Tamaño: px
Comenzar la demostración a partir de la página:

Download ""

Transcripción

1 Titulo: ÁREA DE UNA REGION PLANA Año escolar: MATEMATICA Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: El autor de este trabajo solicita su valiosa colaboración en el sentido de enviar cualquier sugerencia y/o recomendación a la siguiente dirección : martilloatomico@gmail.com Igualmente puede enviar cualquier ejercicio o problema que considere pueda ser incluido en el mismo. Si en sus horas de estudio o práctica se encuentra con un problema que no pueda resolver, envíelo a la anterior dirección y se le enviará resuelto a la suya. Área de una región plana Ing. José Luis Albornoz Salazar - 0 -

2 ÁREA DE UNA REGIÓN PLANA Ejemplo : Calcular el área plana limitada por la función Y = X 2 4X + 5, el eje X, y las rectas X = y X = 3. = El resultado de la integral definida es 8/3 = 2,67. Se dice entonces que el área de la región plana que está limitada por la función Y = X 2 4X + 5, el eje X, y las rectas X = y X = 3 es de 2,67 unidades cuadradas. NOTA : Es bueno aclarar que cuando aplicamos la integral definida en las áreas que están ubicadas sobre el eje X el resultado lo obtendremos con signo positivo, mientras que en las áreas que están debajo del eje X el resultado lo obtendremos con signo negativo. Esta consideración no representa ningún problema en el cálculo del área. Simplemente este signo negativo nos indica que es un área que está debajo del eje X pero el área es la cantidad calculada con signo positivo. Para calcular el área de una región plana que se encuentra bajo una función y sobre el eje X se utiliza la integral definida de dicha función; en este caso en particular la integral estará limitada por las rectas X = y X = 3. Note que el índice inferior de la integral definida es y el índice superior es 3. Esto se debe a que el área que queremos calcular está limitada desde hasta 3. Ejemplo 2: Calcular el área plana limitada por la función Y = X 2 4X, el eje X, y las rectas X = y X = 3. 3 Área de una región plana Ing. José Luis Albornoz Salazar - -

3 Para calcular el área de una región plana que se encuentra sobre una función y debajo del eje X se utiliza la integral definida de dicha función; en este caso en particular la integral estará limitada por las rectas X = y X = 3. Note que el índice inferior de la integral definida es y el índice superior es 3. Esto se debe a que el área que queremos calcular está limitada desde hasta 3. 3 Para calcular el área de una región plana que se encuentra bajo una función y sobre el eje X se utiliza la integral definida de dicha función; en este caso en particular la integral estará limitada por las rectas X = 3 y X = 5. Note que el índice inferior de la integral definida es 3 y el índice superior es 5. Esto se debe a que el área que queremos calcular está limitada desde 3 hasta 5. El hecho de que el resultado obtenido tenga signo negativo solo nos indica que dicha región plana está ubicada por debajo del eje X. Luego podemos decir que el área de dicha región es de 22/3 = 7,33 unidades cuadradas. 5 3 Ejemplo 3: Calcular el área plana limitada por la función Y = 2X 4, el eje X, y las rectas X = 3 y X = 5. = (25 20) (9 2) = 5 +3 = 8 El resultado de la integral definida es 8. Se dice entonces que el área de la región plana que está limitada por la recta Y = 2X 4, el eje X, y las rectas X = 3 y X = 5 es de 8,00 unidades cuadradas. Área de una región plana Ing. José Luis Albornoz Salazar - 2 -

4 Ejemplo 4: Calcular el área plana limitada por la función Y = 2X 4, el eje X, y las rectas X = y X =. El hecho de que el resultado obtenido tenga signo negativo solo nos indica que dicha región plana está ubicada por debajo del eje X. Luego podemos decir que el área de dicha región es de 8,00 unidades cuadradas. Ejemplo 5: Calcular el área plana de la región limitada por la función Y = X 3 2X 2 5X + 6, el eje X, y las rectas X = y X = 2. Se calculan las raíces de de la ecuación de la función para saber donde dicha curva cruza al eje X. Aplicando la regla de Ruffini a Y = X 3 2X 2 5X + 6 se obtienen las 3 raíces (polinomio de tercer grado tiene tres raíces). X = ; X2 = 2 ; X3 = 3 Para calcular el área de una región plana que se encuentra sobre una función y debajo del eje X se utiliza la integral definida de dicha función; en este caso en particular la integral estará limitada por las rectas X = y X =. Luego se calcula donde están ubicados los máximos y mínimos relativos de la función en el intervalo [ - 2, 3 ] utilizando el criterio de la primera derivada (explicado en el capítulo anterior). Con toda esta información realizamos la siguiente gráfica : Note que el índice inferior de la integral definida es y el índice superior es. Esto se debe a que el área que queremos calcular está limitada desde hasta. = ( 4) ( + 4) = 3 5 = 8 Área de una región plana Ing. José Luis Albornoz Salazar - 3 -

5 Al observar la grafica podemos visualizar que el área a calcular está conformada por dos regiones : una que está sobre el eje X desde - hasta y la otra que está por debajo del eje X desde hasta 2. Bajo estas circunstancias es recomendable realizar el estudio por separado y al final sumar el valor absoluto de las dos cantidades calculadas. Este resultado me indica que la región que está sobre el eje X desde - hasta tiene un área de = 0,67 unidades cuadradas. Procediendo a calcular el área que está por debajo del eje X tendremos : Procediendo a calcular el área que está por encima del eje X tendremos : 2 - El hecho de que el resultado obtenido tenga signo negativo solo nos indica que dicha región plana está ubicada por debajo del eje X. Luego podemos decir que el área de dicha región es de = 2,42 unidades cuadradas. Área de una región plana Ing. José Luis Albornoz Salazar - 4 -

6 Ya tenemos los dos valores de las dos áreas; la región que está sobre el eje X desde - hasta tiene un área de 0,67 unidades cuadradas y la región que está por debajo del eje X desde hasta 2 tiene un área de 2,42 unidades cuadradas. El área plana de la región limitada por la función Y = X 3 2X 2 5X + 6 el eje X, y las rectas X = y X = 2 será lógicamente la suma de las dos áreas calculadas : 0,67 + 2,42 = 3,09 unidades cuadradas Veamos las dos gráficas siguientes para verificar lo indicado anteriormente: Ejemplo 6: Calcular el área de la región plana limitada por la función Y = X 2 4X + 5, y la recta que pasa por los puntos (0,) y (5,6). Y En la gráfica superior izquierda observamos la región que está ubicada sobre el eje X y bajo la recta que pasa por los dos puntos dados. Y sabemos calcular su área de acuerdo a lo explicado anteriormente en el ejercicio 3 (pág. 2). En la gráfica superior derecha observamos la región que está ubicada sobre el eje X y bajo la parábola. Y sabemos calcular su área de acuerdo a lo explicado anteriormente en el ejercicio (pág. ). Luego : X Podemos observar que el área sombrada está ubicada bajo la recta y sobre la parábola. Hasta ahora, no conocemos un método para calcular el área de una región plana que se encuentre sobre el eje X y al mismo tiempo sobre una función. Sin embargo, si observamos detenidamente podemos deducir que la región sombreada puede ser definida como la diferencia de la región que está ubicada sobre el eje X y bajo la recta graficada menos la región que está sobre el eje X y bajo la parábola.(al final de esta guía explicaremos un método que nos facilitará este cálculo) = menos Para saber desde y hasta donde hay que aplicar la integral definida en ambos casos es necesario determinar en cuales puntos se interceptan la parábola y la recta. Para calcular los puntos de intercepción de una parábola y una recta se deben igualar ambas ecuaciones y calcular las raíces de la ecuación resultante. Área de una región plana Ing. José Luis Albornoz Salazar - 5 -

7 Ya conocemos la ecuación de la parábola (Y = X 2 4X + 5) pero desconocemos la ecuación de la recta. Sin embargo, conocemos dos puntos pertenecientes a la misma y con ellos se puede calcular su ecuación utilizando a fórmula : Calculando el área que está bajo la recta y sobre el eje X : Una vez aplicada la fórmula anterior tendremos que la ecuación de la recta es Y = X + Al igualar las dos ecuaciones tendremos : X 2 4X + 5 = X + X 2 4X + 5 X = 0 X 2 5X + 4 = 0 El cálculo de las raíces de la ecuación resultante podemos hacerlo utilizando la fórmula general de la ecuación de segundo grado, utilizando la regla de Ruffini o por cualquier método de factorización conocido. Por cualquiera de los procedimientos anteriores obtendremos las dos raíces siguientes : X = y X2 = 4 Conocidas estas dos raíces introducimos sus valores en la ecuación de la recta y obtendremos los puntos de intercepción con la parábola. 4 = 2 3 / 2 = 2 / 2 = 0,50 unidades cuadradas Calculando el área que está bajo la parábola y sobre el eje X : Para X = ; Y = + ; Y = 2 (,2) Para X = 4 ; Y = 4 + ; Y = 5 (4,5) Esto nos permite conocer que las rectas que limitan las regiones sombreadas (por la izquierda y por la derecha) son X = y X = 4. Área de una región plana Ing. José Luis Albornoz Salazar - 6 -

8 4 Ejemplo 7: Calcular el área de la región plana limitada por las funciones Y = X 2 + 4X y Y = X 2 Y Y = X 2 = (28 / 3) (0 / 3) = 8 / 3 = 6,00 unidades cuadradas La región plana que estamos estudiando tendrá como área la diferencia del área de la región que está ubicada sobre el eje X y bajo la recta (0,50 unidades cuadradas) menos el área de la región que está sobre el eje X y bajo la parábola (6,00 unidades cuadradas). 0,50 6,00 = 4,50 unidades cuadradas El área a calcular será : Y = X 2 + 4X X Y menos X Para saber desde y hasta donde hay que aplicar la integral definida en ambos casos es necesario determinar en cuales puntos se interceptan las dos parábolas. 4,50 unidades cuadradas Para calcular los puntos de intercepción de dos parábolas se resuelven las dos ecuaciones simultáneamente (se igualan las dos ecuaciones). X 2 = X 2 + 4X ; X 2 + X 2 4X = 0 Área de una región plana Ing. José Luis Albornoz Salazar - 7 -

9 2X 2 4X = 0 ; 2X (X 2) = 0 X = 0 ; X2 = 2 Introduciendo estas dos valores en cualquiera de las dos ecuaciones calculo los valores de Y de cada punto : Y = X 2 ; Y = 0 2 ; Y = 0 ; (0,0) Y = X 2 ; Y = 2 2 ; Y = 4 ; (2,4) = 5,3333 unidades cuadradas Calculando el área de la región plana que está debajo de la parábola Y = X 2 tendremos : Y (2,4) 2 X = 2,6667 unidades cuadradas (0,0) Área total = 5,3333 2,6667 = 2,67 unidades cuadradas Esto nos permite conocer que las rectas que limitan las regiones sombreadas (por la izquierda y por la derecha) son X = 0 y X = 2. Y Y = X 2 Calculando el área de la región plana que está debajo de la parábola Y = X 2 + 4X tendremos : X 2 2,67 unidades cuadradas Y = X 2 + 4X Área de una región plana Ing. José Luis Albornoz Salazar - 8 -

10 Método Recomendado para facilitar la solución de los Ejercicios 6 y 7 Para calcular el área de una figura plana que está limitada por arriba por la funci{on f(x), por debajo por la función g(x), por la izquierda por la recta X = a y por la derecha por la recta X = b ; se utiliza la siguiente integral definida : Sugerimos que utilice este procedimiento en la solución de los ejercicios 6 y 7 y notará que los resultados son los mismos. Área de una región plana Ing. José Luis Albornoz Salazar - 9 -

Titulo: COMO GRAFICAR UNA FUNCION DE SEGUNDO GRADO Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

Titulo: COMO GRAFICAR UNA FUNCION RACIONAL Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

Titulo: INECUACIONES CUADRÁTICAS Año escolar: 5to año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Titulo: Inecuaciones de SEGUNDO GRADO Año escolar: 3er año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

Titulo: COMO GRAFICAR UNA FUNCIÓN irracional Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

Titulo: ECUACIONES RACIONALES Año escolar: 5to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Titulo: SISTEMAS DE INECUACIONES (INECUACIONES SIMULTANEAS) Año escolar: 3er año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

Titulo: INECUACIONES RACIONALES Año escolar: 3er año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Titulo: COMO GRAFICAR UNA FUNCION LINEAL Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

Titulo: RUFFINI (Factorización) Año escolar: 5to.. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Titulo: EQUILIBRIO DE PARTÍCULAS (FISICA ESTATICA) Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

Titulo: SISTEMAS DE ECUACIONES Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Titulo: TERMINOS SEMEJANTES Año escolar: 1ER: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Titulo: INECUACIONES LINEALES Año escolar: 3er año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Titulo: POTENCIACION Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Titulo: FACTORIZACION (Descomposición Factorial) Año escolar: 2do: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

Titulo: FUERZA RESULTANTE (FISICA ESTATICA) Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: ECUACIONES IRRACIONALES Año escolar: 5to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE. Año escolar: Estática - Ingeniería Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es 1 Índice 1. Definiciones 3 2. Herramientas 5 2.1. Factorización de polinomios: Regla

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Herramientas 6 1.1. Factorización

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Titulo: MULTIPLICACION Y DIVISIÓN DE POLINOMIOS Año escolar: 3ER: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: PRODUCTOS NOTABLES Año escolar: 2do: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

EJERCICIOS RESUELTOS DE SISTEMAS DE INECUACIONES

EJERCICIOS RESUELTOS DE SISTEMAS DE INECUACIONES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones y de inecuaciones EJERCICIOS RESUELTOS DE SISTEMAS DE INECUACIONES 1. Resolver el sistema de inecuaciones + 5 4 0 3 4 + 8 < 3( 1) Se

Más detalles

FUNCIONES: DOMINIO, RANGO Y GRAFICA

FUNCIONES: DOMINIO, RANGO Y GRAFICA FUNCIONES: DOMINIO, RANGO Y GRAFICA Dominio, Codominio y Rango de una función Dominio El dominio de una función son todos los valores reales que la variable X puede tomar y la gráfica queda bien definida,

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: SISTEMAS DE ECUACIONES ( Método de Gauss) Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos) PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

TEMA 10 FUNCIONES NOMBRE Y APELLIDOS... HOJA 52- FECHA...

TEMA 10 FUNCIONES NOMBRE Y APELLIDOS... HOJA 52- FECHA... TEMA 10 FUNCIONES NOMBRE Y APELLIDOS... HOJA 52- FECHA... FUNCIONES DE PRIMER GRADO Una función de primer grado es una relación matemática que asigna a cada número otro distinto que depende de una expresión

Más detalles

INTEGRALES. EL PROBLEMA DEL ÁREA III

INTEGRALES. EL PROBLEMA DEL ÁREA III INTEGRALES. EL PROBLEMA DEL ÁREA III En esta relación de ejercicios vamos a aplicar el concepto de integral definida para calcular el área limitado por gráficas de funciones. Recuerda que para realizar

Más detalles

EJERCICIOS DE INTEGRALES DEFINIDAS:

EJERCICIOS DE INTEGRALES DEFINIDAS: EJERCICIOS DE INTEGRALES DEFINIDAS: 1.) Se considera, en el primer cuadrante, la región R del plano limitada por: el eje X, el eje Y, la recta x = 2 y la curva y =. a) Calcula razonadamente, el área de

Más detalles

UNIDAD 8 Representación de funciones

UNIDAD 8 Representación de funciones Pág. de 6 Representa las siguientes funciones racionales: y 5 + 7 es raíz del denominador y no lo es del numerador, es asíntota vertical. Veamos la posición de la curva respecto a ella estudiando sus signos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: RADICACION Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Ecuaciones de 2do grado

Ecuaciones de 2do grado Ecuaciones de 2do grado Las ecuaciones de segundo grado o también llamadas cuadráticas de una variable es una ecuación donde tenemos un polinomio de segundo grado o cuadrático cuya grafica es una función

Más detalles

Colegio San Agustín (Santander) Página 1

Colegio San Agustín (Santander) Página 1 Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 3º Evaluación Integrales PRIMITIVA Integración es el proceso Recíproco de la Derivación Primitiva de una función f(x): F(x) es una primitiva

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

PREPARADOR DE CALCULO 11

PREPARADOR DE CALCULO 11 3 PREPARADOR DE CALCULO 3 ÁREA: Matemáticas ASIGNATURA: Cálculo INTENSIDAD HORARIA SEMANAL: 5 Horas TEMA: Conjuntos Definición: Intuitivamente, un conjunto es una colección o clase de objetos bien definidos.

Más detalles

x se puede clasificar de acuerdo con la

x se puede clasificar de acuerdo con la CRITERIO DE LA PRIMERA DERIVADA PARA CALCULAR VALORES EXTREMOS DE UNA FUNCIÓN Conceptos clave: 7. Criterio de la primera derivada para determinar valores extremos de una función: Hipótesis. Si f(x) es

Más detalles

F es primitiva de f ya que:

F es primitiva de f ya que: T.2: INTEGRACIÓN 2.1 Primitiva de una función. Integral Indefinida. Propiedades. Sean f y F dos funciones reales definidas en el mismo dominio. La función F es una función primitiva de f, si F tiene por

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

Función cuadrática. Ecuación de segundo grado completa

Función cuadrática. Ecuación de segundo grado completa Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: SUMA Y RESTA DE POLINOMIOS Año escolar: 2do: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

UNIDAD I Cálculo mediante el análisis de su evolución, sus modelos matemáticos y su relación con hechos reales

UNIDAD I Cálculo mediante el análisis de su evolución, sus modelos matemáticos y su relación con hechos reales UNIDAD I Cálculo mediante el análisis de su evolución, sus modelos matemáticos y su relación con hechos reales Tema III. Criterios para la primera derivada Criterios para la primera derivada Una vez determinados

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Repaso para el dominio de la materia

Repaso para el dominio de la materia LECCIÓN Repaso para el dominio de la materia Usar con las páginas 398 a 03 OBJETIVO Resolver ecuaciones de valor absoluto. Vocabulario Una ecuación de valor absoluto, como x 5 3 es una ecuación que contiene

Más detalles

Ordenada en el origen: Es el valor de la función cuando la variable x es 0 También llamado corte con el eje de ordenadas o corte Oy.

Ordenada en el origen: Es el valor de la función cuando la variable x es 0 También llamado corte con el eje de ordenadas o corte Oy. Función polinómica: La función polinómica está compuesta por una serie de operaciones; sumas, restas, productos potencias. Todas ellas están perfectamente definidas en el conjunto de los números reales.

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas. PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES E INECUACIONES CON DOS INCÓGNITAS. Prof. Esther Morales

RESOLUCIÓN DE SISTEMAS DE ECUACIONES E INECUACIONES CON DOS INCÓGNITAS. Prof. Esther Morales 1 U N E X P O UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA RESOLUCIÓN DE SISTEMAS DE ECUACIONES

Más detalles

PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe

PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe Así encontramos (las abscisas de) los puntos críticos.

Más detalles

1. Considera la función definida por f(x) =. a. Descompón la función en fracciones simples. Recuerda que las posibles raíces enteras de un polinomio son los divisores del término independiente. b. Calcula

Más detalles

Examen de Cálculo infinitesimal PROBLEMAS. 1 + a + a a n a n+1

Examen de Cálculo infinitesimal PROBLEMAS. 1 + a + a a n a n+1 Examen de Cálculo infinitesimal. 4-2-203. PROBLEMAS. Calcular el límite de la sucesión definida por donde a >. + a + a 2 + + a n a n+ Solución. Sea x n = + a + a 2 + + a n, y n = a n+. Es claro que y n

Más detalles

Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: f (x) = 1 Punto de corte con el eje O Y

Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: f (x) = 1 Punto de corte con el eje O Y Tema 4: APLICACIÓN DE LAS DERIVADAS 4.1 Puntos de Corte con el eje de las Y Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: = 1 Punto de corte con el

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 5 2.1. Reglas de derivación............................

Más detalles

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos.

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos. Introducción: Ahora que conocemos las reglas de derivación nos encontramos en mejor posición para continuar con las aplicaciones de la derivada. Veremos cómo afectan las derivadas la forma de la gráfica

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 3 Unidad 3 La antena parabólica

Ámbito Científico-Tecnológico Módulo IV Bloque 3 Unidad 3 La antena parabólica Ámbito Científico-Tecnológico Módulo IV Bloque 3 Unidad 3 La antena parabólica Cuántas veces hemos pensado para qué sirven cosas tan raras de las matemáticas como la ecuación de segundo grado, por ejemplo.

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 54 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable. En la

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios

Más detalles

Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo:

Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo: MATEMÁTICAS BÁSICAS INECUACIONES INTERVALOS DE NÚMEROS REALES Una desigualdad es la epresión de dos cantidades tales que una es mayor que otra. Las desigualdades en general se clasifican en absolutas y

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

Tema 3: Aplicación de las Derivadas. 3.0 Conceptos previos

Tema 3: Aplicación de las Derivadas. 3.0 Conceptos previos Tema 3: Aplicación de las Derivadas. 3.0 Conceptos previos Diferencia entre función y ecuación Funciones: Pueden tener raíces. Se pueden intentar factorizar. No se puede sumar, restar, multiplicar o dividir

Más detalles

En este capítulo veremos como estudiar la continuidad de distintas funciones = + 5

En este capítulo veremos como estudiar la continuidad de distintas funciones = + 5 En este capítulo veremos como estudiar la continuidad de distintas funciones Ejemplo 1 + 5 Como la función es un polinomio, es continua en R (todos los números reales. Nota: Cualquier polinomio sea del

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

Análisis de Funciones

Análisis de Funciones Análisis de Funciones Introducción El análisis de funciones se refiere a conocer el comportamiento particular de una función a partir del cálculo de ciertos valores representativos en los que la función

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

open green road Guía Matemática CUADRADA profesor: Nicolás Melgarejo .cl

open green road Guía Matemática CUADRADA profesor: Nicolás Melgarejo .cl Guía Matemática FUNCIÓN CUADRÁTICA Y RAÍZ CUADRADA profesor: Nicolás Melgarejo.cl 1. Contexto Detrás del movimiento que describe un proyectil, la distancia que recorre un objeto que acelera o en la caída

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA Año escolar: 2do.y 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

Cómo resolver? Veremos dos métodos

Cómo resolver? Veremos dos métodos Cómo resolver? Veremos dos métodos 1 La primera idea que surge es tomar raíz a ambos lados de la desigualdad La idea es buena, pero hay que tener presente las reglas algebraicas Cómo resolver? Se puede

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Junio, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

CAPÍTULO V 10 EJERCICIOS RESUELTOS

CAPÍTULO V 10 EJERCICIOS RESUELTOS CAPÍTULO V 10 EJERCICIOS RESUELTOS Este último capítulo contiene 10 ejercicios complementarios (propuestos por los alumnos de la asignatura) que permiten poner en práctica los conocimientos adquiridos

Más detalles

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN 1) El vértice de la parábola f ( x) x² 8x 5 corresponde al par ordenado: a) (4,11) b) (4, 11) c) ( 8,5) d) ( 4,11) e)

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

Solución Primer Parcial Matemática

Solución Primer Parcial Matemática Solución Primer Parcial Matemática 1-01 1 Dados los puntos P 1 (5, 4) y P (, 4) hallar: (a) Ecuación, elementos y gráfico de la parábola con vértice en P 1 y foco en P. El eje de la parábola es paralelo

Más detalles

Selectividad Matemáticas II junio 2017, Andalucía

Selectividad Matemáticas II junio 2017, Andalucía Selectividad Matemáticas II junio 07, Andalucía Pedro González Ruiz 3 de junio de 06. Opción A Problema. Se quiere hacer una puerta rectangular coronada por un semicírculo como el de la figura. El hueco

Más detalles

EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN

EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN.- Calcular el área encerrada por la función: y = 9, el eje OX, y las rectas = f 9 Se trata de un triángulo de base y altura 9 9 El área sombreada

Más detalles

Límite Idea intuitiva del significado Representación gráfica

Límite Idea intuitiva del significado Representación gráfica LÍMITES DE FUNCIONES (resumen) LÍMITE DE UNA FUNCIÓN f(x) se lee: límite de la función f(x) cuando x tiende a k x k Límite Idea intuitiva del significado Representación gráfica Cuando x f(x) = l Al aumentar

Más detalles

UN EJEMPLO DE APLICACIÓN DE LOS RECURSOS DE LA CALCULADORA CASIO CALSSWIZ FX-570EX PARA LA RESOLUCIÓN DE INECUACIONES Prof. Andrés Pérez OBJETIVO(S):

UN EJEMPLO DE APLICACIÓN DE LOS RECURSOS DE LA CALCULADORA CASIO CALSSWIZ FX-570EX PARA LA RESOLUCIÓN DE INECUACIONES Prof. Andrés Pérez OBJETIVO(S): ENSEÑANZA OBJETIVO(S): UN EJEMPLO DE APLICACIÓN DE LOS RECURSOS DE LA CALCULADORA CASIO CALSSWIZ FX-570EX PARA LA RESOLUCIÓN DE INECUACIONES Prof. Andrés Pérez Resolver inecuaciones de diversas complejidades,

Más detalles

Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso

Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Repaso de Álgebra Colegio Molière Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Operaciones aritméticas a + b b + a ab ba (Ley Conmutativa) (a + b) + c a

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

Ecuación Función cuadrática

Ecuación Función cuadrática Eje temático: Álgebra y funciones Contenidos: Función cuadrática - Ecuaciones de segundo grado Traslaciones de función cuadrática y función raíz Nivel: 3 Medio Ecuación Función cuadrática 1. Ecuación cuadrática

Más detalles

TRABAJO PRACTICO Nº 9: FUNCIONES CUADRÁTICAS ASIGNATURA: RAZONAMIENTO Y RESOLUCION DE PROBLEMAS

TRABAJO PRACTICO Nº 9: FUNCIONES CUADRÁTICAS ASIGNATURA: RAZONAMIENTO Y RESOLUCION DE PROBLEMAS TRABAJO PRACTICO Nº 9: FUNCIONES CUADRÁTICAS ASIGNATURA: RAZONAMIENTO Y RESOLUCION DE PROBLEMAS Ecuaciones Cuadráticas Toda función cuadrática se puede expresar de la siguiente forma: f(x) = ax ± bx ±

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta.

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta. TEMA ECUACIONES, INECUACIONES Y SISTEMAS- 1. ECUACIONES Una ecuación es una igualdad matemática entre dos epresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, desconocidos

Más detalles

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque.

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 203 OBSERVACIONES: FASE ESPECÍFICA MATEMÁTICAS El alumno deberá responder únicamente a una

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

Ejemplo 1 Dibujar la siguiente parábola, calculando previamente todos sus elementos. 0=2 +2 4

Ejemplo 1 Dibujar la siguiente parábola, calculando previamente todos sus elementos. 0=2 +2 4 Ejemplo 1 Dibujar la siguiente parábola, calculando previamente todos sus elementos. =2 +2 4 Sabemos que es una parábola porque nuestra función es un polinomio de segundo grado. Lo primero que se calcula

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles