LABORATORIO DE INTRODUCCIÓN A LA FISICA GUIA DE LABORATORIO EXPERIENCIA Nº 1
|
|
- Germán Castellanos Peralta
- hace 5 años
- Vistas:
Transcripción
1 LABORATORIO DE INTRODUCCIÓN A LA FISICA GUIA DE LABORATORIO EXPERIENCIA Nº Sistema de Unidades, Medidas de con cronómetro, Medidas de Longitudes con calibrador Integrantes: Profesor: PUNTAJE OBTENIDO PUNTAJE IDEAL NOTA FINAL
2 OBJETIVOS DE LA EXPERIENCIA Nº : Conocer el uso de un calibrador (pie de metro) como instrumento de precisión Conocer el uso y funcionamiento de un cronómetro digital. Identificar variables elementales y relacionarlas con los sistemas de unidades correspondientes. MATERIALES A UTILIZAR: Detalle Cantidad Control Observacione s Requerida Devolucione Posibles Fallas s Taco de Rozamient o Esferas de Metal Cronometr o Digital Huincha de Medir Esfera de Goma Pie de Metro
3 PARTE I: FUNCIONAMIENTO DEL PIE DE METRO. FUNDAMENTOS TEÓRICOS Pie de Metro: El pie de metro es un instrumento que tiene la capacidad de realizar varios tipos de mediciones con gran precisión. Estructuralmente está hecho de una regla fija y una regla móvil, graduadas en centímetros y pulgadas. Cada una de las divisiones de la regla móvil se conoce con el nombre de nonio. Figura 2.. Si se desean efectuar medidas de diámetros interiores, introducir las puntas de interiores en el orificio a medir, hacer resbalar la punta móvil hasta que las dos hagan tope en el interior de la pieza. (Ver la figura Nº 3). Figura 3. Figura. El fundamento matemático del nonio es el siguiente: con una regla móvil dividida en n partes equivalentes a n - de la regla fija, se pueden apreciar longitudes de: 2. Si se desean medir profundidades o alojamientos interiores por medio de la sonda, la pieza a medir tiene que hacer tope con el instrumento como indica la figura Nº 4. n n = n n + n = n Para el caso en que 0 divisiones del nonio equivalen a 9 cm. de la regla fija, el valor de una división del nonio es de: 9 cm = 0,9 cm = 9 mm 0 Y su diferencia con la división de la regla fija, es de mm. Si las 0 divisiones del nonio equivalen a 9 mm de la regla, el valor de una división del nonio es de: 9 mm = 0,9mm 0 Figura 4. Para realizar medidas, se debe abrir el calibre, desplazando la parte móvil lo suficiente como para colocar la pieza que se desea medir. Una vez colocada ésta, efectuar la lectura de la medida de la siguiente manera: leer sobre la regla fija del calibre la longitud que hay hasta el cero de la regla móvil (nonio). La división del nonio coincide o se aproxima más a una división de la regla fija del calibre; el número de orden de aquella (el nonio) son los decimales
4 que hay que añadir a la longitud leída en la regla móvil. El calibre o pie de rey, como instrumento de medida, permite realizar tres tipos fundamentales de operaciones: a) Medida de grosores, diámetros o dimensiones exteriores. b) Medida de diámetros o dimensiones interiores. c) Medida de profundidades de alojamientos interiores. Para medir grosores, diámetros o dimensiones exteriores, se debe abrir el calibre, desplazando la parte móvil lo suficiente como para que la pieza, cuya dimensión se desea conocer pueda ser abarcada por éste. Una vez colocada la pieza, cerrar el calibre hasta que quede aprisionada suavemente, y de esta manera se puede registrar la lectura (ver fig.nº 2) 2. MATERIALES PARA ESTA EXPERIENCIA: Calibrador (pie de metro) Taco de rozamiento Esferita de metal Cinta de medir 3. ACTIVIDADES A REALIZAR:. Use el pie de metro para medir largo, ancho y alto del taco de rozamiento y anote sus medidas en la tabla Nº. 2. Calcule el volumen del taco multiplicando sus tres dimensiones. 3. Tome una esferita metálica y mida su diámetro. Registre su valor en la tabla Nº Calcule el volumen de la esfera. Considere la siguiente ecuación para calcular su volumen: V esfera = 4 3 π r3, r es el radio de la esfera. 5. Realice una medición de las dimensiones del taco de rozamiento, con la cinta de medir. Registre sus datos en la tabla Nº Calcule el volumen del taco 7. Trate de repetir la medición del diámetro de la esfera usando la cinta de medir. Registre sus datos en la tabla Nº RESULTADOS DE LAS MEDICIONES CON EL PIE DE METRO: Tabla Nº : Largo Ancho Alto(sin goma) [mm 3 ] Taco de rozamiento Tabla Nº 2: Diámetro Radio [mm 3 ] Esfera de Metal
5 Tabla Nº3: Largo Ancho Alto(sin goma) [mm 3 ] Taco de rozamiento Tabla Nº 4: Diámetro Radio [mm 3 ] Esfera de Metal 5. EVALUACIÓN:. Qué ventajas presenta el pie de metro respecto a una cinta de medir? 2. Qué desventajas puede presentar un pie de metro respecto a una cinta de medir? 3. Qué problema se presenta al medir el diámetro de la esfera con la cinta de medir?
6 PARTE II: FUNCIONAMIENTO DEL CRONÓMETRO DIGITAL. FUNDAMENTOS TEÓRICOS: El cronómetro es un instrumento diseñado para medir el tiempo entre dos o más eventos consecutivos. De acuerdo al modelo y diseño se puede tener un cronómetro con mayor o menor precisión (ver fig. Nº.) El sistema de medición de tiempos usual es el segundo, en una escala de uno a sesenta, donde: minuto = 60 segundos y hora = 60 minutos Las subunidades correspondientes de tiempo, (centésimas y milésimas de segundo) están basadas usualmente en el sistema centesimal, donde: s = 00 centésimas de s, o s = 000 milésimas de s Se debe considerar que las mediciones obtenidas con dicho instrumento pueden variar según el tiempo de reacción de una persona. 2. ACTIVIDADES A REALIZAR: Tome la esferita de goma y déjela caer desde una altura de 2 m. Registre el valor del tiempo desde que se suelta hasta llegar al suelo en la tabla N. Repita el procedimiento anterior, ahora cambiando el integrante del grupo que va a registrar el tiempo cada nueva medición. 3. MATERIALES PARA ESTA EXPERIENCIA: Cronómetro digital. Cinta de medir. Esferita de goma.
7 4. RESULTADOS: Tabla Nº : Registro de datos con el cronómetro Evento Integrante Integrante 2 Integrante 3 Integrante 4 Promedio Caída libre 5. EVALUACIÓN:. Cuál es la causa más probable de la diferencia en los valores registrados? 2. Qué importancia tienen las cifras aproximándose a la derecha de la coma? Hasta dónde es útil aproximar?
8 PARTE III: SISTEMAS DE UNIDADES.. FUNDAMENTOS TEÓRICOS: La observación de un fenómeno, suele ser a veces incompleta a menos que se entregue una información cuantitativa. Para obtener dicha información, se requiere la medición de una propiedad física. Así, la medición constituye una buena parte de la rutina diaria tanto de un técnico, como de un ingeniero o de un científico. La medición es la técnica o método por medio de la cual se asigna un número a una propiedad física, como resultado de una comparación de dicha propiedad con otra similar tomada como patrón o referencia, la cual se ha adoptado como unidad. Las unidades de medición para cada variable se han establecido de común acuerdo, existe de esta manera el Sistema Internacional de Mediciones (S.I.), en los cuales sus variables fundamentales deben de cuantificarse con las siguientes unidades: Longitud: Metros (m.) : Segundos (s) Masa: Kilogramos (kg.) Lo anteriormente señalado se conoce también con el nombre de Sistema MKS. Este constituye el sistema más utilizado a nivel general. Existe también otro sistema de mediciones llamado CGS, en el cual las variables fundamentales se deben cuantificar de la siguiente manera: Longitud: Centímetros (cm.) : Segundos (s) Masa: Gramos (g) Se han establecido además equivalencias entre los distintos sistemas de unidades conocidos, tomemos como ejemplo otras unidades de medición: Longitudes: pulgada = 2,54 cm. pie = 30,48 cm. yarda = 9,44 cm. Masa: libra= 453,59 g onza= 28,35 g La evidencia experimental, tanto en las ciencias, como en la vida diaria, especialmente en la construcción nos pone de manifiesto la necesidad de de establecer una única unidad de medida para una magnitud dada, de modo que la información sea comprendida por todas las personas. 2. MATERIALES PARA ESTA EXPERIENCIA: Resultados obtenidos en tablas anteriores. 3. ACTIVIDADES A REALIZAR: Usar los resultados obtenidos en las partes I y II para transformar los resultados a los sistemas pedidos.
9 4. RESULTADOS: PARTE I: Largo [m] Ancho [m] Alto (sin goma) [m] [m 3 ] Taco de rozamiento Largo [pie] Ancho [pie] Alto (sin goma) [pie] [pie 3 ] Taco de rozamiento Parte II: Evento Caída Libre Promedio [min] Promedio [Hrs] 5. EVALUACIÓN:. Cuál es el sistema (según su experiencia) que más se usa en la construcción? 2. Mencione 3 instrumentos de uso común en la construcción en el que es necesario realizar transformación de unidades, o en su defecto que se use con otras unidades distintas al sistema MKS.
Procesos de Fabricación I. Guía 2 0. Procesos de Fabricación I
Procesos de Fabricación I. Guía 2 0 Procesos de Fabricación I Procesos de Fabricación I. Guía 2 1 Facultad: Ingeniería Escuela: Ingeniería Mecánica Tema: Uso del pie de rey y Micrómetro. Objetivo Al finalizar
MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π
1 Objetivos Departamento de Física Curso cero MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π Utilización de un calibre en la determinación de las dimensiones de un objeto y de una balanza digital
MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.
LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre
LABORATORIO DE INTRODUCCIÓN A LA FISICA
LABORATORIO DE INTRODUCCIÓN A LA FISICA GUIA DE LABORATORIO EXPERIENCIA Nº 3 Momentos de Fuerza, Roce Integrantes: Profesor: PUNTAJE OBTENIDO PUNTAJE IDEAL NOTA FINAL OBJETIVOS DE LA EXPERIENCIA Nº 3:
TIPOS DE CALIBRADORES TIPOS DE MEDIDAS. Medida de Profundidades. Calibrador para medir diámetros en troncos. Medida de Diámetro Exterior
TALLER No. 1 PARTE A INSTRUCTIVO SOBRE INSTRUMENTOS DE MEDICION: EL PIE DE REY Docente: Jesús Enrique Durán V. 1.1 El calibrador / Pie de Rey / Nonio / Vernier Es un instrumento que se utiliza para tomar
CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES
OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición
UNIDADES Y MEDICIONES
UNIDADES Y MEDICIONES MAGNITUD: Se llama magnitud a todo aquello que puede ser medido. Su espesor Lo ancho Lo alto Diámetro externo e interno Masa Tiempo Volumen Velocidad Área MEDIR: Es comparar una magnitud
UNIDADES Y MEDICIONES
UNIDADES Y MEDICIONES MAGNITUD: Se llama magnitud a todo aquello que puede ser medido. Su espesor Lo ancho Lo alto Diámetro externo e interno Masa Tiempo Volumen Velocidad Área MEDIR: Es comparar una magnitud
COMPETENCIA NUMERO 1: UNIDAD DE NIVELACIÓN
COMPETENCIA NUMERO 1: UNIDAD DE NIVELACIÓN NOTACIÓN CIENTIFICA: Es una expresión matemática de la forma ; donde X es un numero racional comprendido entre uno y diez, N es el numero de lugares que se haya
TEMA 4. La metrología en el mecanizado
TEMA 4 La metrología en el mecanizado Operaciones Auxiliares de Mantenimiento Industrial CFGM OPERACIÓN, CONTROL Y MANTENIMIENTO DE MÁQUINAS E INSTALACIONES DEL BUQUE CIFP NAUTICOPESQUERA PALMA 4.1-Introducción
Laboratorio de Mecánica de Fluidos I
Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento
Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA
Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA * Se distinguen con negrita en el texto. ESTÁNDAR DE CONTENIDO Y DESEMPEÑO NO. 1 ÁREA: LOS NÚMEROS,
LA MEDIDA. Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura...
LA MEDIDA IES La Magdalena Avilés. Asturias Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura... etc. Medir una magnitud consiste en compararla
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y
MEDIDA DE PEQUEÑAS LONGITUDES.
EDIDA DE PEQUEÑAS LOGITUDES. PROPÓSITO: Conocimiento de los instrumentos del laboratorio y su uso en la determinación de la longitud, masa y densidad. Instrumento especial: Calibrador o pié de Rey. Instrumento
Guión de Prácticas. PRÁCTICA METROLOGIA. Medición. 2. CONSIDERACIONES PREVIAS a tener en cuenta SIEMPRE
1. OBJETIVOS Guión de Prácticas. PRÁCTICA METROLOGIA. Medición Conocimientos de los fundamentos de medición Aprender a utilizar correctamente los instrumentos básicos de medición. 2. CONSIDERACIONES PREVIAS
LOS INSTRUMENTOS DE MEDICIÓN
LOS INSTRUMENTOS DE MEDICIÓN INTRUMENTO MAGNITUD UNIDAD Cinta métrica Regla Longitud: es la distancia entre dos puntos; por ejemplo, alto, ancho, grosor, largo. Metro (m). Múltiplos, para grandes distancias,
19. En un hospital existen tres áreas: Ginecología, Pediatría, Traumatología. El presupuesto anual del hospital se reparte conforme a la sig.
ESTRUCTURAS SECUENCIALES 1. Lea desde el teclado el nombre y la edad de cualquier persona e imprima tanto el nombre como la edad 2. Lea dos números. Calcule la suma e imprima la suma y los dos números.
Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla
Curso nivelación I Presentación Magnitudes y Medidas El método científico que se aplica en la Física requiere la observación de un fenómeno natural y después la experimentación es decir, reproducir ese
MAGNITUDES FISICAS Y UNIDADES DE MEDIDA. 1ª PARTE.
1 MAGNITUDES FISICAS Y UNIDADES DE MEDIDA. 1ª PARTE. 1. CONCEPTOS DE MEDICION, DE MAGNITUD FISICA Y DE UNIDAD DE MEDIDA El proceso de medición es un proceso físico experimental, fundamental para la ciencia,
CALIBRADOR O PIE DE REY PIE DE REY DONDE SE APRECIAN LAS PARTES PARA MEDIR DIMENS. INTERNAS Y EL NONIO.
RESUMEN En esta práctica hemos conocido y practicado con los principales instrumentos de medida de un laboratorio: el pie de rey mecánico con nonio y un micrómetro mecánico o palmer. A través de estos
UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA I CIV 121 DOCENTE: ING. JOEL PACO S.
UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA I CIV 121 DOCENTE: ING. JOEL PACO S. PONDERACION DE EVALUACION EXAMENES ( 60 % ) - 1 era Evaluación
TEMA 1: CONCEPTOS BASICOS EN FISICA
La Física está dividida en bloques muy definidos, y las leyes físicas deben estar expresadas en términos de cantidades físicas. Entre dichas cantidades físicas están la velocidad, la fuerza, densidad,
o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor.
Números reales 1 Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan estimaciones y aproximaciones. Sería absurdo decir que la capacidad de un pantano
Magnitudes, Cantidades: fundamentales y derivadas. Sistema de Unidades. Mediciones.
Magnitudes, Cantidades: fundamentales y derivadas. Sistema de Unidades. Mediciones. Resumen La física, como los demás ciencias, es una empresa de creación, no simplemente una colección de hechos. La física
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 2: CAMPO Y POTENCIAL ELÉCTRICO Determinar la relación entre la
Cifras significativas
Cifras significativas No es extraño que cuando un estudiante resuelve ejercicios numéricos haga la pregunta: Y con cuántos decimales dejo el resultado? No es extraño, tampoco, que alguien, sin justificación,
5ta OLIMPIADA CIENTÍFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA FÍSICA 2da Etapa ( Exámen Simultaneo ) 6to de Primaria
6to de Primaria cálculos auxiliares al reverso de la página. Tiempo 2 horas. 1. (10%) Encierra en un círculo los incisos que corresponden a estados de la materia. a) líquido b) transparente c) gaseoso
1 La ciencia y su método. Medida de magnitudes
EJERCICIOS PROPUESTOS 1.1 Cuál es el objeto de estudio de la ciencia? Cómo se contrastan los enunciados científicos? El objeto de estudio de la ciencia es el mundo natural, es decir, las propiedades físicas
INSTRUMENTOS DE MEDIDA MECÁNICOS I y II
INSTRUMENTOS DE MEDIDA MECÁNICOS I y II Santiago Ramírez de la Piscina Millán Francisco Sierra Gómez Francisco Javier Sánchez Torres 1. INTRODUCCIÓN. En esta práctica se trata de familiarizar al alumno
Guía Ciencias Naturales FÍSICA
Guía Ciencias Naturales FÍSICA 1. Sistemas de medición Tutor: Rodrigo Tellez Mosquera.co 1. Introducción Cuando hablamos de algún fenómeno de la naturaleza e intentamos describir su comportamiento es necesario
PRÁCTICA 2: MEDIDORES DE FLUJO
Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 2: MEDIDORES DE FLUJO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO
UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 3: CAMPO ELÉCTRICO Y POTENCIAL ELÉCTRICO Determinar la relación
Unidades de medida de: longitud, volumen, masa y tiempo
Unidades de medida de: longitud, volumen, masa y tiempo 1- Introducción Medir es comparar una magnitud con otra que llamamos unidad. La medida es el número de veces que la magnitud contiene a la unidad
Instrumentos de medida. Estimación de errores en medidas directas.
Instrumentos de medida. Estimación de errores en medidas directas. Objetivos El objetivo de esta primera práctica es la familiarización con el uso de los instrumentos de medida y con el tratamiento de
CAMPO MAGNÉTICO SOLENOIDE
No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético
TRABAJO PRÁCTICO N 0 3 TERMOQUÍMICA
TRABAJO PRÁCTICO N 0 3 TERMOQUÍMICA OBJETIVOS Determinación de la variación de entalpía asociada a procesos químicos. Aplicación de conceptos termodinámicos: temperatura, calor, entalpía. Verificación
En esta imagen podemos ver las seis vistas que podemos representar de un objeto. En la tercera figura, es necesario representar el perfil Por qué?
TEMA: DIBUJO TÉCNICO COMO REPRESENTAR UN OBJETO. Principalmente existen dos formas de representación diferentes. Una de ellas es la llamada representación en perspectiva. Consiste en simular el volumen
Laboratorio de Física para Ingeniería
Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)
NOTACIÓN CIENTÍFICA. CIFRAS SIGNIFICATIVAS
COLEGIO INTERNACIONAL - SEK - EL CASTILLO Departamento de Ciencias APG FÍSICA I - UNIDAD I: INTRODUCCIÓN A LA FÍSICA NOTACIÓN CIENTÍFICA. CIFRAS SIGNIFICATIVAS TEMPORALIZACIÓN: SEPTIEMBRE 1,5 MÓDULOS S
Laboratorio de Física Universitaria A. Autor: Enrique Sánchez y Aguilera.
Laboratorio de Física Universitaria A. Autor: Enrique Sánchez y Aguilera. OBJETIVO: Ser capaz de determinar la incertidumbre de un aparato de medición. Ser capaz de calcular la incertidumbre en mediciones
M E T R O L O G I A APUNTES DE PIE DE METRO.
1 M E T R O L O G I A APUNTES DE PIE DE METRO. 2 M E T R O L O G I A PIE DE METRO. Es un instrumento para medir longitudes que permite lecturas en milímetros y en fracciones de pulgada, a través de una
Grado Programa de 1922 Programa de 1940 Programa de 1961 Programa de 1972 Programa de 1993
Anexo Anexo Los números decimales en los programas de Educación Primaria Grado Programa de 1922 Programa de 1940 Programa de 1961 Programa de 1972 Programa de 1993 1 2 3 4 Introducción al estudio de las
Identificación de Materiales y Equipos
1. Objetivos PRÁCTICA N 1 Identificación de Materiales y Equipos 1. Identificar los materiales y equipos de uso diario en le laboratorio 2. Aprender a utilizar correctamente el material de vidrio y los
La física y las matemáticas
Mediciones Martín del Campo Becerra Gustavo Daniel - gus_wolvering@yahoo.com.mx 1. La física y las matemáticas 2. Sistemas de unidades 3. Unidades derivadas del sistema métrico decimal 4. Equivalencia
MAGNITUDES FÍSICAS y UNIDADES de MEDICIÓN
MAGNITUDES FÍSICAS y UNIDADES de MEDICIÓN 1.- Definición de magnitud física Desde el punto de vista físico, una magnitud es toda aquella propiedad o entidad abstracta que puede ser medida en una escala
8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO
8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la practica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un
El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL
El número real MATEMÁTICAS I 1 1. APROXIMACIONES APROXIMACIÓN DECIMAL DE UN NÚMERO REAL Al expresar un número real con muchas o infinitas cifras decimales, utilizamos expresiones decimales aproximadas,
2.4. Notación científica. Operaciones.
Potencias de números reales 17 E. Zamora, C. Barrilero, M. Álvarez 2.. Notación científica. Operaciones. El Sol es una estrella cuyo diámetro mide 9 veces el diámetro de la Tierra. Cuánto mide el diámetro
Práctica 1. MEDIDAS DE PRECISIÓN
Práctica 1. MEDIDAS DE PRECISIÓN OBJETIVOS Manejo de aparatos de precisión que se utilizan en el laboratorio. Medir dimensiones de diferentes cuerpos y a partir de éstas sus volúmenes. MATERIAL Aparatos
Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:
Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres
ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMÉTRICO
ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMÉTRICO OBJETIVOS 1. Estudiar los errores y su propagación a partir de datos tomados de un experimento simple. 2. Determinar el espesor de alambres y
MEDICIÓN OBJETIVOS. Fundamentos Teóricos. Medición. Cifras Significativas
OBJETIVOS MEDICIÓN Declarar lo que es una medición, error de una medición, diferenciar precisión de exactitud. Reportar correctamente una medición, con las cifras significativas correspondientes utilizando,
1.2 MEDIDA DE MAGNITUDES.
1.2 MEDIDA DE MAGNITUDES. 1.2.1 MAGNITUDES. Para describir al compañero que se sienta a tu lado empleas propiedades, así dices su altura, su peso, el color de sus ojos y cabellos, su simpatía o su inteligencia.
LAS HERRAMIENTAS DE LA FÍSICA. Ing. Caribay Godoy Rangel
LAS HERRAMIENTAS DE LA FÍSICA SISTEMA INTERNACIONAL DE UNIDADES (SI) UNIVERSABILIDAD MEDICIÓN ACCESIBILIDAD INVARIANCIA SISTEMA INTERNACIONAL DE Metro (m) UNIDADES (SI) 1889: Diezmillonésima parte de la
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.
. G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura
Medición y unidades. Teoría. Autor:
Medición y unidades Teoría Autor: Danny Camilo Ruíz Contenido 1. qué es la física? 1.1 introducción 1.2 qué es la física video 1.3. Video por qué el estudiante de ingeniería debe estudiar física 2. Medición
Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }
LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden
5to. ESTANDARES MATEMATICOS COMUNES FUNDAMENTALS
Primeras Nueve Semanas Entienda el sistema de valor posicional 5.NBT.2 Explique patrones del numero cero del producto cuando se multiplica un numero por una potencia de 10 y explique patrones en el lugar
Tipos de magnitudes físicas. Magnitudes de base o fundamentales
Magnitudes físicas - unidades y clasificación Una magnitud física es un valor asociado a una propiedad física o cualidad medible de un sistema físico, es decir, a la que se le pueden asignar distintos
LAS MEDICIONES FÍSICAS. Estimación y unidades
LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada
Momento de Torsión Magnética
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Momento de Torsión Magnética Elaborado por: Ing. Francisco Solórzano I. Objetivo. Determinar de forma experimental el momento
62,415 = ,4 + 0,01 + 0,005
NOMBRE:... Nivel:... FECHA:... LOS NÚMEROS DECIMALES LAS UNIDADES DECIMALES 1 0,1 1 0 0,01 0,1 una décima (d) 0,01 una centésima (c) 0,001 una milésima (m) 1 U = d = 0 c = 1.000 m 1 1.000 0,001 D U, d
Actividad introductoria: Animación sobre el abuelo y su nieto hablando de medidas de longitud, peso y tiempo.
Grado 6 Matemáticas Diferentes formas para expresar la misma medida, el sistema internacional. TEMA: DESARROLLO DE CONVERSIONES ENTRE UNIDADES DE MEDIDA DE LONGITUD DEL SISTEMA INTERNACIONAL Nombre: Grado:
A2.2 Calcula la distancia, en km, de una estrella cuya luz tarda 8 años en llegar a nosotros.
BÁSICO 2: MAGNITUDES Y UNIDADES 2 1.- LONGITUD LA LONGITUD: se define como la distancia entre dos puntos. La unidad en el S.I. (SISTEMA INTERNACIONAL DE UNIDADES) es el metro (m), fijado desde 1983 como
MEDICIONES 6 MEDICIÓN Y VERIFICACIÓN 1. - OBJETO DE LA MEDICIÓN Y VERIFICACIÓN EN CONSTRUCCIONES METÁLICAS.
MEDICIÓN Y VERIFICACIÓN 1. - OBJETO DE LA MEDICIÓN Y VERIFICACIÓN EN CONSTRUCCIONES METÁLICAS. 2. DESCRIPCIÓN DE LOS INSTRUMENTOS EMPLEADOS Y DE SUS CARACTERÍSTICAS TÉCNICAS 3. PROCEDIMIENTOS DE UTILIZACIÓN
LABORATORIO DE ELECTROMAGNETISMO RESISTIVIDAD
No 4 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Comprender que la resistencia eléctrica de un elemento conductor
I. Objetivos. II. Introducción.
Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento
LABORATORIO DE FENÓMENOS COLECTIVOS
LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,
Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional.
Análisis dimensional Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Se consideran siete cantidades
Nombre: Objetivo: Reforzar contenidos aprendidos durante el segundo semestre.
ROYAL AMERICAN SCHOOL Asignatura de matemática Miss Pamela Pérez Aguayo Guía de refuerzo Matemática. 5º Básico. II Semestre. Formando personas responsables, respetuosas, honestas y leales Nombre: Objetivo:
Pueden medirse dimensiones lineales exteriores y profundidades. Además el Vernier consta de una regla graduada en escala amétrica y / o pulgadas.
METROLOGIA Objetivo Aprender a conocer y utilizar instrumentos de medidas de longitud tanto grandes como pequeñas con la exactitud necesaria, dentro de estos instrumentos se utilizaran micrómetro, flexo
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE:
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS APLICACIONES DEL PRINCIPIO DE PASCAL. OBSERVAR LA
Magnitudes que solo poseen módulo. La definición anterior corresponde a
Estándar Anual Nº Guía práctica Movimiento I: vectores y escalares Física Programa 1. Magnitudes que solo poseen módulo. La definición anterior corresponde a A) B) C) D) E) 2. GUICES012CB32-A16V1 3. Ciencias
Instrumentos de medición
Instrumentos de medición Los instrumentos de medición han sido siempre una necesidad para la ciencia. Hoy en día, cada vez resulta mayor el reto tecnológico. Las mediciones precisas pueden resultar en
4 ; 3. d) 2 y 5 3. a) 2,2 b) c) 2,24 d) 2,236 e) 2,23607
EL NÚMERO REAL.- LOS NÚMEROS IRRACIONALES. NÚMEROS REALES - Indicar a qué conjuntos ( Ν, Ζ, Q, R ) pertenecen los siguientes números: -2 ; ; -4/ 5; 6/ 4; 4 ; 25 ; Ν ; 6/ 4 Ζ -2 ; 25 Q -4/ 5 ; 6 ; 4 ; 8
Instrumentos de medida lineal y de precisión.
2010 Instrumentos de medida lineal y de precisión. Diego Araújo Fernández INTRODUCCIÓN. La medida surge debido a la necesidad de informar a los demás de las actividades de caza y recolección, como por
PROYECTO: CONSTRUIR LAS MATEMÁTICAS
PROYECTO: CONSTRUIR LAS MATEMÁTICAS PROPUESTA METODOLÓGICA UNIDADES DE MEDIDA AUTORA DE LA APLICACIÓN: Elena Cillán Aguilera NIVEL: 1º de E. Primaria C.E.I.P.:Virgen de la Ribera (Paracuellos de Jarama)
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD TECNOLÓGICA Tecnología en Electricidad
EJEMPLO MEDICIÓN DE LA RESISTENCIA ELÉCTRICA DE DIFERENTES CONDUCTORES ELÉCTRICOS Fecha del ensayo: Enero 20 de 2004 Ensayo realizado por: Ing. Helmuth Ortiz Condiciones ambientales del ensayo: Temperatura:
Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.
Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,
Nombre de la asignatura: Metrología. Carrera : Ingeniería Mecánica. Clave de la asignatura: MCH Clave local:
Nombre de la asignatura: Metrología. Carrera : Ingeniería Mecánica Clave de la asignatura: MCH - 94 Clave local: Horas teoría horas practicas créditos: 0-4-4.- UBICACIÓN DE LA ASIGNATURA A) RELACIÓN CON
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS COEFICIENTE DE FRICCIÓN 1. OBJETIVO Estudio
Prácticas Integrales I Año Lectivo 2007-2008 Modulo I Procedimientos e instrumentación Básica en el Laboratorio
Práctica N 2 Mediciones y Tipos de Errores 1.- Objetivos: Seleccionar el instrumento más apropiado para realizar una medición considerando su precisión y exactitud. Realizar transformaciones de unidades
INSTRUMENTOS de medición
INSTRUMENTOS de medición Medir: Es comparar una cantidad desconocida que queremos determinar y una cantidad conocida de la misma magnitud, que elegimos como unidad. Al resultado de medir lo llamamos Medida
Actividad introductoria: Estudiantes de excursión en el centro de Cartagena identifican figuras planas en inmuebles
Grado 6 Matemáticas Diferentes formas para expresar la misma medida, el sistema internacional. TEMA: IDENTIFICACIÓN DEL ÁREA Y PERÍMETRO DE ALGUNAS FIGURAS PLANAS Nombre: Grado: Actividad introductoria:
Práctica No 3: Transductores de Presión
Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Núcleo de Instrumentación y Control. Bioinstrumentación I Revisada por: Prof. Rafael Volcanes Tec. Carlos Alba, Tec.
Práctica No 9. Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura.
Práctica No 9 Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura. 1. Objetivo general: Establecer empíricamente una escala de temperatura, aplicándose
Metrologia. Carrera: Clave de la asignatura: Participantes Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Metrologia Ingeniería Mecánica MCH - 0529 0 4 4 2.- HISTORIA DEL PROGRAMA Lugar
La energía de chocar es: Y después de chocar: La variación es lo que nos interesa: E= Ef Eo
PÉNDULO DE NEWTON OBJETIVO. Determinar la energía perdida en un sistema no conservativo (péndulo de newton) mediante balance de energía validando por ecuación de ímpetu. FUNDAMENTO. Conservación de la
1.- La materia y clasificación. La materia es cualquier cosa que ocupa un espacio y tiene masas Estados: sólido, líquido, gaseoso
La Química La Química se encarga del estudio de las propiedades de la materia y de los cambios que en ella se producen. La Química es una ciencia cuantitativa y requiere el uso de mediciones. Las cantidades
INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR
INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR Adaptación del Experimento Nº1 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 36-42. Autorizado por el Autor. Materiales: Cilindros
TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo:
TEMA : NÚMEROS REALES. Numeros racionales Ejemplo: 4... Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible. En nuestro caso Otro ejemplo de número racional
FICHAS DE PRÁCTICAS 1ºBACHILLERATO MATEMÁTICAS
FICHAS DE PRÁCTICAS 1ºBACHILLERATO MATEMÁTICAS UNIDAD DIDÁCTICA : ÁLGEBRA Y ARITMÉTICA 04.- Inecuaciones Duración Estimada: 1,5 h Capacidad Terminal Comprender plantear y solucionar inecuaciones de primer
DIRECCIÓN DE EDUCACIÓN DE ADULTOS.
MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN DE ADULTOS. PROGRAMA DE MATEMÁTICA 1 ANO EOC II Unidad 1: Objetivos: Desarrollar habilidades en las operaciones de cálculo de adición, sustracción, multiplicación
UNIVERSIDAD NACIONAL DE TUCUMÁN
LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGÍA UNIVERSIDAD NACIONAL DE TUCUMÁN INSTRUMENTOS CALIBRES PIES DE REY MICRÓMETROS CALIBRES PIES DE REY ALCANCE RESOLUCIÓN
MATRIZ PROCESO DE MATEMÁTICA COMPETENCIA: Actúa y piensa matemáticamente en situaciones de cantidad.
MATRIZ PROCESO DE MATEMÁTICA 4-2016 COMPETENCIA: Actúa y piensa matemáticamente en situaciones de cantidad. NIVEL DEL MAPA Plantea relaciones entre los datos en situaciones que combinan una o más acciones
Números en Ciencias Explorando Medidas, Dígitos Significativos y Análisis Dimensional
Números en Ciencias Explorando Medidas, Dígitos Significativos y Análisis Dimensional Tomando Medidas La precisión de una medida depende de dos factores: las destrezas del individuo tomando las medidas
Nombre de la asignatura: Metrología. Clave de la asignatura: Horas teoría-horas práctica-créditos: 0-4-4
. DATOS DE LA ASIGNATURA Nombre de la asignatura: Metrología Clave de la asignatura:. UBICACIÓN DE LA ASIGNATURA Horas teoría-horas práctica-créditos: 0-- a)relación CON OTRAS ASIGNATURAS DEL PLAN DE ESTUDIO
1.- INSTRUMENTOS DE MEDIDA DIRECTA Los instrumentos de medida directa son de muy variadas formas, precisión y calidad. He aquí los más importantes.
METROLOGÍA 1.- INSTRUMENTOS DE MEDIDA DIRECTA 1.1. METRO 1.2. REGLA GRADUADA 1.3. CALIBRE O PIE DE REY 1.4. MICRÓMETRO 2.- VERIFICACIÓN DE ÁNGULOS 2.1. TIPOS 2.2. INSTRUMENTOS DE MEDIDA DIRECTA 3.- APARATOS
1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1
1. Trigonometría 4º ESO-B Cuaderno de ejercicios Matemáticas JRM Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 RESUMEN DE OBJETIVOS 1. Razones trigonométricas de un ángulo agudo. OBJETIVO