Resumen Teórico. Curso de Inicio de MATEMÁTICAS. Tema 1: Funciones Elementales Tema 2: Derivación Tema 3: Integración

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resumen Teórico. Curso de Inicio de MATEMÁTICAS. Tema 1: Funciones Elementales Tema 2: Derivación Tema 3: Integración"

Transcripción

1 Resume Teórico. Curso de Iicio de MATEMÁTICAS. Tem : Fucioes Elemetles Tem : Derivció Tem 3: Itegrció Pedro Grcí Ferrádez Mª Ágeles Cstro López

2 Curso de Iicio EPS. Mtemátics. Frccioes. Iguldd de dos frccioes: = c cudo d = bc b d Sum: c + c + = b b b c d cb d + cb + = + = b d bd bd bd Producto: c = c b d bd c d d Divisió: : = b = = b d c b c bc d Números complejos. Represetció de u complejo Todo complejo z se puede represetr de ls forms:. Form crtesi: ( b, ). Form biómic: + bi 3. Form polr: m α?dode: m= + b b α = rctg 4. Form trigoométric: z = m( cosα + iseα) Opercioes co complejos e form polr I. Producto de complejos: II. Cociete de complejos: III. Poteci de complejos: z z' = m m' = m m' α α' α+ α' z mα m = = z' m' m' α ' ( α ) z = m = m α α' α Resume Teórico.

3 Curso de Iicio EPS. Mtemátics. IV. Ríces -ésims de complejos: mα = r ϕ dode Fórmul de Möivre r = α + kπ ϕ = co k = 0,,,, ( cos+ ise) = cos( ) + ise( ) m Ríces y potecis Propieddes. p p = +. p = p 3. b = ( b) 4. ( ) p = p = p = p b = = es lo mismo que = b. Cudo = se escribe simplemete 8. b = b 9. b = b Logritmos Defiició de logritmo El logritmo de u úmero y > 0 e u bse dd > 0 es el úmero l que debe elevrse pr obteer y. Se ot log y Propieddes I. Logritmo de u producto =. Resume Teórico.

4 Curso de Iicio EPS. Mtemátics. II. Logritmo de u cociete III. Logritmo de u poteci IV. Logritmo de u ríz Fució logrítmic Se defie l fució logrítmic como Logritmo deciml y eperio ( ) = ( ) + ( ) log log log = ( ) ( ) log log log log log log : R p = plog = log + R y log y Cudo l bse es = 0 se llm logritmo deciml y se escribe log y Cudo l bse es = e se llm logritmo eperio y se escribe l y Cmbio de bse: log b log = log b Trigoometrí. Rzoes trigoométrics del águlo sum cos + b = cos cosb se seb se + b = se cosb+ cos seb tg+ tgb tg( + b) = tg tgb Rzoes trigoométrics del águlo difereci cos b = cos cosb+ se seb se b = se cosb cos seb tg tgb tg( b) = + tg tgb Rzoes trigoométrics del águlo doble Resume Teórico. 3

5 Curso de Iicio EPS. Mtemátics. cos cos se = se = se cos tg tg = tg Rzoes trigoométrics del águlo mitd + cos cos = cos se = cos tg = + cos Trsformcioes de sums e productos + b b se+ seb= se cos + b b se seb= cos se + b b cos+ cosb= cos cos + b b cos cosb= se se Ecució de segudo grdo. Ls solucioes (ríces) de Si b b c + + = 0 so 4c es egtivo, o hy ríces reles. ± = b b 4c Si Si b b 4c es positivo, hy dos ríces reles distits. 4c = 0 ls dos ríces so igules, se dice que es u ríz doble. Regl de Ruffii. Sirve pr dividir u poliomio por u fctor liel b, por ejemplo E primer lugr se coloc los coeficietes del poliomio y el úmero, e este cso b =, de l siguiete form Resume Teórico. 4

6 Curso de Iicio EPS. Mtemátics El primer pso es bjr el primer coeficiete del poliomio A cotiució, se multiplic el umero que qued e l tercer fil por, se sube debjo de 5 y se hce l sum, obteiédose Ahor se repite este ultimo pso, hst completr l tbl El cociete de l divisió es y el resto de l divisió es. Si se divide u poliomio P( ) por u fctor liel b, l igul que e ls divisioes de úmeros eteros, se obtiee u poliomio cociete Q( ) y u resto R, e el cso de l divisió efectud teriormete por Ruffii teímos 3 P = b = Q = R = L divisió, se puede cosiderr como l siguiete operció P( ) = Q( )( b) + R De lo que podemos deducir que si el resto es cero R = 0, el poliomio P( ) es divisible por by demás P( b ) = 0, es decir, = b es u ríz del poliomio P( ). Resume Teórico. 5

7 Curso de Iicio EPS. Mtemátics. Frccioes lgebrics. R( ) = es lo mismo que P( ) S( ) = Q( ) R( ) S( ) P Q Sum: + P R P S R Q + = Q S Q S Producto: P R P R = Q S Q S Cociete: P R P S P S : = = Q S Q R Q R Biomio de Newto. + b = b b b b b b b b b 0 ( ) = ( )! dode j = j! ( j)! y! 3 ( ) m = m m. U form rápid de obteer los úmeros combitorios que prece e el biomio de Newto (trigulo de Trtgli) Resume Teórico. 6

8 Curso de Iicio EPS. Mtemátics. Así, por ejemplo y b = + 7b+ b + 35b + 35b + b + 7b + b b = 7b+ b 35b + 35b b + 7b b Propieddes de ls desigulddes.. + b c c b. b c c+ b 3. Si > 0 etoces c b c b. 4. Si > 0 etoces b c b c. 5. Si < 0 etoces c b c b. 6. Si < 0 etoces b c b c yb 0 b 0 ó 0 yb 0 8. Si b 0 etoces 0 yb> 0 0 ó b 0 yb < yb 0 b 0 ó 0 yb 0 0. Si b 0 etoces 0 yb< 0 0 ó b 0 yb > 0 Resume Teórico. 7

9 Curso de Iicio EPS. Mtemátics. Progresioes. Progresioes ritmétics Sum de los primeros térmios:, + d, + d, + 3 d,, + d, ( ) + ( + d) + ( + d) + ( + 3 d) + + ( + ( ) d) = + d Progresioes geométrics Sum de los primeros térmios: Sum de los ifiitos térmios: Cudo r < r r r r 3,,,,,, 3 r + r+ r + r + + r = r = r r r r r Gráfics. Fució vlor bsoluto. Es l fució que tiee domiio todos los úmeros reles, imge el cojuto de los úmeros myores o igules que cero y está defiid por l epresió Su represetció gráfic es: f ( ) = = si 0 si < 0 Resume Teórico. 8

10 Curso de Iicio EPS. Mtemátics. Fució potecil de epoete rciol. α So ls fucioes defiids medite l epresió ( ) f = co α = p q ( q p irreducible). Ls crcterístics de ests fucioes vrí depediedo de l pridd de p y q. A cotiució se preset ls crcterístics más destcds de ests fucioes y lgus gráfics: p q p 0 < < q p q > p Impr Impr Pr Impr Impr Pr q Impr Pr Impr Impr Pr Impr Domiio R 0 R R 0 Imge R 0 0 R 0 0 Crece e R 0 > 0 R 0 > 0 Decrece e < 0 < 0 R ( ) f = 3 ( ) f = Resume Teórico. 9

11 Curso de Iicio EPS. Mtemátics. f ( ) = f ( ) = 3 Fució epoecil. Ddo u úmero rel α > 0 y α, se llm fució epoecil de bse α l fució dd por f ( ) α Domiio R. Im( f ) = R +. = [Se defie α l α = e ]. Es u fució co Creciete e R si α > y decreciete si α <. A cotiució se preset l gráfic de dos fucioes epoeciles de bse myor que : f ( ) = e (líe discotiu) y g( ) 0 = (líe cotiu). Resume Teórico. 0

12 Curso de Iicio EPS. Mtemátics. L represetció gráfic de dos fucioes epoeciles de bse meor que es l siguiete: e que correspode ls fucioes f ( ) = (líe discotiu) y g( ) (líe cotiu). = 0 Fució logrítmic. Ddo u úmero rel α > 0 y α, se llm fució logrítmic de bse α l fució ivers de l fució epoecil de bse α, esto es, f ( ) = log [ log = l lα ]. Es u fució co Domiio R +. Im( f ) = R. Creciete e R + si α > y decreciete si α <. α Resume Teórico.

13 Curso de Iicio EPS. Mtemátics. A cotiució se preset l gráfic de dos fucioes logrítmics de bse myor que : f ( ) = L (líe discotiu) y g( ) log = (líe cotiu). L represetció gráfic de dos fucioes logrítmics de bse meor que es l siguiete: que correspode ls fucioes f ( ) = (líe discotiu) y ( ) = (líe cotiu). log e g log 0 Fucioes trigoométrics. Se llm sí ls fucioes seo, coseo y tgete. Resume Teórico.

14 Curso de Iicio EPS. Mtemátics. Fució seo. Es l fució dd por f ( ) = se, cuyo domiio es R, su imge Im( f ) = [, ] u fució periódic de periodo itervlo π π,. Es π ( se( + π ) = se R ). Crece e el y e cosecueci e los itervlos de l form π π π + k π, + k π co k úmero etero. ). Decrece e el itervlo π 3 π y por tto e los itervlos de l form + k π, + k π co k úmero etero. Tom su vlor máimo e los putos de l form y su vlor míimo e los putos de l form represetció gráfic es: π = + k π π = + k π 3, π (k etero) (k etero). Su Fució coseo. Es l fució dd por f ( ) = cos, cuyo domiio es R, su imge Im( f ) = [, ] u fució periódic de periodo itervlo ] π π [. Es π ( cos( + π ) = cos R ). Crece e el, y e cosecueci e los itervlos de l form ] π + k π, π + k π [ co k úmero etero. ). Decrece e el itervlo ],π[ por tto e los itervlos de l form ] k π, π + k π [ Tom su vlor máimo e los putos de l form míimo e los putos de l form gráfic es: 0 y co k úmero etero. = k π (k etero) y su vlor = π + k π (k etero). Su represetció Resume Teórico. 3

15 Curso de Iicio EPS. Mtemátics. Fució tgete. Es l fució dd por f ( ) tg =, que está defiid pr π + k π co k úmero etero, su imge Im( f ) = R. Es u fució periódic de periodo π ( tg( π ) + = tg R ). Crece e todo su domiio. Su represetció gráfic es: Además de ests fucioes circulres, tmbié se defie l cosecte, l secte y l cotgete: cos ec = se sec = cos cot g =. tg Fucioes trigoométrics iverss. Ls fucioes trigoométrics o so iyectivs, pero restrigids ciertos itervlos si lo so. Resume Teórico. 4

16 Curso de Iicio EPS. Mtemátics. L fució f : π π, R, defiid por f ( ) se = es u fució iyectiv y por tto tiee ivers. Su imge es Im f π π = ( f ) f, = [, ] ( ) = rcse. A su ivers se le llm fució rcoseo:. Está defiid e el itervlo [, ], tiee imge el π π itervlo, y es creciete. L fució : Im f ( f ) = f ([ 0, π ]) = [, ] ( ) = rccos f [ 0,π ] R defiid por f ( ) cos itervlo [ 0,π ] y es decreciete. = es iyectiv y. Su ivers se cooce como fució rcocoseo:. Está defiid e el itervlo [, ], tiee imge el L fució f : π π, R defiid por f ( ) tg = es iyectiv y Im π π = ( f ) f, =. Su ivers se cooce como fució rcotgete. π π Está defiid e todo R, tiee imge el itervlo, y es creciete. Resume Teórico. 5

17 Curso de Iicio EPS. Mtemátics. Derivds. Regls de derivció. FUNCIONES DERIVADAS f ( ) = c f ' = 0 f ( ) = f ' = f f + g ( f + g)' = f ' + g' g ( f g)' = f ' g+ f g' f f f ' g f g' ' = g g g f ( ) = f '( ) = f g ( f g ) ' ( ) = f ' g' ( ) Tbl de derivds. FUNCIONES DERIVADAS y = log u u ' y' = log e u y = l y ' = y = l u u ' y ' = u y y = ' = l y u = ' = u 'l y u Resume Teórico. 6

18 Curso de Iicio EPS. Mtemátics. y = e y' y = u v = e y = seu y = u'cos u y u u u v u u y = cosu y = u' seu y = tgu y = rseu y = rcosu y = rctgu y v v ' = 'l + ' u ' y ' = cos u y ' = y ' = u ' u u ' u u ' y ' = + u Itegrles. Fució primitiv Si F( ) es u fució que posee u derivd F' ( ) f ( ) itervlo b, se dice que F( ) es u fució primitiv de f ( ). Itegrl idefiid = e todos los putos del Se llm itegrl idefiid de f ( ), l cojuto de tods ls primitivs de u fució f ( ). Itegrles imedits d = + C + d = + C, + d l C = + d = + C l ed = e + C sed = cos + C Resume Teórico. 7

19 Curso de Iicio EPS. Mtemátics. Técics de itegrció cosd = se+ C tgd = lcos + C d rcse = + d d C = rcos+ C rctg + = + Itegrció por sustitució o cmbio de vrible Pr clculr se hce: ) = g( t) b) = ' d g t dt L itegrl será hor: Itegrció por prtes Se utiliz l fórmul: Itegrl defiid f d C ' f d = f g t g t dt udv = u v vdu L itegrl defiid etre dos etremos y b represet el áre del recito limitdo por l curv positiv f ( ), ls ordeds f ( ) y f ( b ) de los etremos del itervlo y el eje OX co b = lim f d h f i = b h = y 0 =, = + h, = + h,, = + h = b Regl de Brrow b = f d F b F i Resume Teórico. 8

20 Curso de Iicio EPS. Mtemátics. dode Cálculo de áres pls f ( ) d = F( ) + C L regl de Brrow permite clculr el áre limitd por u curv, el eje de bsciss y dos ordeds de l curv. Áre de u recito limitdo por dos curvs Se u recito limitdo por dos curvs f ( ) y g( ). Se y b ls bsciss de los putos de itersecció A y B, el áre del recito es: b b b S = f d g d = f g d Resume Teórico. 9

Algunas funciones elementales

Algunas funciones elementales Apédice B Algus fucioes eleetles B Fució poteci -ési U fució poteci -ési es u fució de l for f ( ) dode l se es u vrile y el epoete u úero turl Es l for ás secill de ls fucioes polióics f ( ) Ls fucioes

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x) FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos

Más detalles

POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:

POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales: POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

Matemáticas 1 EJERCICIOS RESUELTOS:

Matemáticas 1 EJERCICIOS RESUELTOS: Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

Unidad 12: DERIVADAS

Unidad 12: DERIVADAS Uidd : DERIVADAS Si u ctidd o egtiv uer t pequeñ que resultr meor que culquier otr dd, ciertmete o podrí ser sio cero. A quiees pregut qué es u ctidd iiitmete pequeñ e mtemátics, osotros respodemos que

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

TEMA Nº 1: NÚMEROS REALES

TEMA Nº 1: NÚMEROS REALES Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS TEMA Nº : NÚMEROS REALES. NÚMEROS RACIONALES. EXPRESIONES DECIMALES.. NÚMEROS RACIONALES. EXPRESIONES DECIMALES. NÚMEROS IRRACIONALES.. NÚMEROS REALES.

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES. PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,

Más detalles

Licdo Eliezer Montoya Resumen de los Métodos de Integración 1. Tablas de derivación

Licdo Eliezer Montoya Resumen de los Métodos de Integración 1. Tablas de derivación Licdo Eliezer Motoy Rese de los Métodos de Itegrció Tbls de derivció dy L derivd por defiició f ( ) D f y d D ( ) D ( ) D ( ) ) D ( ) D ( c) 0 D D ( ) ) D D ( ) ) D ( v) D ( ) D ( v) 3) D ( v) D v vd vd

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes

Más detalles

2. CONJUNTOS NUMÉRICOS

2. CONJUNTOS NUMÉRICOS 1. TEORÍA DE CONJUNTOS CONCEPTO DE PERTENENCIA: " " Se el cojuto A {, b} A b A c A CONCEPTO DE SUBCONJUNTO: " " A B [ x A x B, x ] A, A A A, A CONJUNTOS ESPECIALES Cojuto Vcío: { } { } {0} Cojuto Uiverso:

Más detalles

LÍMITES DE SUCESIONES. EL NÚMERO e

LÍMITES DE SUCESIONES. EL NÚMERO e www.mtesxrod.et José A. Jiméez Nieto LÍMITES DE SUCESIONES. EL NÚMERO e. LÍMITE DE UNA SUCESIÓN... Aproximció l cocepto de límite. Vmos cercros l cocepto de límite hlldo lguos térmios de distits sucesioes

Más detalles

Sucesiones de números reales

Sucesiones de números reales Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5

Más detalles

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración. Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

Z={...,-4,-3,-2,-1,0,1,2,3,4,...}

Z={...,-4,-3,-2,-1,0,1,2,3,4,...} TEMA Prelimires: Números y cojutos P- Números eteros: Se deomi úmeros turles (tmbié llmdos eteros positivos) los úmeros que os sirve pr cotr objetos:,,,4,5,... El cojuto de los úmeros turles se desig por

Más detalles

La integral. 1.5 Definición de la integral. Sumas de Riemann Aproximación del área de una región

La integral. 1.5 Definición de la integral. Sumas de Riemann Aproximación del área de una región APÍTULO L itegrl.5 efiició de l itegrl. Sums de Riem.5. Aproimció del áre de u regió E est secció precismos lgus ides epuests previmete, co respecto l problem de ecotrr el áre de l regió bjo l gráfic de

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Capítulo 7. Series Numéricas y Series de Potencias.

Capítulo 7. Series Numéricas y Series de Potencias. Cpítulo Series Numérics y Series de Potecis.. Itroducció. E este cpítulo le dremos setido l cocepto de sum ifiit de úmeros ó serie uméric, es decir, diremos que sigific sumr u ifiidd de úmeros... 4 El

Más detalles

z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente

z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente UNIDAD.- LOGARIMOS. APLICACIONES (tem del libro). LOGARIMO DE UN NÚMERO Cosideremos l ecució: 8. Como vemos l icógit está e el epoete, lo que l hce diferete todos los tipos vistos hst hor. es el epoete

Más detalles

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo. III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

Transformaciones lineales

Transformaciones lineales Trsformcioes lieles [Versió prelimir] Prof. Isbel Arrti Z. 1 Se V y W espcios vectoriles sobre el cuerpo R de los úmeros reles. U trsformció liel o plicció liel de V e W es u fució T : V W que stisfce:

Más detalles

ANÁLISIS MATEMÁTICOS

ANÁLISIS MATEMÁTICOS ANÁLISIS MATEMÁTICOS TEMA. FUNCION REAL DE VARIABLE REAL..... Itroducció..... Domiio..... Limites...6.4. Cotiuidd...9 TEMA : DERIVADAS..... Itroducció..... Sigos de l derivd..... Formuls priciples de derivds....4.

Más detalles

TEMA 2 ECUACIONES, INECUACIONES Y SISTEMAS

TEMA 2 ECUACIONES, INECUACIONES Y SISTEMAS TEMA ECUACIONES INECUACIONES Y SISTEMAS CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.. ECUACIONES DE PRIMER GRADO... Método geerl de resolució de ecucioes EJEMPLO: Resolver 4 5 6 (+7) =

Más detalles

CURSO DE ANÁLISIS MATEMÁTICO: DE LAS FUNCIONES REALES DE VARIABLE REAL A LA APLICACIÓN DE LAS INTEGRALES

CURSO DE ANÁLISIS MATEMÁTICO: DE LAS FUNCIONES REALES DE VARIABLE REAL A LA APLICACIÓN DE LAS INTEGRALES CURSO DE ANÁLISIS MATEMÁTICO: DE LAS FUNCIONES REALES DE VARIABLE REAL A LA APLICACIÓN DE LAS INTEGRALES ISBN: 978-84-69-79-6 Pedro J. López Cello Idice geerl Itroducció. Fucioes reles de vrile rel. Fucioes

Más detalles

Las reglas de divisibilidad Por: Enrique Díaz González

Las reglas de divisibilidad Por: Enrique Díaz González Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Itroducció Desde l escuel elemetl los estudites se les eseñ cudo u etero es divisible, por ejemplo,

Más detalles

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1 3º ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS. Simplificar la fracción, si es posible N = 50

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1 3º ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS. Simplificar la fracción, si es posible N = 50 Mtemátics B º E.S.O. Tem 1 Los úmeros Reles 1 TEMA 1 LOS NÚMEROS REALES 1.0 INTRODUCCIÓN º 1.0.1 ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS º RACIONALES(Q)???????? NO RACIONALES NATURALES(N) 0 ; ; ; 81...

Más detalles

La integral de Riemann

La integral de Riemann Cpítulo 6 L itegrl de Riem Vmos dr u defiició precis de l itegrl de u fució defiid e u itervlo. Este tiee que ser u itervlo cerrdo y cotdo, es decir [,b] co < b R, y l defiició que dremos de itegrl solo

Más detalles

1.- POTENCIAS DE EXPONENTE ENTERO

1.- POTENCIAS DE EXPONENTE ENTERO º ESO - UNIDAD.- POTENCIAS Y RAÍCES OBJETIVOS MÍNIMOS DE LA UNIDAD.- Clculr potecis de se rciol y epoete etero.- Relizr opercioes co potecis de epoete etero usdo sus propieddes.- Epresr úeros e otció cietífic.-

Más detalles

Neper ( ) Lección 2. Potencias, radicales y logarítmos

Neper ( ) Lección 2. Potencias, radicales y logarítmos Neer (0-7) Lecció Potecis, rdicles y logrítmos º ESO MATEMÁTICAS ACADÉMICAS Potecis, rdicles y logritmos LECCIÓN. POTENCIAS, RADICALES, LOGARITMOS. Potecis de exoete etero Recuerd l defiició de oteci co

Más detalles

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d) Auilir: Igcio Domigo Trujillo Silv

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/2 LIC: JESÚS REYES HEROLES

SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/2 LIC: JESÚS REYES HEROLES SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/ LIC: JESÚS REYES HEROLES GUÍA PARA EL EXAMEN EXTRAORDINARIO DE MATEMÁTICAS IV: FUNCIONES

Más detalles

Tema 1 Los números reales Matemáticas CCSS1 1º Bachillerato 1

Tema 1 Los números reales Matemáticas CCSS1 1º Bachillerato 1 Tem 1 Los úmeros reles Mtemátics CCSS1 1º Bchillerto 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros rcioles: Se crcteriz porque puede expresrse: E form de frcció,

Más detalles

TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES

TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES SUCESIÓN NUMÉRICA: es u fució cuyo domiio es el cojuto de los úmeros turles (o u subcojuto de él) y l imge está icluid e el cojuto de los Reles ( ) SUCESIÓN ARITMÉTICA:

Más detalles

Unidad 4. Función Exponencial

Unidad 4. Función Exponencial Fució Epoecil Uidd Cocepto Al bombrder u átomo de urio co eutroes, su úcleo se divide e dos úcleos más livios, liberdo eergí y eutroes. Bjo cierts codicioes, es decir, si eiste u ms crític de urio, se

Más detalles

A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS PROPIEDADES.

A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS PROPIEDADES. CAPÍTULO X. INTEGRACIÓN DEFINIDA SECCIONES A. Defiició de fució itegrble. Primers propieddes. B. Teorems fudmetles del cálculo itegrl. C. Ejercicios propuestos. A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS

Más detalles

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias: EJERCICIOS de POTENCIAS º ESO FICHA : Potecis de expoete IN RECORDAR:... Defiició de poteci ( veces). Aplicr l defiició pr hllr, si clculdor, el vlor de ls siguietes potecis: ) b) ( ) c) d) ( ) e) f) (

Más detalles

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució

Más detalles

1.3.6 Fracciones y porcentaje

1.3.6 Fracciones y porcentaje Ejemplo : Se hor u situció e l que ecesitmos clculr l frcció de otr frcció. Por ejemplo de. Pr u mejor iterpretció de l regl terior, recurrimos l represetció gráfic. Represetemos l frcció de Es decir:

Más detalles

APUNTES DE MATEMÁTICAS 1º BACHILLERATO

APUNTES DE MATEMÁTICAS 1º BACHILLERATO APUNTES DE MATEMÁTICAS 1º BACHILLERATO 01-014 Aputes Bchillerto 01-014 Tem 0 1. TEMA 0:NÚMEROS REALES 1.1. CONJUNTOS NUMERICOS... 1.. INTERVALOS Y SEMIRECTAS.... 1.. VALOR ABSOLUTO.... 5 1.4. PROPIEDADES

Más detalles

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a. Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1. Números rcioles. Los úmeros reles. 1.1.1. Sucesivs mlicioes el cmo umérico. LOS NÚMEROS NATURALES. N= {1,2,,4,...} LOS NÚMEROS ENTEROS. Z ={...,-4,-,-2,-1,0,1,2,,4,...} LOS

Más detalles

Tema 2. Operaciones con Números Reales

Tema 2. Operaciones con Números Reales Te. Opercioes co úeros reles Te. Opercioes co Núeros Reles. Opercioes co frccioes.. Itroducció.. Su y difereci.. Producto y divisió.. Opercioes cobids. Potecis.. Expoete turl.. Expoete etero (egtivo).

Más detalles

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero www.clseslcrt.co Clsificció de Núeros Reles Te.- Núeros Reles Reles R Rcioles Q Irrcioles Ι Eteros Z Nturles N Negtivos Deciles Exctos Frcciorios Deciles Periódicos Puros Deciles Periódicos Mixtos Rcioles

Más detalles

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces.

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces. POTENCIAS.- determi l oteci de se y exoete, sigific ue hemos de multilicr or si mismo veces. Defiició: L otció Bse Exoet El exoete,, idic ls veces ue se reite l se e el roducto de ést or si mism. L se,,

Más detalles

Tema 1: NÚMEROS REALES.

Tema 1: NÚMEROS REALES. I.E.S. Slvdor Serro - Deprteto de Mteátics MATEMÁTICAS ACADÉMICAS º ESO - 0 / Te : NÚMEROS REALES. Actividdes pr preprr el exe: Teorí: Cotest si so cierts ls siguietes fircioes: Todo úero etero es turl.

Más detalles

Guía de trabajos Teórico- Práctico Nº 6. Los dos problemas del cálculo

Guía de trabajos Teórico- Práctico Nº 6. Los dos problemas del cálculo Mtemátic pr CPN- UNSE- Guí de trbjos Teórico- Práctico Nº 6 Los dos problems del cálculo UNIDAD VI: 6. Derivd de u Fució. Ts de cmbio. Derivd de u Fució e u puto: defiició. Iterpretció geométric. 6.. Algebr

Más detalles

Cálculo II (0252) TEMA 5 SERIES NUMÉRICAS. Semestre

Cálculo II (0252) TEMA 5 SERIES NUMÉRICAS. Semestre Cálculo II (05) Semestre -0 TEMA 5 SERIES NUMÉRICAS Semestre -0 José Luis Quitero Julio 0 Deprtmeto de Mtemátic Aplicd U.C.V. F.I.U.C.V. CÁLCULO II (05) José Luis Quitero Ls ots presetds cotiució tiee

Más detalles

EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS:

EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS: Mtemátic II do Mgisterio IFD Celoes XPRSIÓN DCIMAL D LOS NÚMROS RACIONALS ABSOLUTOS: Vmos clsificr los úmeros rcioles solutos e dos cojutos disjutos D y D P ( D D φ ). P D Q D P Se / el represette cóico

Más detalles

C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona

C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Ptrici Crdo COMPLEJO EDUCATIVO Dr. OSCAR ABDALA CONTENIDOS DE REVISIÓN CONJUTOS NUMÉRICOS Nturles: N = 1

Más detalles

Página 1 de 17

Página 1 de 17 LÍMITES Y CONTINUIDAD INTRODUCCIÓN: El presete mteril fue desrrolldo pr ser utilizdo como putes de clse, pr el curso cálculo diferecil e itegrl, o se pretede ser muy rigurosos co el desrrollo de l teorí

Más detalles

PROCESOS INFINITOS Y LA NOCIÓN DE LÍMITE

PROCESOS INFINITOS Y LA NOCIÓN DE LÍMITE UNIDAD PROCEO INFINITO Y LA NOCIÓN DE LÍMITE Propósitos Explorr diversos problems que ivolucre procesos ifiitos trvés de l mipulció tbulr, gráfic y simbólic pr propicir u cercmieto l cocepto de límite

Más detalles

TEMA 2: SISTEMAS DE ECUACIONES LINEALES

TEMA 2: SISTEMAS DE ECUACIONES LINEALES Profesor: Rf Gozález Jiméez Istituto St Eulli TEM 2: SISTEMS DE ECUCIONES LINELES ÍNDICE 2..- Sistems de Ecucioes Lieles. Geerliddes. 2.2.- Sistems equivletes. 2.3.- Resolució de S.E.L. por mtriz ivers.

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

El conjunto de los Números Reales

El conjunto de los Números Reales El cojuto de los Números Reles Al cojuto de los úmeros reles se lleg por sucesivs mplicioes del cmpo umérico prtir de los úmeros turles. E cd u de ls mplicioes se vz y se logr mejorr respecto de l terior.

Más detalles

Liceo Marta Donoso Espejo Raíces para Terceros

Liceo Marta Donoso Espejo Raíces para Terceros . Ríces cudrds y cúics Liceo Mrt Dooso Espejo Ríces pr Terceros Coeceos el estudio de ls ríces hciédoos l siguiete pregut: Si el áre de u cudrdo es 64 c 2, cuál es l edid de su ldo? Pr respoder esto deeos

Más detalles

Práctica 6. Calcular la suma de los primeros K números naturales y k k. . 2 Calcular la suma de los cuadrados de los primeros k números

Práctica 6. Calcular la suma de los primeros K números naturales y k k. . 2 Calcular la suma de los cuadrados de los primeros k números PRÁCTICA SERIES NUMÉRICAS Práctics Mtlb Objetivos Práctic 6 Estudir l covergeci o divergeci de u serie de térmios positivos utilizdo distitos criterios combido ls coclusioes experimetles (el ordedor) co

Más detalles

Podemos decir también que número real es todo número que podemos representar en la recta numérica - 1, ¼ 0,

Podemos decir también que número real es todo número que podemos representar en la recta numérica - 1, ¼ 0, Uidd EL NÚMERO REAL E etps sucesivs del estudio de l Mteátic se trbj co cpos uéricos que v pliádose co l icorporció de uevos y distitos tipos de úeros. Así, se coiez lizdo el cpo de los úeros turles (

Más detalles

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V COMBINATORIA Por Aálisis Cobitorio o Cobitori, se etiede quell prte del álgebr que se ocup del estudio y propieddes de los grupos que puede forrse co eleetos ddos, distiguiédose etre sí: por el úero de

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

Anillos de Newton Fundamento

Anillos de Newton Fundamento Aillos de Newto Fudmeto Los illos de Newto so producidos por itererecis cudo dos hces de luz, procedetes de l mism uete, recorre cmios ópticos dieretes. Eiste distitos modos de logrr este eómeo, el que

Más detalles

CURSO DE INGRESO 2010 CUADERNILLO DE MATEMÁTICAS

CURSO DE INGRESO 2010 CUADERNILLO DE MATEMÁTICAS UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE AGRONOMIA Y AGROINDUSTRIAS CURSO DE INGRESO 00 CUADERNILLO DE MATEMÁTICAS Autor: Dr. Lucreci L. Chillou Fcultd de Agroomí Agroidustris Mtemátics

Más detalles

Guía Práctica N 12 RAÍCES FUNCIÓN RAÍZ CUADRADA

Guía Práctica N 12 RAÍCES FUNCIÓN RAÍZ CUADRADA Fuete: PreUiversitrio Pedro de Vldivi Guí Práctic N RAÍCES FUNCIÓN RAÍZ CUADRADA DEFINICIÓN : Si es u etero pr positivo es u rel o egtivo, etoces es el úico rel, o egtivo, tl que = = =, 0 DEFINICIÓN :

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Este documeto es de distribució grtuit y lleg grcis Cieci Mtemátic El myor portl de recursos eductivos tu servicio! Los poliomios de Beroulli y sus pliccioes Pblo De Nápoli versió 0.. Los poliomios de

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES E l epresió c, puede clculrse u de ests tres ctiddes si se cooce dos de ells resultdo de este odo, tres opercioes diferetes: º Poteci º Rdicció º Logrito c pr clculr,

Más detalles

el blog de mate de aida CSII: derivadas

el blog de mate de aida CSII: derivadas el blo de mte de id CSII: derivds Pá. TASAS E VARIACIÓN L siuiete tbl orece el úmero de cimietos e cd mes lo lro de u ño e u determid poblció: Meses 7 8 Ncimietos 7 8 8 8 7 Pr sber, por ejemplo, cómo vrido

Más detalles

UNIDAD 1 NÚMEROS REALES. es el sucesor de n. 4) Todo número natural tiene antecesor excepto el 1:, donde n 1

UNIDAD 1 NÚMEROS REALES. es el sucesor de n. 4) Todo número natural tiene antecesor excepto el 1:, donde n 1 Uiversidd Nciol de Slt Fcultd de Igeierí Aputes de Curso Me prepro pr estudir Igeierí UNIDAD 1 NÚMEROS REALES CONJUNTOS NUMÉRICOS El cojuto de los Núeros Nturles ( N ) Los úeros que se eple pr cotr 1,2,3,4,...

Más detalles

Potencias y Radicales

Potencias y Radicales Potecis y Rdicles Potecis de expoete turl ( Se R~{ 0 } N Defiimos...... 8, ( ) ( )( )( )( )( ) Propieddes: ) m + m ) m m ( ) ) ) () ) m m Por coveio: ) 0 Potecis de expoete egtivo Se R~0 N. Defiimos 8

Más detalles

Radicación en R - Potencia de exponente racional Matemática

Radicación en R - Potencia de exponente racional Matemática Rdiccio e R Poteci de eoete rciol Mtemátic º Año Cód. 0- P r o f. V e r ó i c F i l o t t i P r o f. M r í d e l L u j á M r t í e z C o r r e c c i ó : P r o f. S i l v i A m i c o z z i Dto. de M t emátic

Más detalles

La Integral Definida

La Integral Definida Cpítulo 5 L Itegrl Defiid 5.. Prtició U cojuto fiito de putos P = {x, x, x,, x } es u prtició de [, b] si, y solmete si, = x x x x = b. 5.. Sum Superior y Sum Iferior Se y = f(x), u fució cotiu e [, b].

Más detalles

Ecuaciones de recurrencia

Ecuaciones de recurrencia Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,

Más detalles

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. Resume de ls clses teórics del turo trde crgo de l Prof. Alcó. 0.1. Complejos. Form de pr ordedo. Opercioes. Form biómic U úmero complejo es u pr ordedo cuys compoetes so úmeros reles. Luego el cojuto

Más detalles

La resolución de ecuaciones algebraicas, o la determinación de las raíces de polinomios, está entre los problemas más antiguos de la matemática.

La resolución de ecuaciones algebraicas, o la determinación de las raíces de polinomios, está entre los problemas más antiguos de la matemática. Álgebr y Geometrí Alític Año UNIDAD Nº : Ceros de Poliomios Uidd Nº 3: CEROS de POLINOMIOS Poliomio: defiició. Iguldd de poliomios. Fució poliómics. Ceros o ríces de poliomio. Ríces de u poliomio de er.

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

Tema 7: Series Funcionales

Tema 7: Series Funcionales I.T.Telecomuiccioes Curso 99/ Tem 7: Series Fucioles Al estudir el teorem de Tylor se oservó l posiilidd de epresr u fució f ifiitmete derivle como u sum ifiit de fucioes moomiles, lgo sí como u poliomio

Más detalles

2. Sucesiones, límites y continuidad en R

2. Sucesiones, límites y continuidad en R . Sucesioes, límites y cotiuidd e R. Sucesioes de úmeros reles { } =,,...,,... es u sucesió: cd turl correspode u rel. Mtemáticmete, como u fució sig cd elemeto de u cojuto u úico elemeto de otro: : N

Más detalles

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x) FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes

Más detalles

Cálculo integral de funciones de una variable: integral definida

Cálculo integral de funciones de una variable: integral definida Cálculo itegrl de fucioes de u vrible: itegrl defiid BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhbreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimeez@ull.es) M. ISABEL MARRERO RODRÍGUEZ

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8

EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8 Repúlic Bolivri de Veezuel Miisterio de l Defes Uiversidd Nciol Eperietl Politécic de l Fuerz Ard Núcleo Crcs Curso de Iducció Uiversitri CIU Cátedr: Rzoieto Mteático EXPRESIONES ALGEBRAICAS RACIONALES

Más detalles

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado,

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado, Fcultd de Cotdurí Adiistrció. UNAM Rdicles Autor: Dr. José Muel Becerr Espios MATEMÁTICAS BÁSICAS RADICALES OPERACIONES CON RADICALES U rdicl es culquier rí idicd de u expresió. L rdicció es l operció

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

PROBLEMAS Y EJERCICIOS RESUELTOS

PROBLEMAS Y EJERCICIOS RESUELTOS PROGRESIONES 3º ESO PÁGINA EJERCICIOS RESUELTOS DE PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS UN POCO DE HISTORIA: UN NIÑO LLAMADO GAUSS Hce poco más de dos siglos, u mestro lemá que querí pz y trquilidd e

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

1. Discutir según los valores del parámetro k el sistema

1. Discutir según los valores del parámetro k el sistema . Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de

Más detalles

Tema 1: Números Complejos

Tema 1: Números Complejos Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Sucesiones y series de funciones

Sucesiones y series de funciones Cpítulo 10 Sucesioes y series de fucioes Expoemos este tem siguiedo el cpítulo 11 de [Apostol1], completdo co lgus prtes del cpítulo 7 de [Brtle-Sherbert]. E cd cso iremos ddo l refereci decud. 10.1. Sucesioes

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles