Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}"

Transcripción

1 Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces de un n-cubo geométrco. Se representan las varables de la funcón en ejes coordenados ortogonales. Las varables booleanas pueden tomar solamente los valores "0" y "1", lo cual defne un espaco dscreto. Las representacones gráfcas de los n-cubos están restrngdas a valores de n pequeños. La defncón de una funcón consste en establecer cuáles de los vértces del n-cubo se mapean a valor lógco 0, y cuáles otros se mapean a valor lógco 1. Esta representacón permte vsualzar los grupos de mntérmnos, o subcubos, que consderados juntos logran una expresón con menos lterales 4.2. Dos-cubos. Para dos varables x1 y x2, se tene el espaco B 2 el que puede consderarse defndo por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Cada vértce es un mntérmno. X Cubo 11 X 2 X 1 X Fgura cubo.

2 2 Sstemas Dgtales Nótese que el 2-cubo tene 4 vértces. Cada vértce está separado de los adyacentes en dstanca uno. En este caso, cada vértce tene dos adyacentes. Se dce que estos 4 mntérmnos forman un 2-cubo. Cada lado del cuadrado, de la Fgura 4.1, es un 1-cubo, y está formado por dos vértces adyacentes. Expresones en térmnos de lterales tenen drecta relacón con los subcubos en el espaco que se esté consderando. Las dferentes expresones, formadas por un lteral: X 1, X 1, X 2 y X 2 son 1-cubos y corresponden a los lados del cuadrado, de la Fgura 4.1; están formadas por dos mntérmnos adyacentes. Pero dos mntérmnos no adyacentes no pueden ser representados medante un solo lteral. Por ejemplo, para los mntérmnos ubcados en los extremos de las dagonales se requeren cuatro lterales para representarlos medante una expresón. Se tene: X 2 X 1 +X 2 X 1 ; y tambén cuatro lterales para los otros dos mntérmnos que no están a dstanca uno: X 2 X 1 +X 2 X cubos. En varables x1, x2 y x X x 3 x 2 x 1 X X Fgura cubo. Nótese en la Fgura 4.2, que x2 = 1 es la cara superor, y que x2 = 0 defne la cara nferor. Cuando se congela una de las varables de un 3-cubo, se obtene un 2-cubo. Por ejemplo: x 2 es un 2-cubo y está formado por 4 mntérmnos en un plano. ' ' ' ' x2 x1x 2x3 x1 x2x3 x1x2 x3 x1x2 x 3 No todos los grupos de cuatro mntérmnos dferentes, forman un 2-cubo. En la Fgura 4.3, un vértce es un producto de tres lterales; una arsta del cubo es una expresón formada por el producto de dos lterales; una cara del cubo puede representarse por una expresón con un lteral.

3 Capítulo 4. N-cubos 3 B _ AB B C A C A _ ABC A 3-cubo ABC 4.4. Generalzacones en n-cubos Fgura 4.3 Caras, lados y vértces en 3-cubos. Los n-cubos permten conceptualzar algunas característcas de las funcones booleanas. Medante nduccón pueden demostrarse: a) Un n-cubo tene 2 n vértces. b) Cada vértce de un n-cubo tene n adyacentes. c) S se fja una varable en un n-cubo, el resto de las (n-1) varables puede representarse por un cubo de (n-1) dmensones. d) Cada mntérmno corresponde a un vértce. e) S se fjan k de las n varables, las restantes pueden representarse en un cubo de (n-k) dmensones. f) Un cubo de (n-k) está contendo en el cubo de n dmensones; se dce por esto que es un subcubo. g) Un cubo es un producto de lterales. Recordando que: Un conjunto de k varables booleanas puede tomar 2 k valores posbles; y que n se pueden efectuar eleccones de k elementos de un grupo total de n, puede conclurse que k el número total de subcubos de (n-k) dmensones ncludos en uno de n es: n k n! 2 2 k k!( n k)! Donde: 0 k n Con k=n se tenen 2 n subcubos de 0 dmensones; son los mntérmnos. k

4 4 Sstemas Dgtales Con k=0 se tene 2 0 = 1, un cubo de (n-0) dmensones. Ejemplo 4.1. Un 3-cubo contene: ) ) ) = 6 2-cubos. (k=1, n-k=2) Cuatro mntérmnos en un plano. Una cara = 12 1-cubos. (k=2, n-k=1) Dos mntérmnos adyacentes. Una arsta = 8 0-cubos. (k=3, n-k=0) Los mntérmnos. Un vértce. Ejemplo 4.2. Seleccones de dos objetos de un grupo de 4. Se tenen cuatro letras. Cuántas seleccones de dos letras pueden hacerse? Sean las letras: a, b, c, d. La prmera letra puede escogerse de 4 formas, la segunda de 3 formas. Se fja la prmera letra y luego se dan valores a la segunda. En total se tenen 4*3 = 12 permutacones: ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc. S no se consdera dferenca en el orden de ocurrenca de las letras, por ejemplo ab se consdera gual a ba, se tendrán 6 combnacones: ab, ac, ad, bc, bd, cd. El número de combnacones puede calcularse según el coefcente bnomal: 4 4! = 6 2 2!(4 2)! Ejemplo 4.3. Combnacones. Generacón de combnacones en forma sstemátca. Para grupos de 2 varables de un conjunto de 4. Las combnacones son: ab ac ad bc bd cd Se forma una lsta ordenada de las varables, en el caso del ejemplo: (a, b, c, d).

5 Capítulo 4. N-cubos 5 Se fja la prmera combnacón (ab en el ejemplo) en orden alfabétco; luego en la últma poscón se van colocando en orden los valores restantes de la lsta (c, d). Una vez agotada la lsta, se camba la poscón anteror por el sguente de la lsta (b en el ejemplo, ya no debe emplearse a); y se vuelve a repetr el proceso, pero con los elementos sguentes (c y d en el ejemplo). El proceso se repte para las poscones más sgnfcatvas. Ejemplo 4.4. Determnar los 2-cubos ncrustados en un 4-cubo. El número de combnacones de 2 varables de un grupo de 4 es 6; este número se obtene de: n 4! 6, con n=4 y k=2. k 2!(4 2)! En la Fgura 4.4, el número de renglones es el de las combnacones k 2 columnas son los valores posbles que pueden tomar k varables ( 2 2 4). ab ab a b a b ac ac a c a c ad ad a d a d bc bc b c b c bd bd b d b d cd cd c d c d Fgura cubos en un 4-cubo. La tabla muestra los 24 2-cubos contendos en un 4-cubo. El 2-cubo ab está formado por los sguentes 4 mntérmnos: ab = abcd + abcd + abc d + abc d 4.5. Los n-cubos y la mnmzacón de expresones booleanas. n k ; y el número de Los mntérmnos pueden agruparse según sub-cubos. Un subcubo es un producto de lterales. Mentras mayores sean las dmensones de un sub-cubo, menos letras pueden emplearse para representarlo según una expresón booleana formada por un producto de lterales. Entonces un objetvo de la mnmzacón es encontrar sub-cubos entre los mntérmnos que forman una funcón. Logrando que esos sub-cubos agrupen el mayor número de mntérmnos, y que a la vez se encuentre el menor número de sub-cubos. Con m<n, un m-cubo dentro de un n-cubo, se representa con un térmno formado por (n-m) lterales.

6 6 Sstemas Dgtales S en un espaco B n, un cubo tene k lterales, entonces es un (n-k)-cubo y está formado por 2 n-k mntérmnos. Lo que sgnfca que s k dsmnuye el número de mntérmnos aumenta Relacón con la forma suma de productos Irredundante. Antes se defnó que un cubo es un producto de lterales. Tambén se mostró que una expresón booleana puede representarse por una suma de productos. Entonces: Una funcón f puede representarse por una suma de cubos. El conjunto de cubos F que representa a f, se denomna una cobertura de f. F C1, C2,.., C k S f k 1 C F, s F C no cubre a f, se dce que el cubo C es rredundante (no es redundante). Ejemplo 4.5. C Sea f(a, b, c) = ab + ac + bc, sea el cubo C ab. Como F C { ac, bc} no cubre a f, ya que abc no queda cuberto. Entonces C rredundante. b bc ab ac ab es c f abc a Fgura 4.4a. Cubo rredundante Implcante. S C es un cubo en B n n, se tene que: C B. S C f, donde f es una funcón Booleana, se dce que el cubo C es un mplcante de f.

7 Capítulo 4. N-cubos Prmo. S C F, sea D el cubo que resulta de elmnar el lteral j de C. El cubo D tene el doble de mntérmnos que el cubo C. S ( F C ) D no cubre a f, entonces el lteral j es prmo. Esta defncón ndca que ese lteral debe estar presente en el cubo. S todos los lterales de un cubo C son prmos el cubo es prmo. Se emplea prmo con el sentdo de prmordal, de prncpal. Una cobertura F es prma s todos sus cubos son prmos. En una cobertura F, un cubo los cubos de F no contene. Ejemplo 4.6. C Sea f(a, b, c) = ab + ac + bc, sea el cubo tene: D a. F es prmo esencal s contene un mntérmno que el resto de C ab. S se elmna b en el cubo anteror, se Se tene la cobertura, F { ab, ac, bc }, entonces ( F C) D { ac, bc} { a} { a, ac, bc } no cubre a f ya que ncluye el mntérmno ab c que no está en f. Esto mplca que ab es prmo. Además ab es prmo esencal ya que contene al mntérmno abc que los cubos ac y bc no contenen. b bc ab ac c a f ab c a Fgura 4.5. Lteral prmordal de un cubo. S para cuatro varables se tene que: abc, abc y ab son mplcantes, entonces ab es mplcante prmo. El cubo ab tene el doble de mntérmnos que abc y abc. El lteral c no es prmo, y s lo son los lterales a y b. Puede notarse que bc es prmo esencal pues contene el mntérmno abc, que los otros mplcantes no contenen. Tambén ac es prmo esencal. Un subcubo es prmo s no puede agruparse con otros para formar un cubo de mayores dmensones. Es decr s nnguno de sus lterales puede omtrse.

8 8 Sstemas Dgtales Matrz de coberturas. Pueden anotarse los cubos que son mplcantes empleando notacón matrcal. Las columnas descrben las varables, y en los renglones se representan los cubos. Cuando en el cubo aparece el lteral de la varable, se coloca valor 1 en esa varable; s aparece como lteral el complemento se coloca valor 0 en esa varable. S la varable no está presente en el cubo, se coloca un en la poscón de la varable; este símbolo tambén puede nterpretarse representando ambos valores 0 y 1. Ejemplo 4.7. Sea f(a, b, c, d) = ac + c d a b c d ac c d Fgura 4.6. Matrz de Cobertura. La Fgura 4.6a, muestra los cubos: ac, abc y ab c. a b c d ac abc ab c Fgura 4.6a. Expansón de ac. Puede comprobarse que los cubos abc y ab c pueden agruparse para formar el cubo ac. En forma smbólca, el proceso de expansón podría anotarse: ac = {1,-,1,-} = {1,{0,1},1,-} = {101-, 111-} = ab c + abc Las operacones en sentdo nverso muestran la forma en que se fusonan los subcubos: abc y ab c en el cubo ac. La matrz de cobertura es una notacón bastante más compacta que la de una tabla de verdad, y representa a una funcón booleana por una suma de productos o cubos. Su mayor ventaja es que modela medante matrces a los cubos de una funcón; luego medante operacones matrcales pueden desarrollarse algortmos para la mnmzacón de funcones booleanas. Se desarrolla más sobre esta notacón o formato pla, en el Apéndce 3, sobre uso de espresso.

9 Capítulo 4. N-cubos Representacón de cubos de dmensones mayores que tres. El 3-cubo de la Fgura 4.3, puede dbujarse sobre un plano. Puede empujarse una tapa haca el plano formado por la tapa opuesta, como se muestra en la Fgura 4.7. Otra forma de dbujarlo es representar dos 2-cubos, a uno de ellos se le agrega un 1 en la prmera poscón; al otro un cero. Luego se unen los mntérmnos a dstanca uno cubo cubo Fgura 4.7 Abatmento de un 3-cubo. El 4-cubo puede representarse tambén en el espaco, sn embargo, es más sencllo de realzar en un plano. Para dbujarlo, se escrben dos 3-cubos como el anteror. A un 3-cubo se le agrega un 1 en la prmera poscón; al otro un cero. Luego se unen los mntérmnos a dstanca uno Fgura cubo.

10 10 Sstemas Dgtales En la Fgura 4.8, cada vértce está a dstanca 1 de sus adyacentes. Un 4-cubo contene: 8 3-cubos. Cada 3-cubo formado por 8 mntérmnos cubos. Cada 2-cubo formado por 4 mntérmnos cubos. Cada 1-cubo formado por dos mntérmnos adyacentes cubos o mntérmnos. Un 4-cubo permte representar cualquer funcón booleana de 4 varables. Para hacerlo se marcan los vértces de los mntérmnos presentes en la expresón. Como puede aprecarse en la Fgura 4.8, la representacón gráfca de cubos con dmensones mayores que 3, no resultan práctcas.

11 Capítulo 4. N-cubos 11 Índce general. CAPÍTULO N-CUBOS REPRESENTACIÓN DE UNA FUNCIÓN BOOLEANA EN EL ESPACIO B N DOS-CUBOS CUBOS GENERALIZACIONES EN N-CUBOS... 3 Ejemplo Ejemplo 4.2. Seleccones de dos objetos de un grupo de Ejemplo 4.3. Combnacones Ejemplo LOS N-CUBOS Y LA MINIMIZACIÓN DE EXPRESIONES BOOLEANAS RELACIÓN CON LA FORMA SUMA DE PRODUCTOS Irredundante Ejemplo Implcante Prmo Ejemplo Matrz de coberturas Ejemplo REPRESENTACIÓN DE CUBOS DE DIMENSIONES MAYORES QUE TRES ÍNDICE GENERAL ÍNDICE DE FIGURAS... 12

12 12 Sstemas Dgtales Índce de fguras Fgura cubo Fgura cubo Fgura 4.3 Caras, lados y vértces en 3-cubos Fgura cubos en un 4-cubo Fgura 4.4a. Cubo rredundante Fgura 4.5. Lteral prmordal de un cubo Fgura 4.6. Matrz de Cobertura Fgura 4.6a. Expansón de ac Fgura 4.7 Abatmento de un 3-cubo Fgura cubo.... 9

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente en el análss y dseño de sstemas de control. Otro procedmento alternatvo

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

Unidad Nº III Unidad Aritmética-Lógica

Unidad Nº III Unidad Aritmética-Lógica Insttuto Unverstaro Poltécnco Santago Marño Undad Nº III Undad Artmétca-Lógca Undad Artmétca-Lógca Es la parte del computador que realza realmente las operacones artmétcas y lógcas con los datos. El resto

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

Capítulo V. Teoremas de Fermat, Euler y Wilson

Capítulo V. Teoremas de Fermat, Euler y Wilson Capítulo V Teoremas de Fermat, Euler y Wlson En este capítulo utlzamos los conceptos desarrollados en dvsbldad y conteo para deducr tres teoremas báscos de la teoría de números. En el próxmo capítulo,

Más detalles

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García Herramentas Matemátcas para la localzacón espacal Contendo I. Justfcacón 2. Representacón de la poscón 2. Coord. Cartesanas 2.2 Coord. Polares y Clíndrcas 2.3 Coord. Esfércas 3. Representacón de la orentacón

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

Números Complejos II. Ecuaciones

Números Complejos II. Ecuaciones Complejos 1º Bachllerato Departamento de Matemátcas http://selectvdad.ntergranada.com Raúl González Medna Ecuacones 1. Resolver las sguentes ecuacones y determnar en qué campo numérco tenen solucón: a)

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

ANEXO B SISTEMAS NUMÉRICOS

ANEXO B SISTEMAS NUMÉRICOS ANEXO B SISTEMAS NUMÉRICOS Sstema Decmal El sstema ecmal emplea ez ferentes ígtos (,,,, 4, 5, 6, 7, 8 y 9). Por esto se ce que la base el sstema ecmal es ez. Para representar números mayores a 9, se combnan

Más detalles

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador.

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador. ITM, Insttucón unverstara Guía de Laboratoro de Físca Mecánca Práctca : Colsones en una dmensón Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:..

TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:.. GUÍA DE TRABAJO Nº 5 PSU MATEMÁTICA 07 NÚMEROS COMPLEJOS Nombre:. Fecha:.. CONTENIDOS Números complejos, problemas que permten resolver. Undad magnara. Operatora con números complejos. Propedades de los

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

4. PROBABILIDAD CONDICIONAL

4. PROBABILIDAD CONDICIONAL . ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

La descomposición de un problema complejo en un número de subproblemas más simples de resolver es una actividad usual en ingeniería.

La descomposición de un problema complejo en un número de subproblemas más simples de resolver es una actividad usual en ingeniería. Capítulo 8 Descomposcón La descomposcón de un problema complejo en un número de subproblemas más smples de resolver es una actvdad usual en ngenería. En síntess lógca es una actvdad fundamental, ya que

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

Grafos. Conceptos básicos

Grafos. Conceptos básicos Grafos Se presenta en este módulo, como lectura complementara a los capítulos de Grafos del texto de clase: una lsta de conceptos que deben ser defndos con precsón por los alumnos, los elementos necesaros

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

MÉTODOS GENERALES DE ANÁLISIS DE REDES. Capítulo 4

MÉTODOS GENERALES DE ANÁLISIS DE REDES. Capítulo 4 apítulo 4 MÉTODOS GENERALES DE ANÁLISIS DE REDES Hasta el momento hemos desarrollado el marco teórco de la Teoría de Redes. onocemos cómo plantear las ecuacones de equlbro, y tambén cómo plantear ecuacones

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

Facultad de Ciencias Básicas

Facultad de Ciencias Básicas Facultad de Cencas Báscas ANÁLISIS GRÁFICO DE DATOS EXPERIMENTALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos expermentales. Establecer un crtero para el análss de grafcas

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun Práctca 1 - Programacón en C++ Pág. 1 Práctcas de C++ Practca Nº 1 Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Práctca 1 - Programacón en C++ Pág. 1 INDICE ÍNDICE... 1 1.1 Ejercco

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

Algoritmo para la ubicación de un nodo por su representación binaria

Algoritmo para la ubicación de un nodo por su representación binaria Título: Ubcacón de un Nodo por su Representacón Bnara Autor: Lus R. Morera González En este artículo ntroducremos un algortmo de carácter netamente geométrco para ubcar en un árbol natural la representacón

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

El diodo Semiconductor

El diodo Semiconductor El dodo Semconductor J.I. Hurcán Unversdad de La Frontera Aprl 9, 2012 Abstract Se plantean procedmentos para analzar crcutos con dodos. Para smpl car el trabajo, el dodo semconductor es reemplazado por

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

60 EJERCICIOS de NÚMEROS COMPLEJOS

60 EJERCICIOS de NÚMEROS COMPLEJOS 60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

4-N-Cubos. 4.1 Representación y cubos de diferentes dimensiones. 4.2 Generalizaciones sobre N-Cubos. 4: N-Cubos 1

4-N-Cubos. 4.1 Representación y cubos de diferentes dimensiones. 4.2 Generalizaciones sobre N-Cubos. 4: N-Cubos 1 4-N-Cubos 4.1 Representación y cubos de diferentes dimensiones. 4.2 Generalizaciones sobre N-Cubos. 4: N-Cubos 1 Representación Los n-cubos permiten visualizar las funciones booleanas en espacios n-dimensionales

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO.

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO. RACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERO RÍGIDO ALREDEDOR DE UN EJE FIJO. 1. -INTRODUCCIÓN TEÓRICA El objeto de la eperenca será el equlbrar estátca y dnámcamente un

Más detalles

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado.

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado. Termodnámca del equlbro Equlbro fásco Profesor: lí Lara En el área de Ingenería Químca exsten muchos procesos ndustrales en los cuales está nvolucrado el equlbro entre fases. Una de estas operacones es

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos.

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos. PRÁCTICA INTEGRACIÓN Práctcas Matlab Práctca : Integracón Objetvos o Calcular ntegrales defndas de forma aproxmada, utlzando sumas de Remann. o o o Profundzar en la comprensón del concepto de ntegracón.

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

1.- Objetivo Alcance Metodología...3

1.- Objetivo Alcance Metodología...3 PROCEDIMIENTO DO PARA EL CÁLCULO DEL FACTOR DE DESEMPEÑO DEL CONTROL DE FRECUENCIA (FECF) EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE 1.- Objetvo...3 2.- Alcance...3 3.- Metodología...3 3.1.- Cálculo de la

Más detalles

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud Unversdad de Pamplona Facultad de Cencas Báscas Físca para cencas de la vda y la salud AÁLISIS GRÁFICO DE DATOS EXPERIMETALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos

Más detalles

PRÁCTICA 10 CINÉTICA QUÍMICA I: DETERMINACIÓN DEL ORDEN DE REACCIÓN Y DE LA CONSTANTE DE VELOCIDAD

PRÁCTICA 10 CINÉTICA QUÍMICA I: DETERMINACIÓN DEL ORDEN DE REACCIÓN Y DE LA CONSTANTE DE VELOCIDAD PRÁCTICA 10 CINÉTICA QUÍMICA I: DETERMINACIÓN DEL ORDEN DE REACCIÓN Y DE LA CONSTANTE DE VELOCIDAD OBJETIVOS. Estudar la cnétca de una reaccón químca por el método de las velocdades ncales. Determnar los

Más detalles

4. La Factorización No Negativa de Matrices

4. La Factorización No Negativa de Matrices 4. La Factorzacón No Negatva de Matrces 4.1 Introduccón Un problema bastante extenddo en dferentes técncas de análss de datos consste en encontrar una representacón adecuada de los datos. Un tpo de representacón

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Métodos numéricos en Ingeniería: Elementos nitos

Métodos numéricos en Ingeniería: Elementos nitos Métodos numércos en Ingenería: Elementos ntos 18 de septembre de 2004 Contendo Contendo 1 Formulacón varaconal de los problemas de contorno. 1 2 El método de elementos trangulares. 3 2.1 Formulacón varaconal.........................

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147 Undad. Números complejos Matemátcas I Resuelve Págna 7 Cómo operar con? Vamos a proceder como los antguos algebrstas: cuando nos encontremos con seguremos adelante operando con ella con naturaldad y tenendo

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físca General 1 Proyecto PMME - Curso 2007 Insttuto de Físca Facultad de Ingenería UdelaR ANÁLISIS E INFLUENCIA DE DISTINTOS PARÁMETROS EN EL ESTUDIO DE LA ESTÁTICA DE CUERPOS RÍGIDOS. Sebastán Bugna,

Más detalles

Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas

Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas Tema : Jerarquía Dgtal Síncrona, SDH Dsponbldad de Sstemas Tecnologías de red de transporte de operadora MÁSTER EN INGENIERÍ TELEMÁTIC Profesor: Espín Defncones Fabldad (Relablty): Probabldad de que el

Más detalles

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria). Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca

Más detalles

SUCESIONES RECURSIVAS LINEALES

SUCESIONES RECURSIVAS LINEALES SUCESIONES RECURSIVAS LINEALES Juan Saba Susana Tesaur 1 Introduccón Una forma usual de defnr sucesones de números es nductvamente Por ejemplo, s alguen conoce la sucesón de Fbonacc, es probable que la

Más detalles

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Análisis y Diseño de máquinas secuenciales sincrónicas

Análisis y Diseño de máquinas secuenciales sincrónicas Capítulo 11 1 Análss y Dseño de máqunas secuencales sncróncas 11.1. Análss Dado el esquemátco de una red secuencal sncrónca se desea obtener el dagrama de estados; y a partr de éste, nferr el funconamento

Más detalles

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011 Departamento de Señales, Sstemas y Radcomuncacones Comuncacones Dgtales, juno 011 Responder los problemas en hojas ndependentes. No se permte el uso de calculadora. Problema 1 6 p.) En este ejercco se

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 17 Procesamento Dgtal de mágenes Pablo Roncaglolo B. Nº 7 Orden de las clases... CAPTURA, DGTALZACON Y ADQUSCON DE MAGENES TRATAMENTO ESPACAL DE MAGENES TRATAMENTO EN FRECUENCA DE MAGENES RESTAURACON DE MAGENES

Más detalles

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3

TÍTULO I Aspectos Generales TÍTULO II Alcance TÍTULO III Metodología de Cálculo de FECF... 3 PROCEDIMIENTO DO DESEMPEÑO DEL CONTROL DE FRECUENCIA EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE TÍTULO I Aspectos Generales... 3 TÍTULO II Alcance... 3 TÍTULO III Metodología de Cálculo de FECF... 3 TÍTULO

Más detalles

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro Matemátcas Bachllerato? Soluconaro del Lbro Actvdades Dado el número complejo se pde: qué valor ha de tener x para que x? Calcula el opuesto de su conjugado Calcula el conjugado de su opuesto x x x El

Más detalles

Amortización de créditos

Amortización de créditos Amortzacón de crédtos Prof. Jean-Perre Marcallou INTRODUCCIÓN: La calculadora CASIO ALGEBRA FX 2.0 PLUS dspone del modo AMT (Amortzacón) del menú fnancero TVM para realzar los cálculos de la tabla de amortzacón

Más detalles

Algunos Problemas Resueltos I - MA110 Algebra Escuela de Ingeniería, FCFM, U. de Chile. Aux.Cristian Figueroa R.

Algunos Problemas Resueltos I - MA110 Algebra Escuela de Ingeniería, FCFM, U. de Chile. Aux.Cristian Figueroa R. Algunos Problemas Resueltos I - MA0 Algebra Escuela de Ingenería, FCFM, U. de Chle. Aux.Crstan Fgueroa R. Problemas Sumas.- Encuentre el valor de las sguentes sumas: (a (b (c. k ( +. k0 ( n. k Problemas

Más detalles

EXPERIMENTOS ANIDADOS O JERARQUICOS NESTED

EXPERIMENTOS ANIDADOS O JERARQUICOS NESTED EXPERIMENTOS ANIDADOS O JERARQUICOS NESTED Exsten ocasones donde los nveles de un factor B son smlares pero no déntcos para dferentes nveles del factor A. Es decr, dferentes nveles del factor A ven nveles

Más detalles

SERIE ÁLGEBRA VECTORIAL

SERIE ÁLGEBRA VECTORIAL SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre

Más detalles

Práctica 3. Media, mediana y moda.

Práctica 3. Media, mediana y moda. Práctca 3. Meda, ana y moda. La presente práctca, te permtrá estudar las das de tendenca central menconadas, a partr de los sguentes datos que corresponden a la estatura de estudantes, ncaremos la práctca.

Más detalles

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Clascacón: Emtdo para Observacones de los Coordnados Versón: 1.0 DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Autor Dreccón de Operacón Fecha Creacón 06-04-2010 Últma Impresón 06-04-2010 Correlatvo

Más detalles

Facultad de Química. UNAM Alejandro Baeza

Facultad de Química. UNAM Alejandro Baeza Facultad de Químca. UNM lejandro Baeza.006 Químca nalítca Instrumental I nálss de mezclas por espectrofotometría. Documento de apoyo. Dr. lejandro Baeza. Semestre 007-I.0 Selectvdad espectral en espectrofotometría

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad Vda Utl, característcas de la Fabldad e Invabldad y dstrbucones teórcas en el terreno de la fabldad Realzado por: Mgter. Leandro D. Torres Vda Utl Este índce se refere a una vda útl meda nomnal y se puede

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

Método De Lazos (contenido) Ecuaciones de Lazo. Variables y ecuaciones. Fundamentos Teóricos. Teoría y Principios Establecimiento general.

Método De Lazos (contenido) Ecuaciones de Lazo. Variables y ecuaciones. Fundamentos Teóricos. Teoría y Principios Establecimiento general. Método De Lazos (contendo) Ecuacones de Lazo Teoría y Prncpos Establecmento general Fuentes de voltajee y resstencas solamente Con fuentes de voltaje dependentes Con fuentes de corrente Reduccón Fundamentos

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles