm sistem de dos euiones on dos inógnits. Si ms euiones son de primer grdo, deimos que es un sistem de euiones de primer grdo on dos inógnits. Pr indir que formn un sistem se rn on un llve. Ejemplo: P ( ; ) 0 0 Q ( ; ) Métodos pr Resoluión de Sistems de Euiones de Primer Grdo on dos Inógnits Eisten diversos métodos pr l resoluión de sistems de euiones on dos inógnits. L representión gráfi de ls euiones onstitue uno de los proedimientos pr enontrr el onjunto soluión. Alguno de los métodos lgerios más usules pr l resoluión de euiones de primer grdo on dos inógnits, son: Método de Sustituión Método de Igulión Método de Reduión por Sum o Rest Método de Determinntes Culquier se el método que se utilie, generlmente se proede de l siguiente mner:. Se elimin un de ls inógnits pr trnsformr el sistem de dos euiones de on dos inógnits en un euión de primer grdo on un inógnit.. Se resuelve l euión de primer grdo on un inógnit por lguno de los métodos onoidos.. Se reemplz l ríz hlld en un de ls euiones del sistem l epresión resultnte permite lulr l otr inógnit. A ontinuión veremos omo se resuelven estos sistems de euiones on d uno de los métodos enunidos previmente. Método de Sustituión Págin

5 Se el sistem: + 5. Despejmos en l primer euión: + () Sustituimos el vlor de en l segund euión: 5 ( + ) 5 De est mner, por sustituión, nos qued un euión de primer grdo on un inógnit.. Resolvemos l euión otenid: Reemplzmos el vlor de en l iguldd (): S ( ;) Conjunto Soluión del sistem: { } Págin 5

6 Oservión: Si lgun de ls inógnits ree de oefiiente, onviene despejr est inógnit, porque evitmos los denomindores. Pruee herlo despejndo en l primer euión. Ejeriios: d 7 Método de Igulión Se el sistem: + 5. Despejmos en ms euiones: De l primer: () De l segund: 5 + () Igulmos los dos vlores de : 5 + De est mner, por igulión, otenemos un euión de primer grdo on un inógnit.. Resolvemos l euión otenid: Reemplzmos el vlor de en l iguldd () (o en l ()): Págin 6

7 Conjunto Soluión del sistem: S {( ;)} Ejeriios: d 7 + Método de Reduión por Sum o Rest ) Se el sistem: + 7. Es fáil ver que puede eliminrse l inógnit sumndo miemro miemro + 7 Se otiene sí un euión de primer grdo en. Resolvemos:. Reemplzmos en l primer euión (o en l segund) Conjunto Soluión del sistem: S {(;) } ) Se el sistem: Págin 7

8 . Es fáil ver que puede eliminrse l inógnit restndo miemro miemro. Pr restr ls dos euiones, summos l primer el opuesto de l segund Se otiene sí un euión de primer grdo en. Resolvemos:. Reemplzmos en l primer euión (o en l segund) Conjunto Soluión del sistem: S {( ; ) } ) Se el sistem: + 7 Si se quiere eliminr un inógnit, se dee logrr que sus oefiientes sen números opuestos.. Pr eliminr ; se multipli l primer euión por - + por Oservmos un euión de primer grdo en. Resolvemos: 5 5 Págin 8

9 . Reemplzmos en l primer euión (0 en l segund) + ( ) + Conjunto Soluión del sistem: S {( ; ) } d) Se el sistem: + 7 Si hor queremos eliminr deemos logrr que sus oefiientes sen números opuestos. Pr eliminr multiplimos l primer euión por + por Otenemos sí un euión de primer grdo en. Resolvemos: 0 0. Reemplzmos en l primer euión + Conjunto Soluión del sistem: S {( ; ) } d) Se el sistem: Si pretendemos eliminr no eiste un número nturl que multiplido por se igul Págin 9

10 . En este so multiplimos l primer euión por (oefiiente de en l segund) l segund euión por - (oefiiente de, mido de signo, en l primer) pr poder reduir por por Otenemos un euión de primer grdo en. Resolvemos: 8 6. Reemplzmos en l primer euión (o en l segund) Conjunto Soluión del sistem: S {(;) } Oservión: Con un proedimiento similr, se podrí eliminr, lulr en se. Ejeriios: d e f Págin 0

11 Método de Determinntes A los métodos de eliminión de un inógnit se greg un nuevo método pr resolver sistems de dos euiones de primer grdo on dos inógnits. Consideremos un sistem epresdo en form generl trtemos de enontrr los vlores de de por el método de eduión pro sum o rest Pr otener un euión de primer grdo en eliminmos, multiplindo l primer euión por l segund por - + por + por + Resolvemos l euión de primer grdo en ) ( (). Pr otener un euión de primer grdo en eliminmos, multiplindo l primer euión por l segund por - + por + por + Resolvemos l euión de primer grdo en ) ( Si se omprn los denomindores de de se not que son opuestos. Pr otener denomindores igules, multiplimos numerdor denomindor por - ordenmos los términos. Págin

12 () Desrrollremos hor un nuevo lgoritmo mu útil pr resolver sistems de euiones de primer grdo on dos inógnits. Se plnte un difereni de dos produtos de dos ftores: d Se esquemtiz de l siguiente mner: d El determinnte es el produto de los números de l digonl prinipl (en líne de trzos) menos el produto de los números de l otr digonl (en líne ontinu). d.d. En onseueni, los numerdores denomindores de ls epresiones () () que dn los vlores de de pueden epresrse omo un oiente de determinntes. () () Oservión: El denomindor es el determinnte formdo por los oefiientes de de. (Lo llmmos D) El numerdor de se otiene reemplzndo en D, los oefiientes de por los términos independientes El numerdor de se otiene reemplzndo en D, los oefiientes de por los términos independientes Ejemplo: + 5 ) ( D Págin

13 5 ( ) ( 5) 7 5 ( 5) 8 Conjunto Soluión del sistem: S {( ;)} Ejeriios: d + 9 Págin

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTAS D CUACIONS. Resolver los siguientes sistems de dos euiones lineles on dos inógnits. Se puede resolver por ulquier método, pero deido que es fáil despejr l de l primer euión, lo resuelvo por sustituión.

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES UNEFA C.I.N.U. Mtemátis Mteril dptdo on fines instruionles por Teres Gómez, de: Oho, A., González N., Lorenzo J. Gómez T. (008) Fundmentos de Mtemátis, Unidd 5: Euiones e Ineuiones, CIU 008, UNEFA, Crs.

Más detalles

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

ECUACIONES DE PRIMER GRADO

ECUACIONES DE PRIMER GRADO IES Jun Grí Vldemor Deprtmento de Mtemátis TEMA : ECUACIONES º ESO Mtemátis B ECUACIONES DE PRIMER GRADO PASOS PARA RESOLVER UNA ECUACIÓN DE PRIMER GRADO. Eliminr préntesis si los hy). Eliminr denomindores

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: EDISON MEJÍA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 9

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro CARRERA: Ingenierí en Sistems de Computión PLAN DE ESTUDIOS: 00 ASIGNATURA: AÑO ACADÉMICO: DOCENTE: MATEMATICA BASICA I Año Ing. Enmnuel de Jesús Fonse Alfro UNIDAD I: ALGEBRA Al finlir est unidd el estudinte

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

1 - Resolver los siguientes determinantes usando propiedades 1/10

1 - Resolver los siguientes determinantes usando propiedades 1/10 - Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3.

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3. Ejeriios de ÁLGEBRA º Bhillerto págin MATRICES.- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Clulr A -A I, siendo: A=, I=.- Resolver el sistem

Más detalles

TEMA 7: DETERMINANTES

TEMA 7: DETERMINANTES lonso Fernández Glián TEM : DETERMINNTES El determinnte de un mtriz udrd es ierto número que se lul prtir de ell y que ontiene informión signifitiv sore l mtriz.. DETERMINNTES DE ORDEN Y El álulo de determinntes

Más detalles

LOGRO Identifica las características de la ecuación cuadrática, aplicándolas en la resolución de problemas algebraicos y geométricos.

LOGRO Identifica las características de la ecuación cuadrática, aplicándolas en la resolución de problemas algebraicos y geométricos. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 9 DE MAYO

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

determinante haciendo todos los productos, Tema 8. Determinantes.

determinante haciendo todos los productos, Tema 8. Determinantes. Tem. Determinntes.. Definiión de determinntes.. Propieddes de los determinntes.. Cálulo de determinntes de orden myor que (No entr en seletividd).. Rngo de un mtriz.. Mtriz invers... Definiión del determinnte

Más detalles

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O. TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos

Más detalles

Instituto de Enseñanza Superior Lola Mora - IES Profesorado de Educacion Secundaria en Economia

Instituto de Enseñanza Superior Lola Mora - IES Profesorado de Educacion Secundaria en Economia 0 Instituto de Enseñn Superior Lol Mor - IES rofesordo de Eduion Seundri en Eonomi Curso ropedeutio de Mtemáti Estimdo Ingresnte: Este udernillo hn sido pensdos pr udrte reuperr onsolidr los Conoimientos

Más detalles

1.-Algunas desigualdades básicas.

1.-Algunas desigualdades básicas. Preprión Olimpid Mtemáti Espñol. Curso 05-6. Desigulddes (y polinomios, y funiones). 3 de Noviemre de 05. Fernndo Myorl..-Alguns desigulddes ásis. ) 0 pr ulquier R. L iguldd sólo se umple pr = 0. ) (Desiguldd

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:

Más detalles

MATEMÁTICAS APLICADAS A CC.SS. I TEMA 1 Y 2: LOS NÚMEROS RADICALES. LOGARITMOS

MATEMÁTICAS APLICADAS A CC.SS. I TEMA 1 Y 2: LOS NÚMEROS RADICALES. LOGARITMOS http://olmo.pnti.me.es/dms000 MATEMÁTICAS APLICADAS A CC.SS. I TEMA Y : LOS NÚMEROS RADICALES. LOGARITMOS HOJA Nº Feh de entreg: Viernes, de Oture de 00 Ejeriios. 7. Etre ftores y simplifi l máimo l epresión

Más detalles

Números Irracionales

Números Irracionales Números Irrionles Los griegos ern onoedores de los números nturles: 0, 1,,,, 5, Estos números son los que se utilizn pr numerr o ontr, pero no nos sirven si queremos expresr ntiddes no exts, omo "l mitd

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD 1 LA ELIPSE Y LA HIPÉRBOLA Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivos espeífios: 1. Reordrás

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

ÁLGEBRA I FICHA 1: 1.- Efectuar las siguientes operaciones:

ÁLGEBRA I FICHA 1: 1.- Efectuar las siguientes operaciones: ÁLGEBRA I FICHA 1: 1.- Efetur ls siguientes operiones: (-+-(--+-(-+= (- -+ ( + --7= ( - (-+ (-= d (- ---(- = e (- = f (- -+-(- ( +=.- Efetur ls siguientes operiones on produtos notles: ( - = ( + = (+ -(+

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0

Más detalles

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada.

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada. Hoj de Prolems Geometrí III 49. Dd l elipse, si tommos el etremo B de ordend positiv del eje menor omo entro, se desrie un irunfereni de rdio igul diho eje menor, ortr l elipse en dos punto P P. Determinr

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0 Ecuciones cudrátics con un incógnit Sen, 1 y los tres números nturles consecutivos uscdos. El prolem nos indic que ( 1 ) ( ) 365 Un número con misterio! El número 365 tiene l crcterístic de ser l sum de

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.

Más detalles

Hacia la universidad Álgebra lineal

Hacia la universidad Álgebra lineal Hi l universi Álger linel OPCIÓN A Soluionrio. Un mtriz ur A se llm ntisimétri uno su trspuest es igul su opuest. Otén l form generl e un mtriz A e oren que se ntisimétri. Clul A, A y A. Consieremos l

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

SISTEMAS DE ECUACIONES DE PRIMER GRADO

SISTEMAS DE ECUACIONES DE PRIMER GRADO el log e me e i: Memáis I. Sisems e euiones. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO Un sisem e os euiones e primer gro on os inógnis puee esriirse sí: += `+`=` one los oefiienes e ls inógnis los érminos

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta.

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta. TEMA : SISTEMAS DE ECUACIONES ECUACIONES LINEALES CON DOS INCÓGNITAS Un euión linel on os inógnits es un igul lgeri el tipo: + = one e son ls inógnits,, son números onoios. Un soluión e un euión linel

Más detalles

Fatela Preuniversitarios

Fatela Preuniversitarios MATEMÁTICA GUÍA º 13 SISTEMAS DE ECUACIO ES LI EALES" En est guí se trtrá sore: Sistems de Euiones, Métodos de Resoluión: Form Gráfi. Sustituión. Igulión. De Reduión por Sums y Rests. Determinntes (Pr

Más detalles

Aplicando las propiedades conocidas de las operaciones entre número reales, obtenemos:

Aplicando las propiedades conocidas de las operaciones entre número reales, obtenemos: Curso de Nivelción en Mtemátic Ecuciones Un prolem de ingenio frecuente es: Pensr un número. Sumrle 5. Multiplicr por el resultdo. A lo que se otiene, restrle 9. Dividirlo por. Restrle 8. ECUACIONES Si

Más detalles

ECUACIONES DE PRIMER GRADO CON TRES INCÓGNITAS. SOLUCIONES. INTERPRETACIÓN GEOMÉTRICA. SISTEMAS ESCALONADOS

ECUACIONES DE PRIMER GRADO CON TRES INCÓGNITAS. SOLUCIONES. INTERPRETACIÓN GEOMÉTRICA. SISTEMAS ESCALONADOS EUIONES DE PRIMER GRDO ON TRES INÓGNITS. SOLUIONES. INTERPRETIÓN GEOMÉTRI. Hagamos primero una breve introducción sobre la comodidad de resolver sistemas de ecuaciones presentados en forma escalonada.

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

c Ejemplo: 25 9x 2 = 0 x

c Ejemplo: 25 9x 2 = 0 x 1.- ECUACIONES POLINÓMICAS Ecuciones de º grdo Son ecuciones donde l incógnit está elevd. Ecuciones de º grdo complets Son del tipo x + bx + c = 0, con b, c 0. Pr resolverls usmos l fórmul b b 4c x L expresión

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones

Más detalles

GEOMETRÍA DEL ESPACIO

GEOMETRÍA DEL ESPACIO Mtemáti Diseño Industril Poliedros Ing. Gustvo Moll GEOMETRÍA DEL ESPACIO L geometrí pln estudi el onjunto de todos los puntos del plno, l geometrí del espio se refiere l onjunto de puntos del espio, es

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b.

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b. Visulizión de triángulos Curso de Mtemátis pr Físi Curso de Mtemátis pr Físi Físi I, vi@ Internet 2004 B A C Físi I, vi@ Internet 2004 Visulizión de triángulos Fijémonos en un triángulo ulquier. Curso

Más detalles

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: info@drioestudio.es www.drioestudio.es. Dds ls tries A y B, lulr: ) A B ) A t B t. Dds ls tries A, B, C y D, relizr todos los produtos que sen posiles..

Más detalles

MATEMÁTICA MÓDULO 3 Eje temático: Geometría

MATEMÁTICA MÓDULO 3 Eje temático: Geometría MATEMÁTICA MÓDULO 3 Eje temátio: Geometrí 1. SEGMENTOS PROPORCIONALES EN EL TRIÁNGULO RECTÁNGULO En el ABC retángulo en C de l figur: Se pueden estbleer ls siguientes semejnzs: 1) De est semejnz, se obtienen

Más detalles

Tema 1: ÁLGEBRA DE MATRICES

Tema 1: ÁLGEBRA DE MATRICES ÁLGER DE MTRIES Tem : ÁLGER DE MTRIES Índie. Mtries... Definiión de mtriz... lsifiión de ls mtries... Tls, grfos y mtries.. Operiones on mtries... Sum de mtries... Multipliión de un número por un mtriz...

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función Déimo ño // Lieo Sn Niolás de Tolentino Pág. 1 Funión Ddos dos onjuntos no víos y, se denomin funión de en, l relión o orrespondeni de d elemento del onjunto on un ÚNICO elemento del onjunto. lgunos spetos

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

Un paralelogramo es un cuadrilátero con sus lados opuestos paralelos. Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1

Un paralelogramo es un cuadrilátero con sus lados opuestos paralelos. Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1 Cudriláteros 1º Año Mtemáti C o r r e i ó n y d p t i ó n : P r o f. M r í d e l L u j á n M r t í n e z P r o f. M ó n i N p o l i t n o Cód. 1106-17 Dpto. de Mtemáti 1.1. PARALELOGRAMO Definiión Un prlelogrmo

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA REPUBLICA DE COLOMBIA SECRETARIA DE EDUCACION DISTRITAL DE SANTA MARTA INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluión Nº 88 de noviemre.8/ Emnd de l Seretri De Eduión Distritl DANE Nº7-99

Más detalles

Integración de funciones racionales

Integración de funciones racionales Integrción de funciones rcionles P() Se l integrl d donde P() y Q() son funciones polinómics. Si el grdo P() Q() se Q() divide P() entre Q() medinte el método de l cj y se otiene un cociente () y un resto

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

MATEMÁTICA Proporcionalidad de segmentos Guía Nº: 3

MATEMÁTICA Proporcionalidad de segmentos Guía Nº: 3 MATEMÁTICA Proporionlidd de segentos Guí Nº: 3 APELLIDO: Prof. Krin G. Rizzo 1. TEOREMA DE THALES Trzr ls rets perfetente prlels y edir on uh preisión los segentos indidos ontinuión A B P Q e f C g D d

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

GUIA DE MATEMATICA. Coeficiente numérico. Es toda combinación de números y letras ligados por los signos de las operaciones aritméticas.

GUIA DE MATEMATICA. Coeficiente numérico. Es toda combinación de números y letras ligados por los signos de las operaciones aritméticas. www.colegiosntcruzrioueno.cl Deprtmento de Mtemátic GUIA DE MATEMATICA Unidd: Álger en R Contenidos: - Conceptos lgericos ásicos - Operciones con epresiones lgerics - Vlorción de epresiones lgerics - Notción

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

Area Académica: Licenciatura en Sistemas Computacionales. Profesor: I.E.C. Roxana Sifuentes Carrillo

Area Académica: Licenciatura en Sistemas Computacionales. Profesor: I.E.C. Roxana Sifuentes Carrillo Are Adémi: Lienitur en Sistems Computionles Asigntur: Álger Linel Profesor: I.E.C. Ron Sifuentes Crrillo Periodo: Julio-Diiemre 0 Tem: Determinnts Astrt A determinnt is mthemtil nottion onsists of squre

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Págin del Colegio de Mtemátis de l ENP-UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos HIPÉRBOLA UNIDAD XI XI.1 DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno,

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles