1.5. Integral de línea de un campo Vectorial.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.5. Integral de línea de un campo Vectorial."

Transcripción

1 .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por el recorrido de la curva. f(t P i a ti * t i t i * P i t b Pi Figura 4. Integral de línea de un campo vectorial. Si se divide la curva en n subarcos de longitudes s, s, s,..., sn, con s P P, entonces el trabajo realizado por la fuerza para desplazar una partícula i i i desde el punto Pi hasta el punto P i se puede aproximar tomando en cuenta las * * * * siguiente consideraciones, al tomar un punto i ( i, i, i P x y z y sabiendo que si es lo suficientemente pequeño, entonces a medida que la partícula se mueve de Pi hacia a lo largo de la curva, este desplazamiento tiene aproximadamente la misma dirección * * * que ( i, i, i T x y z, el cual representa el vector tangente unitario en el punto (,, P x y z. De tal manera que el trabajo que ejerce este campo de fuerza sobre la * * * * i i i i partícula para moverla de Pi hacia P i sería el producto del desplazamiento P i si, por la fuerza ejercida en el punto en la dirección del desplazamiento, que vendría dado por el vector tangente unitario, esto es * * * * * * (,, (,, F x y z T x y z s i i i i i i i

2 por tanto el trabajo total que ejerce el campo de fuerza para desplazar la partícula desde su punto inicial hasta el punto final vendría dado, en forma aproximada, por la expresión n i ( *, *, * ( *, *, * F x y z T x y z s i i i i i i i Para tener una aproximación más cercana al valor verdadero del trabajo total realizado se puede incrementar el número de subarcos n en el que se ha dividido la curva. Al estudiar el límite de estas aproximaciones se obtiene el valor exacto del trabajo total realizado es: n i n ( * * * ( * * * i, i, i i, i, i i (,, (,, W Lim F x y z T x y z s F x y z T x y z ds onsiderando que la curva tiene como parametrización a la función vectorial R R ( ( ( ( (, el vector tangente unitario ( g: / g t x t, y t, z t ( T t ( t ( t g' g', de manera que la ecuación anterior se podría reescribir como ( t ( t T t viene dado por b g' b W F( x( t, y( t, z( t g' ( t dt F( x( t, y( t, z( t g' ( t dt a g' a Ahora bien esta interpretación ha sido desarrollada para el caso en que el campo vectorial es un campo de fuerza, sin embargo podemos basarnos en este desarrollo para definir al integral de línea de un campo vectorial de la manera que se presenta a continuación Definición. Sea F un campo vectorial definido por ( ( ( ( ( F: D / F X F X, F X, F X R R, y sea una curva, definida en D, dada paramétricamente por la función vectorial g: R R / g( t ( x( t, y( t, z( t con t [ a, b], entonces la integral de línea del campo vectorial F sobre es igual a a b ( ( '( F dr F Tdl F g t g t dt

3 Una manera simplificada para indicar esta integral es denotarla por gravitacional es el ejemplo más conocido como un campo de fuerza. F dr. El campo Sea el campo vectorial definido por F( xyz,, ( F( xyz,,, F( xyz,,, F( xyz,, la integral de línea de un campo vectorial escrita de manera simplificada como también se puede representar en forma cartesiana de la siguiente manera: EJEMPLO. Evaluar dx dy dz F dr F F F dt (,,,, dt dt dt Fdx+ Fdy+ Fdz definida por h:, [ ] / h( t ( t, t, t F dr F dr, donde F( x, y, z ( y, x, y, y la trayectoria está R. Solución. Al escribir la integral de línea en la forma cartesiana que definida como de la, como ya se conoce una parametrización siguiente manera F dr ydx + xdy + ydz de la curva, dada por la función vectorial h:, [ ] / h( t ( t, t, t R, que la sustituirla en la integral de línea queda la integral definida en términos del parámetro t como se muestra a continuación (,, I F x y z dr ydx + xdy + ydz ( ( ( t + t + t t t t t t dt 4 t 4t t dt

4 Figura 5. Trayectoria descrita de la curva del Ejemplo. EJERIIOS PROPUESTOS.5. Evalúe la integral de línea donde F( xyz,, ( yx,,5 [ ] ( ( h:,4 π R / h t cos, t sent, t. Evalúe la integral de línea donde F ( xy, ( Ln( y, Lnx ( [ ] ( ( g:,4 R / g t, t t. Sea F ( xyz,, ( xyz,, trayectorias: a p :, [ ] R / p( t ( t,, t t y es la hélice, y es la curva dada por. Evaluar la integral de F a lo largo de las siguientes b g:, [ π ] R / g( t ( cos, t sent, c j:, [ π ] R / j( t ( s ent,,cost d h: [, ] R / h( t ( t, t,t 4 Evaluar cada una de las siguientes integrales de línea a xdy ydx, donde está dada paramétricamente por ( ( f : R R / f t cos t, sent, t π b xdx ydy, donde está dada paramétricamente por ( ( π π g g t t sen t t c : R R / cos,,, x dx xydy + dz, donde es la parábola z y, y, de (,, a (,,.

5 5 Evaluar la integral de campo vectorial F( x, y ( x, y [ π ] R ( ( h:, / h t cos t, sen t 6 Evalúe la integral de línea donde F( x, y ( y, sen( y recorrido en sentido horario desde el punto (,. 7 Evalúe la integral de línea donde (, ( x y F x y e, e x + 4y 4 recorrida en sentido horario desde el punto ( a lo largo de la curva y es un circulo unitario y es la parte de la elipse, hasta el punto (,..5.. Propiedades de la integral de línea de un campo vectorial. a Linealidad. Sean las funciones vectoriales F y G definidas por n n F : R R / F( X ( F( x, x,, xn, F( x, x,, xn,, Fn( x, x,, xn y ( ( ( n ( n n( n n n G: R R / G X G x, x,, x, G x, x,, x,, G x, x,, x dos campos vectoriales integrables sobre la curva, definida paramétricamente por ( ( ( ( n ( h: R R n / h t h t, h t,, h t, y sean k y k dos números reales cualesquiera, entonces se cumple que ( k F + k G dr k F dr + k G dr b Integral de línea sobre curvas parcialmente suaves. Sea una curva parcialmente suave, es decir, una curva definida como la unión de dos o más curvas suaves,, entonces n F dr F dr+ F dr+ + F dr n Aunque no es una propiedad es importante señalar que pasa cuando se realiza un cambio en el sentido del recorrido de la curva. Sea la curva definida ( n n paramétricamente por h: / h( t h ( t, h ( t,, h ( t R R, se denota por a la misma curva pero recorrida en sentido contrario al de, entonces F dr F dr uando la curva es una curva cerrada, y ésta se recorre de tal manera que si una persona camina sobre la trayectoria definida por, la región encerrada por ésta queda a la izquierda de la persona, se dice que el sentido de recorrido es positivo, la integral de

6 línea del campo vectorial F sobre la curva se denota por F dr, donde aquí se observa cual es el sentido de recorrido de la curva. También se puede utilizar la regla de la mano derecha para identificar el sentido de recorrido positivo de la curva. Para ello, con la mano derecha, colocamos los dedos en la dirección del recorrido de la curva, y si el pulgar apunta hacia arriba, esa es la orientación positiva de la curva. EJEMPLO. Sea F( x, y, z ( y xy, x +, determine la integral de F a lo largo del perímetro del cuadrado unidad con vértices en los puntos (,, (, ( (,, recorrida en sentido positivo., y Solución. En este caso se tiene una trayectoria cerrada, por lo que al aplicar las propiedades de la integral de línea se obtiene la siguiente expresión F dr F dr+ F dr+ F dr+ F dr 4 En donde las curvas,, y 4, son las rectas que se observan en la Figura 6, 4 Figura 6. urva del Ejemplo. Una parametrización para cada una de las curvas, vendrían dadas para por [ ] ( ( g :, R / g t, t, para [ ] ( ( g :, R / g t, t y para 4 la integral de línea de la curva vendría dada por por g :, [ ] / g ( t ( t, R, para por por g [ ] g ( t ( t :, /, 4 R, de donde

7 F dr F dr + F dr + F dr + F dr 4 4 x dy ( ( y xy dx x dy y xy dx 4 (( ( ( F dx + F dy + F dx + F dy + F dx + F dy + F dx + F dy ( ( ( ( (( (( dt + + t dt + dt + + t dt EJERIIOS PROPUESTOS.5.. Evalúe cada una de las siguientes integrales de línea yzdx + xzdy + xydz, donde está formada por los segmentos rectilíneos que unen al punto (,, con (,, y a éste con (,,. x Sea F( x, y, z ( xe,x y. Determine la integral de F a lo largo del perímetro del rectángulo con vértices en los puntos (,, (, (, y (,, recorrido en sentido positivo..5.. Significado físico de la integral de línea de un campo vectorial F. Otra interpretación física de la integral de línea es cuando la función vectorial V es campo de velocidades de un fluido, el significado que tiene la integral de línea V T dr es la cantidad de fluido circula a lo largo de la curva por unidad de tiempo, en la dirección del vector tangente unitario T, si la curva es una curva cerrada, la integral de F sobre esta curva se escribe V T dr y se le denomina como la integral de circulación de V alrededor d la curva. Si la función V representa un campo de velocidades de un fluido, la integral de línea V Ndr se interpreta como el flujo que atraviesa a la región acotada por la curva por unidad de tiempo, en la dirección del vector unitario N, y a se le denomina como integral de flujo de V a través de. En el caso que un campo vectorial continuo B represente un campo magnético, la integral de línea B Ndr representa la cantidad de corriente que atraviesa la región R acotada por la curva, mientras que si la función vectorial E es un campo eléctrico

8 continuo sobre alguna región R, entonces la integral de línea de B Ndr, se interpreta como el flujo del campo eléctrico a través de la región R. EJEMPLO. Sobre una partícula en el plano se aplica un campo de fuerza dado por y (, (, F x y y + y xy e, la trayectoria de dicha partícula se describe por el arco en el primer cuadrante de la circunferencia x + y, y luego por la recta x + y, siguiendo el sentido de las agujas del reloj. Determine el trabajo que ejerce el campo de fuerzas sobre la partícula a través de la trayectoria descrita. Figura 7. Trayectoria recorrida por la partícula del Ejemplo. Solución. La parametrización de la curva que describe la trayectoria de la partícula viene dado por [ ] ( (, donde :, / g( θ ( cos θ, senθ π R :, R / g t t, t, la integral de línea para determinar el trabajo ejercido sobre dicha partícula viene planteada por y

9 (, W F x y dr (, (, F x y dr+ F x y dr (, (, (, (, F x y dx+ F x y dy+ F x y dx+ F x y dy π d d F( x( θ, y( θ ( x( θ d( θ + F( x( θ, y( θ ( y( θ d( θ dθ dθ d d + F( x( t, y( t ( x( t d( t + F( x( t, y( t ( y( t d( t dt dt π sen( θ ( sen ( θ sen( θ ( sen( θ ( cos( θ sen( θ e ( cos( θ + + d ( θ + ( ( t + ( t ( + ( t( t ( d( t π sen( θ sen ( sen ( cos ( sen( e cos d ( t ( t t t d( t ( ( θ θ + θ θ θ θ π sen cos( θ cos ( θ cos ( θ e + t + t [ e] + + e ( θ ( t ( t EJEMPLO. La fuerza en un punto ( x, yz, esta dada por F ( xyz,, ( yzx,,. alcule el trabajo realizado por F( x, y, z sobre una partícula que describe la trayectoria dada por la curva :, [ ] R / f ( t ( t, t, t

10 Figura 8. Trayectoria recorrida por la partícula del Ejemplo. Solución. El trabajo realizado por la fuerza F viene dado por la integral de línea F dr, como ya se conoce la parametrización de la curva, que describe la trayectoria de la partícula, se obtiene (,, W F x y z dr (,, (,, (,, ( ( ( t + t + t EJERIIOS PROPUESTOS.5.. F xyzdx+ F xyzdy+ F xyzdz ydx + zdy + xdz La fuerza en un punto (, t t t t t dt 4 t t t dt trabajo realizado por F( x, y, z sobre la curva punto (,8. x y esta dada por F( x, y ( x y, xy y +. Determine el x desde el punto (, hasta el

11 La fuerza en un punto (,, x yz esta dada por F( x, y, z ( e x, e y, e z. alcule el trabajo realizado por F( x, y, z sobre una partícula que describe la trayectoria dada por la curva :, [ ] R / f ( t ( t, t, t Si el trabajo realizado por el campo de fuerzas F( x, y, z ( xy, 5 z, x para mover una partícula a lo largo de la curva, dada paramétricamente por :, [ t ] R / f ( t ( t +, t, t es 54 t. unidades de trabajo, determine el valor de.5.4. Velocidad tangencial promedio de un fluido. Si una función V ( x, y, z representa un campo de velocidades de un fluido en R la integral de línea V dr, donde es una curva suave o parcialmente suave, cerrada y recorrida en forma positiva, se puede interpretar como la cantidad neta de giro del fluido en el sentido de recorrido de la curva. Se puede aquí observar lo siguiente: si V dr > entonces las partículas del fluido se desplazan en el sentido de recorrido de la curva; si por el contrario V dr <, entonces las partículas del fluido se desplazan en el sentido contrario al del recorrido de la curva y si el campo vectorial V es perpendicular a la curva, entonces V dr, en este caso el fluido se dice que es irrotacional. Ahora bien, también es posible determinar la velocidad tangencial promedio de un fluido sobre la curva cerrada, o circulación promedio del campo V sobre la curva mediante la siguiente integral V V Tdr S En donde S representa la superficie de la región que está acotada por la curva cerrada.

12 EJEMPLO 4. Si la velocidad de un fluido está descrita por V ( x, y ( yx, y. Determine la circulación de F a lo largo de la curva, sabiendo que la curva es la circunferencia con centro en el origen coordenadas y con radio. Solución. La circulación de V a lo largo de la curva, viene dado por la integral de línea V Tdr, la curva se puede parametrizar como ( ( [ ] g: / g t cos t, sent, t,π R R, como ya se conoce la parametrización de la curva, que describe la trayectoria de la partícula, se calcula la integral de línea de la siguiente manera: π π (, W V x y dr (, (, V x y dx+ V x y dy yxdx + ydy ( ( cos ( s ( ( cos sent t ent + sent t dt 8sen t cost + 4sent cost dt 8 sen t + sen t El campo F no realiza trabajo sobre la partícula. π EJEMPLO 5. Si la velocidad de un fluido está descrita por (,, (,, V x y z x xy+ x z. Determine la circulación de V a lo largo de la curva, sabiendo que la curva es la circunferencia unitaria con centro en el origen de coordenadas, en el plano z. Solución. La curva puede ser parametrizada por la expresión vectorial ( ( [ ] g: / g t cos t, sent,, t,π R R, la integral de línea para calcular la circulación del fluido se define de la siguiente manera:

13 (,, W V x y z dr (,, (,, (,, V xyzdx+ V xyzdy+ V xyzdz ( xdx xy x dy zdz ( cos ( s ( cos cos ( cos ( ( π t ent + sent t + t t + dt π ( ( cos ( cos t sen t + t dt cos t+ t+ sen( t 4 π El fluido circula en el sentido contrario al de las agujas del reloj. π EJERIIOS PROPUESTOS.5.4. Si la velocidad de un fluido está descrita por F( x, y, z ( x, xy x, z +. Determine la circulación de F a lo largo de la curva, sabiendo que la curva es la circunferencia con centro en el origen de coordenadas y radio, en el plano z. Si la velocidad de un fluido está descrita por F( x, y, z ( x, xy x, z +. Determine la circulación de F a lo largo de la curva, sabiendo que la curva es la circunferencia con centro en el origen de coordenadas y radio, en el plano z.

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2008 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Definición 1. Una curva R 3 es un conjunto

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

CAMPOS: CIRCULACIÓN Y FLUJO

CAMPOS: CIRCULACIÓN Y FLUJO AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

producto exterior y derivada de 1-formas

producto exterior y derivada de 1-formas producto exterior y derivada de 1-formas Jana Rodriguez Hertz Cálculo 3 IMERL 9 de junio de 2011 introducción introducción campo asociado a una 2-forma ω = adydz + bdzdx + cdxdy introducción introducción

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. 2. 2. Introducción A lo largo del estudio de la Física surgen una serie de propiedades, tanto de magnitudes escalares como vectoriales, que se expresan por medio de nuevos conceptos tales como gradiente,

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

Integrales de línea. Teorema de Green

Integrales de línea. Teorema de Green Integrales de línea. Teorema de Green José Antonio Vallejo Departamento de Matemáticas Facultad de iencias Universidad Autónoma de San Luis Potosí email: jvallejo@fciencias.uaslp.mx 16 Noviembre 2007 1.

Más detalles

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución:

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución: Problemas resueltos 1. Halle la longitud de la curva dada por la parametrización α(t) t ı + 4 3 t3/ j + 1 t k, t [, ]. α (t) (1, t 1/, 1 ), t [, ]. La curva α es de clase C 1 y, por tanto, es rectificable.

Más detalles

Módulo 7: Fuentes del campo magnético

Módulo 7: Fuentes del campo magnético 7/04/03 Módulo 7: Fuentes del campo magnético Campo magnético creado por cargas puntuales en movimiento Cuando una carga puntual q se mueve con velocidad v, se produce un campo magnético B en el espacio

Más detalles

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación)

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2.29.* Dado el vector de posición de un punto material, r=(t 2 +2)i-(t-1) 2 j (Unidades S.I.), se podrá decir que la aceleración a los

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea.

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea. Universidad de Sevilla. GO y GERM. Matemáticas. Departamento de Matemática Aplicada. Guión del Tema 5: ntegrales de Línea. 1. ntegrales de línea. ntegral de línea de un campo escalar. Sea una curva parametrizada

Más detalles

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos 1. Efectuar cada una de las operaciones indicadas. a) (35 + 25i) + ( 12 5i) b) ( 75 i) + (34 + 42i) c)

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial. ÁLULO ngeniería ndustrial. urso 2009-2010. Departamento de Matemática Aplicada. Universidad de evilla. Lección 10. álculo vectorial. Resumen de la lección. 10.1. ntegrales de línea. ntegral de línea de

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

PARABOLA Y ELIPSE. 1. La ecuación general una parábola es: x y 40 = 0. Poner la ecuación en la forma: (x h) 2 = 4p (y k).

PARABOLA Y ELIPSE. 1. La ecuación general una parábola es: x y 40 = 0. Poner la ecuación en la forma: (x h) 2 = 4p (y k). PARABOLA Y ELIPSE 1. La ecuación general una parábola es: x + 0y 40 = 0. Poner la ecuación en la forma: (x h) = 4p (y k). x = 0 (y ) (x ) = 0y x = 0 (y ) x = 0 (y + ) (x 40) = 0y. Hallar la ecuación de

Más detalles

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura. Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía

Más detalles

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables.

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables. AMPLIACIÓN DE MATEMÁTICA. Curso 2015/16. Integración en varias variables. 1. Calcular para = [0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcular las integrales dobles

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

1.1 El caso particular de las curvas planas.

1.1 El caso particular de las curvas planas. Chapter 1 Complementos de teoría de curvas 1.1 El caso particular de las curvas planas. Una curva en el espacio cuya torsión se anula está contenida en algún plano. Supongamos que ese plano es el z = 0,

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula . [] [ET-A] Calcula d. --. [] [ET-B] Calcula / d. (Sugerencia: integración por partes) cos. [] [JUN-A] Sean f: y g: las funciones definidas respectivamente por: f() = y g() = +. a) Esboza las gráficas

Más detalles

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II. Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 000 Primera parte Ejercicio 1. Entre todos los rectángulos del plano YOZ,inscritos en la parábola z = a y (siendo a>0) yconbaseenelejeoy

Más detalles

Lección 3. Cálculo vectorial. 5. El teorema de Stokes.

Lección 3. Cálculo vectorial. 5. El teorema de Stokes. GRADO DE INGENIERÍA AEROESPAIAL. URSO. 5. El teorema de Stokes. En esta sección estudiaremos otro de los teoremas clásicos del análisis vectorial: el teorema de Stokes. Esencialmente se trata de una generalización

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

SERIE # 1 CÁLCULO VECTORIAL

SERIE # 1 CÁLCULO VECTORIAL SERIE # 1 CÁLCULO VECTORIAL Página 1) Determinar la naturaleza de los puntos críticos de la función f x, y = x y x y. P 1 0,0 máximo relativo, P 1, 1 punto silla, P 1, 1 punto silla, 4 1, 1 silla, P5 1,

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y

Más detalles

D. Teorema de Cauchy Goursat: Práctica 4

D. Teorema de Cauchy Goursat: Práctica 4 Analiticidad y transformaciones conformes ondiciones de auchy Riemann Transformaciones conformes Integración en el Plano omplejo Parametrización de arcos e integrales de contorno auchy, auchy Goursat y

Más detalles

EJERCICIOS RESUELTOS. x + ; a = 1; b = 1. x x x. x x

EJERCICIOS RESUELTOS. x + ; a = 1; b = 1. x x x. x x B7_9 //9 : Página EJERIIOS RESUELTOS alcula las funciones primitivas, que toman el valor b cuando a, de las funciones f definidas por: f() + 7; a ; b. 7 f() + ; a ; b. F ( ) ( + 7 ) d + 7 + c omo debe

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. La Parábola La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. Características geométricas. a) Vértice. Es el

Más detalles

INTEGRALES CURVILÍNEAS

INTEGRALES CURVILÍNEAS (Apuntes sin revisión para orientar el aprendizaje) INTEGRALES URVILÍNEAS (Material de apoyo y orientación para preparar el tema) Las integrales curvilíneas constituyen el estudio de funciones sobre curvas.

Más detalles

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia. ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto

Más detalles

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar.

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar. NOTAS DE LASE ÁLULO III Unidad 4: INTEGRALES DE LINEA, DE SUPERFIIE, TEOREMAS FUNDAMENTALES Guía de Estudio Doris Hinestroza 1 Índice 1. INTEGRALES DE LINEA, DE SUPERFIIE, TEO- REMAS FUNDAMENTALES DEL

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Movimiento. Cinemática

Movimiento. Cinemática Movimiento. Cinemática Magnitudes físicas Cinemática (conceptos básicos) Desplazamiento y espacio recorrido Velocidad Gráficas espacio-tiempo Gráficas posición-tiempo Gráficas velocidad-tiempo Movimiento

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Unidad III: Curvas en R2 y ecuaciones paramétricas

Unidad III: Curvas en R2 y ecuaciones paramétricas Unidad III: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Sistemas de coordenadas

Sistemas de coordenadas Sistemas de coordenadas. Introducción En un sistema de coordenadas un punto se representa como la intersección de tres superficies ortogonales llamadas superficies coordenadas del sistema: u u u = cte

Más detalles

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector. VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2 CAPÍTULO 5 Geometría analítica En el tema de Geometría Analítica se asume cierta familiaridad con el plano cartesiano. Se entregan básicamente los conceptos más básicos y los principales resultados (fórmulas)

Más detalles

TEMA 0: Herramientas matemáticas

TEMA 0: Herramientas matemáticas 1 TEMA 0: Herramientas matemáticas Tema 0: Herramientas matemáticas 1. Campos escalares y vectoriales 2. Gradiente 3. Divergencia 4. Rotacional 5. Teoremas de Gauss y de Stokes 5. Representación gráfica

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

Física: Rotación de un Cuerpo Rígido

Física: Rotación de un Cuerpo Rígido Física: Rotación de un Cuerpo Rígido Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Objetivo En esta sección dejaremos de considerar a los objetos como partículas puntuales. En vez, hablaremos

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

Movimiento curvilíneo. Magnitudes cinemáticas

Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Los extremos iguales de dos imanes rectos se repelen; los extremos opuestos se atraen

Los extremos iguales de dos imanes rectos se repelen; los extremos opuestos se atraen Fuerza y campo magnético Física para ingeniería y ciencias Volumen 2, Ohanian y Markett Física para ingeniería y ciencias con física moderna Volumen 2, Bauer y Westfall El fenómeno del magnetismo se conoce

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene Capítulo 5 Fuerzas distribuidas. Centroides y centros de gravedad Introducción La acción de la Tierra sobre un cuerpo rígido debe representarse por un gran número de pequeñas fuerzas distribuidas sobre

Más detalles

1. Curvas Regulares y Simples

1. Curvas Regulares y Simples 1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

SISTEMAS DE REFERENCIA

SISTEMAS DE REFERENCIA CINEMÁTICA DE LA PARTÍCULA: SISTEMAS DE REFERENCIA 1.- Cinemática de la partícula 2.- Coordenadas intrínsecas y polares 3.- Algunos casos particulares de especial interés 1.- Cinemática de la partícula

Más detalles

3.1 Situaciones que involucran funciones trigonométricas

3.1 Situaciones que involucran funciones trigonométricas 3.1 Situaciones que involucran funciones trigonométricas Ejemplo 1) La traectoria de un proectil disparado con una inclinación respecto a la horizontal con una velocidad inicial v 0 es una parábola. Epresa

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

1. Definición de campo vectorial

1. Definición de campo vectorial Universidad Nacional de La Plata Facultad de iencias Exactas ANÁLII MATEMÁTIO II (ibex - Física Médica) 214 egundo emestre GUÍA Nro. 6: AMPO VETORIALE 1. Definición de campo vectorial Durante el curso

Más detalles

UNIDAD EDUCATIVA COLEGIO SAN GABRIEL PLAN DE MEJORA Y REFUERZO ACADÉMICO

UNIDAD EDUCATIVA COLEGIO SAN GABRIEL PLAN DE MEJORA Y REFUERZO ACADÉMICO DATOS INFORMATIVOS UNIDAD EDUCATIVA COLEGIO SAN GABRIEL PLAN DE MEJORA Y REFUERZO ACADÉMICO Nombre del Estudiante: Curso: 1ro BGU Docente: Lic. Francisco Soria Fecha: 22 de febrero de 2016 DESTREZA A REFORZAR

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones

Más detalles

Circunferencia y Círculo

Circunferencia y Círculo Circunferencia y Círculo APRENDIZAJES ESPERADOS Identificar los elementos primarios de Círculo y Circunferencia. Calcular área y perímetro del sector y segmento circular. Contenidos 1. Definición 1.1 Circunferencia

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

Conjuntos de nivel, diagramas de contorno, gráficas. Funciones vectoriales de una y dos variables.

Conjuntos de nivel, diagramas de contorno, gráficas. Funciones vectoriales de una y dos variables. Empezaremos el curso introduciendo algunos conceptos básicos para el estudio de funciones de varias variables, que son el objetivo de la asignatura: Funciones escalares de dos y tres variables. Conjuntos

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 02 de 2012

UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 02 de 2012 UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 0 de 0 PARTE I: Ejercicios cortos de selección Múltiple. En cada uno de los siguientes

Más detalles