Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas
|
|
- Victoria Redondo Silva
- hace 4 años
- Vistas:
Transcripción
1 Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos como etender est definición funciones que no son cotds en l vecindd de un punto, o regiones de integrción de l form [, + ), (, ] o todo R Integrles de Funciones No Acotds Definición 8. Si f R[, b ɛ] pr todo ɛ > y ɛ f d l cundo ɛ + decimos que f tiene un integrl impropi de Riemnn sobre [, b] y su vlor es l. Escribimos f d en lugr de l. De mner similr, si f R[ + ɛ, b] pr todo ɛ > y f d l cundo +ɛ ɛ + decimos que f tiene un integrl impropi de Riemnn sobre [, b] y escribimos f d = l. Ejemplos 8.. f : [, ] R, f() = ( ) /2 entonces ɛ ( ) /2 d = 2( ) /2 ɛ = 2( ɛ /2 ) 2 (ɛ + ). L función tiene un integrl impropi sobre [, ] y ( ) /2 d = 2.
2 46 CAPÍTULO 8. INTEGRALES IMPROPIAS 2. f : [, ] R, f() = / ɛ d = 2 ɛ = 2( ɛ) 2 y f tiene un integrl impropi en [, ], f d = 2. En generl, si f está definid sobre [, b] y eiste un número finito de puntos c,, c k tles que < c < c 2 < < c k < b y f tiene un integrl impropi de Riemnn sobre cd intervlo [, c ], [c, c 2 ],, [c k, c k ], [c k, b], entonces f tiene un integrl impropi de Riemnn sobre [, b] y denotremos l sum por c f d + c2 c f d + + f d c k f d En culquier de los csos nteriores escribimos f IR[, b]. Ejercicios 8. Estudie l convergenci de ls siguientes integrles impropis ) 3) 5) 7) 9) 4 + d 3 + d e d 6) log d 8) 2) e 2 d 4) d log ) 2 e d log d cosh d d log 8.3. Propieddes de ls Integrles Impropis () Si f y g están en IR[, b] entonces tmbién están f + g y λf donde λ R. Además: (f + g) d = f d + g d y λf d = λ f d. (b) Si f IR[, b] y [c, d] [, b] entonces f IR[c, d]. Además, si < c < b entonces f d = c f d + c f d
3 8.4. INTEGRALES SOBRE DOMINIOS INFINITOS 47 (c) Si f y g están en IR[, b] y f() g() pr [, b] entonces f d g d (d) Si f IR[, b] entonces c f d es un función continu de c pr c b. (e) Si F es derivble pr b y F () = f() IR[, b] entonces f d = F (b) F (). (f) Si f y g están en IR[, b] y F y G están definids por entonces F () = F (b)g(b) = f dt G() = fg dt + F g dt. g dt (g) Si f IR[.b], g(y) es creciente pr y [c, d] con g(c) =, g(d) = b y si g R[c, d] entonces (f g)g IR[c, d] y g(d) g(c) f d = d c (f g)g dy. Demostrción. Ejercicio Integrles Sobre Dominios Infinitos Definición 8.2 Si f R[, t] pr todo t > y t f d converge un límite l cundo t decimos que f R[, ) y escribimos f d en lugr de l. Decimos en este cso que l integrl f d converge. Si f R[, t] pr todo t > y t f d no converge un límite finito cundo α decimos que l integrl f d diverge. De mner similr definimos l clse de funciones R(, b]. Si f R[, ) y f R(, ] decimos que f R[, ) y definimos l integrl de f sobre (, ) como f d = f d + f d.
4 48 CAPÍTULO 8. INTEGRALES IMPROPIAS Propieddes de ls funciones R[, ). () Si f, g R[, ) entonces f + g y λf R[, ) donde λ R y (f + g) d = f d + g d, kf d = k f d. (b) Si f R[, ) entonces f dt es un función continu de pr >. Si f es continu en > entonces d d f dt = f(). (c) Si F = f R[, ) entonces eiste l tl que F () l cundo y f d = l F (). (d) Si f, g R[, ), F () = f dt, G() = g dt entonces si fg ó F g está en R[, ) tenemos fg d + F g d = f d g d. Est es l fórmul de integrción por prtes y se obtiene hciendo b en l fórmul de integrción por prtes sobre [, b]. (e) Supongmos que g es estrictmente creciente en (c, d), g R(c, d], g(c) = y g(y) cundo y d. Entonces si f R[, ) se tiene (f g)g R(c, d] y f d = d c (f g)g dy. Como consecuenci de (e) observmos que podemos reducir el estudio de integrles impropis de Riemnn l considerción de l convergenci de integrles sobre dominos infinitos. Si por ejemplo, f R[, b ɛ] pr todo ɛ, < ɛ < b, entonces hciendo y = /(b ) obtenemos ɛ f d = /ɛ /(b ) f(b y ) y 2 dy = /ɛ /(b ) g(y) dy donde g(y) = y 2 f(b y ). En este cso f IR(, b] si y solo si g IR[ b, ).
5 8.5. EL PRINCIPIO GENERAL DE CONVERGENCIA PARA INTEGRALES IMPROPIAS 49 Ejercicios 8.2. Determine pr cuáles vlores de s son convergentes ls siguientes integrles: ) 3) 5) s d 2) sen s d 4) e s d 6) s + d e s d e s d 8.5. El Principio Generl de Convergenci pr Integrles Impropis Lem 8. L función f converge un límite finito cundo si y sólo si ddo ɛ > eiste k R tl que f() f(y) < ɛ si > k, y > k. (8.) Demostrción. Si f() l cundo entonces pr todo ɛ > eiste k tl que f() l < ɛ/2 pr > k. Si, y > k entonces f() f(y) f() l + f(y) l < ɛ. Recíprocmente, tomemos un sucesión ( n ) con n entonces por el criterio de Cuchy (f( n )) converge si (8.) se cumple. Como esto es cierto pr tod sucesión ( n ) con n concluimos que f() l. Teorem 8. f R[, ) sí y sólo sí: () f R[, b] pr todo b > y (b) Pr todo ɛ > eiste k tl que si > k, y > k entonces y f dt < ɛ. Demostrción. Esto es consecuenci del lem nterior plicdo l función F () = f dt.
6 5 CAPÍTULO 8. INTEGRALES IMPROPIAS Convergenci Absolut Definición 8.3 Decimos que l integrl f dt es bsolutmente convergente sí y sólo sí f R[, ]. Si f R[, ) entonces f R[, ) y que podemos plicr el lem nterior f d y obtenemos que ddo ɛ > eiste k tl que si > k, z > k entonces pero z z f dt < ɛ z f dt f dt < ɛ y plicndo de nuevo el lem obtenemos f R[, ) Integrles de Funciones Positivs. Si f en [, ) y f R[, b] pr todo b > entonces l condición necesri y suficiente pr que f R[, ) es que f dt se cotd superiormente pr >. Esto es consecuenci de que f dt es creciente como función de. A prtir de est propiedd obtenemos el siguiente criterio pr convergenci de integrles impropis. Proposición 8. (Criterio de Comprción) Si f() g(), g R[, ), f R[, b] pr todo b > entonces f R[, ). Si g() f() y g R[, b] pr todo b > pero g / R[, ) entonces f / R[, ). Definición 8.4 Si f R[, ) pero f / R[, ) decimos que l integrl f d es condicionlmente convergente. Ejercicios 8.3. Si f y g están en R[, b] pr cd b, donde f() y g() > pr todo f(), y si lím = c, con c, entonces ls integrles f() d y g() g() d convergen o divergen conjuntmente. 2. En l situción del ejercicio nterior demuestre lo siguiente: i) Si c = entonces si ii) Si c = entonces si g() d converge, tmbién f() d. g() d diverge, tmbién f() d.
7 8.6. INTEGRALES Y SERIES Integrles y Series. Bjo cierts condiciones hy un estrech relción entre el comportmiento de l integrl f dt y el de l serie f(n). Teorem 8.2 Si f está definid pr, es decreciente y positiv entonces f d tiende un límite finito cundo N. N f(n) n= Demostrción Llmemos Como f es decreciente k N = f d N f(n). n= k N+ k N = + N f d f(n + ) de modo que l sucesión (k N ) es creciente. Llmemos hor l N = N f d f(n). Un rgumento similr muestr que l sucesión (l N ) es decreciente. Además n= l N k N = f(n). Por lo tnto k N l N l, de modo que k N está cotd superiormente. En consecuenci k N converge un límite finito. Corolrio 8. (Prueb de l Integrl) Si f está definid pr >, es decreciente y positiv, entonces f(n) converge si y solo si f d converge. Demostrción. Si f d converge entonces f d tiende un límite finito cundo N y por lo tnto N f(n) = n= f d k N tmbién converge un límite finito. Por otro ldo, si N n= f(n) converge un límite finito cundo N entonces f(n) cundo n y f d = N f(n) + k N n=
8 52 CAPÍTULO 8. INTEGRALES IMPROPIAS tmbién tiende un límite finito cundo N. Si N < < N + entonces f dt f dt = f dt f(n) N que tiende cero cundo N y en este cso converge un límite finito cundo. Ejemplos 8.2. Tomemos f() = / en el teorem nterior, entonces n log n tiende un límite finito cundo n. Este límite se conoce como l constnte de Euler, se denot por γ y es un número en (, ). 2. Tomemos hor donde f() = ( log log r (log r ()) α) log s () = log(log s ()), log 2 () = log(log()) Se suficientemente grnde de modo que f esté definid si >, entonces f dt = α (log r t) { [ = α (logr ) α (log r ()) α] si α. log r+ () log r+ () si α = por lo tnto l serie f(n) converge si α > y diverge si α. Ests series son útiles los efectos de l prueb de comprción. Ejercicios 8.4. Ejercicios Complementrios. Dig si ls siguientes proposiciones son cierts o flss. En cd cso de un demostrción o un contrejemplo..- Si l sucesión n f() d converge, l integrl f() d converge. b.- Si f es decreciente y lím n eiste. n f() d eiste entonces l integrl f() d
9 8.6. INTEGRALES Y SERIES. 53 c.- Si f() cundo y converge y su vlor es A. d.- Si f() y vlor es A. e.- Si n lím n n lím n f() d = A, entonces f() d = A, entonces f() d converge entonces lím f() = f() d f() d converge y su
7.1. Definición de la Integral de Riemann
Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo
Funciones de una variable real II Integrales impropias
Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)
Anexo 3: Demostraciones
170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
Cálculo integral de funciones de una variable
Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
Funciones de variable compleja
Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce
INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x.
INTEGRALES IMPROPIAS Hst hor hemos estudido l integrl de Riemnn de un función f cotd y definid en un intervlo cerrdo y cotdo [, ], con., Ahor generlizmos este concepto.. Integrl de un función cotd, definid
Integral impropia Al definir la integral definida b
Mte Univ II, 14 FCE-BUAP CÁLCULO INTEGRAL ALEJANDRO RAMÍREZ PÁRAMO 1. Sucesiones y series Integrl impropi Al definir l integrl definid b f(x)dx, pretendimos que l función f estb definid; demás de cotd,
Funciones de una variable real II Integrales impropias
Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 203-204 Contents
El Teorema de Arzela-Ascoli Rodrigo Vargas
El Teorem de Arzel-Ascoli Rodrigo Vrgs Definición 1. Sen M, N espcios métricos y E un conjunto de plicciones f : M N. El conjunto E se dice equicontinuo en el punto M cundo, pr todo ε > eiste δ > tl que
Funciones continuas. Mariano Suárez-Alvarez. 4 de junio, Índice
Funciones continus Mrino Suárez-Alvrez 4 de junio, 2013 Índice 1. Funciones continus................... 1 2. Alguns propieddes básics............ 3 3. Los teorems de Weierstrss y Bolzno... 6 4. Funciones
1.4. Sucesión de funciones continuas ( )
1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:
Primitivas e Integrales
Cpítulo 25 Primitivs e Integrles En este cpítulo vmos trbjr con funciones de un vrible. En él estbleceremos un cso prticulr del Teorem Fundmentl del Cálculo Integrl (ver [3] pr el cso generl), con el que
4. Definición: Convergencia uniforme de una sucesión de funciones
1. Teorem de l funcion invers Se A un ierto de R N, f : A R m un funcion de clse n (n 1), se A tl que det(jf()) 0. Entonces existe un entorno U de tl que U A tl que: (1). det(jf (x)) 0 pr todo x U (2).
Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim
Función no Acotd en uno o en los dos etremos del Intervlo de Integrción Si f () está definid sobre (, b] y si f () cundo, se define f () d = lim f () d ε + +ε Si f () está definid sobre [, b) y si f ()
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
5.2 Integral Definida
80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos
Notas de Integral de Riemann-Stieltjes
Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr
La Integral de Riemann
Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función
La Integral Definida
Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm
Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) "x D
INTEGRAL DE RIEMANN 1- Primitivs e integrl indefinid - Integrl de Riemnn 3- Interpretción geométric de ls integrles de Riemnn 4- Propieddes de ls integrles de Riemnn 5- Cmio de vrile en ls integrles de
7. Integrales Impropias
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge
EJERCICIOS DE INTEGRALES IMPROPIAS
EJERCICIOS DE INTEGRALES IMPROPIAS. Integrles impropis de primer especie. Clculr Pr n, n con >. F (b) = b n n+ = n + Si n >, entonces F (b) =, con lo que Si n
Tema 12. Integrales impropias
Tem 2. Integrles impropis Jun Medin Molin 3 de mrzo de 2005 Introducción En este tem trtremos el estudio de ls integrles impropis que pueden ser de dos tipos, integrles donde el intervlo de integrción
Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales
Tem 8.4: Teorem de Runge. Aproximción de funciones holomorfs por funciones rcionles Fcultd de Ciencis Experimentles, Curso 2008-09 Enrique de Amo, Universidd de Almerí Sbemos que ls funciones holomorfs
2. LAS INTEGRALES DEFINIDA E INDEFINIDA
2. LAS INTEGRALES DEFINIDA E INDEFINIDA Ojetivo: El lumno identificrá los conceptos de ls integrles definid e indefinid y los plicrá en el cálculo y otención de integrles Notción sum Se k un numero rel
Sucesiones parte 5. a r = a m p < a. por lo tanto f es esctrictamente creciente Si 0 < a < 1, denimos f(r) = a r = 1 ( 1. = a.
rte 5 Lem. Se >. L función f : Q R dd or f(r) = r es estrictmente creciente en Q y si 0 < . Se r < s Q. Entonces
Sucesiones de Funciones
Cpítulo 9 Sucesiones de Funciones 9.1. Sucesiones de Funciones. En los cpítulos 3 y 4 vimos que un sucesión de números reles es, simplemente, un colección numerble y ordend de números reles. De mner similr,
Matemáticas Empresariales I. Integral Definida
Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid
El Teorema Fundamental del Cálculo
del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su
TEMA 5: INTEGRACIÓN. f(x) dx.
TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l
LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.
Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función
Integración de funciones de una variable real
Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross
TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo
TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x
Teorema fundamental del Cálculo.
Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.
SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY.
42 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril 2006. FUNCIONES SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. Resumen Se prueb que tod función holomorf es nlític, y recíprocmente. Se desrroll
CAPÍTULO XII. INTEGRALES IMPROPIAS
CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9
CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.
CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel
INTEGRALES IMPROPIAS
NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES
1. INTEGRALES DEFINIDAS E IMPROPIAS
. INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m
Teoremas de convergencia
Cpítulo 3 Teorems de convergenci L necesidd de considerr límites de sucesiones o series de funciones es básic en el estudio del nálisis. Por tnto, es nturl preguntrse bjo qué condiciones se tiene que un
Integración de funciones reales de una variable real. 24 de octubre de 2014
Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl
Tema 4: Integrales Impropias
Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem
Herramientas digitales de auto-aprendizaje para Matemáticas
Mtemático Tem: L integrl Integrl Herrmients digitles de uto-prendizje pr Mtemátics, Grupo de Innovción Didáctic Deprtmento de Mtemátics Universidd de Extremdur Mtemático Tem: L integrl Integrl Mtemático
La integral de Riemann
L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl
Teorema del punto fijo Rodrigo Vargas
Teorem del punto fijo Rodrigo Vrgs Definición 1. Un punto fijo de un plicción f : M M es un punto x M tl que f(x) = x. Definición 2. Sen M, N espcios métricos. Un plicción f : M N es un contrcción cundo
CURSO DE MATEMÁTICA 1. Facultad de Ciencias
CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl
INTEGRALES IMPROPIAS INTRODUCCION
INTEGRALES IMPROPIAS INTRODUCCION Cundo intentmos explicr que er un integrl hicimos vris suposiciones: l función dentro de l integrl estb definid en un intervlo FINITO [,b], l función no tení discontinuiddes.
4.6. Teorema Fundamental del Cálculo
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 07-2 SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl del Cálculo Proposición 4.5. Se un
Teoría Tema 7 Integral definida. Área encerrada por una curva
Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.
Cálculo integral y series de funciones
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Cálculo integrl y series de funciones Rmón Bruzul Mrisel Domínguez Crcs, Venezuel Febrero 2005
SEMANA 8: INTEGRAL DE RIEMANN
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl
Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.
Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción
D I F E R E N C I A L
D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil
X = x ) pierde su significado. Lo que se hace es sustituir la definida sólo para x,..., por una función f (x)
rte Vriles letoris. Vriles letoris continus En l sección nterior se considerron vriles letoris discrets, o se vriles letoris cuo rngo es un conjunto finito o infinito numerle. ero h vriles letoris cuo
AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA
GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
Integrales de ĺınea complejas
Tem Integrles de ĺıne complejs. Integrles de líne.. Funciones complejs de vrible rel Un función complej de vrible rel llev socid un función vectoril de vrible rel, por lo que ls definiciones y resultdos
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
Integral de línea de campos escalares.
Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f
LA INTEGRAL DE RIEMANN
LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,
6.1. Integral de Riemann de una función.
Tem 6 L integrl definid 6.. Integrl de Riemnn de un función. En un principio (Euler), el cálculo integrl se definí como l operción invers l diferencición, sin embrgo, en l primer mitd del siglo XIX se
Problemas de integrales impropias. Pedro González Ruiz
Problems de integrles impropis Pedro González Ruiz Sevill, myo de 9 Índice generl. Integrles generlizds 5.. Notciones....................................... 5.. Conceptos previos...................................
CÁLCULO DIFERENCIAL. Lím h. Definición: Se dice que f(x) es derivable en A cuando es derivable en todo punto de A.
CÁLCULO DIFERENCIAL MATEMÁTICAS II Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci 1.- CONCEPTO DE DERIVADA. Se un unción rel deinid en un entorno del punto. Deinición: Se dice que es derivle en
7 Integral triple de Riemann
Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites
TRABAJOS DE MATEMATICA
UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA SERIE C TRABAJOS DE MATEMATICA Nº 36/07 Un segundo curso de Cálculo Crin Boyllin, Elid Ferreyr, Mrt Urciuolo, Cynthi Will Editores:
Capítulo 2. Espacios normados Introducción
Cpítulo 2 Espcios normdos 2.1. Introducción Hbímos visto en el cpítulo nterior que en los espcios de prehilbertinos se podí definir un norm trvés del producto esclr por l fórmul x = (x y) 1/2, y que ést
Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A =
Teórics de nálisis Mtemático 28) - Práctic 0 - Áre entre curvs Práctic 0 - Prte Áre entre curvs Un de ls plicciones del cálculo de integrles definids es el cálculo de áres de regiones cotds del plno delimitds
INTEGRALES IMPROPIAS
INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
Matemáticas Bachillerato
Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) f ( ). Esto es equivlente
2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.
. Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )
La integral Integral indefinida: primitivas
Cpítulo 2 L integrl 2.. Integrl indefinid: primitivs Consideremos l operción invers de l derivción, desde un punto de vist lgebrico. Es decir, dd un función f (x), nos gustrí verigur l (o ls) funciones
2.3.1 Cálculo de primitivas
Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos
BORRADOR. La integral Integral indefinida: primitivas
Cpítulo L integrl.. Integrl indefinid: primitivs Consideremos l operción invers de l derivción, desde un punto de vist lgebrico. Es decir, dd un función f (x), nos gustrí verigur l (o ls) funciones F(x)
Coordinación de Matemática II (MAT022)
Coordinción de Mtemátic II (MAT) Primer semestre de 3 Semn : Lunes de Junio Viernes 4 de Junio CÁLCULO Contenidos Clse : Método de ls cs cilíndrics. Clse : Áres de suerficies de revolución. CLASE.. Método
INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA
INTEGRAL DEFINIDA INTEGRAL DEFINIDA [7.] Clclr: d 5 dt t d t t dt 5 5t t / t 5t t 5t / / t d dt 5 t t t dt 5 5 5 5 ln t t 5t ln 7 ln 5 / 9 t 7 7 7 7 7 7 ln ln ln 5 5 7 9 6 [7.] Clclr: ln 5 e e e d e t
Integración de Funciones de Varias variables
Cpítulo 1 Integrción de Funciones de Vris vribles 1. L σ-álgebr de orel 2. L medid de Lebesgue 3. Funciones medibles Un vez estudid l medid de Lebesgue en R n, vmos desrrollr hor l integrción de funciones
Integración numérica: Regla del trapecio Método de Romberg
Clse No. 18: Integrción numéric: Regl del trpecio Método de Romberg MAT 251 Dr. Alonso Rmírez Mnznres CIMAT A.C. e-mil: lrm@ cimt.mx web: http://www.cimt.mx/ lrm/met_num/ Dr. Joquín Peñ Acevedo CIMAT A.C.
5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.
5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre
UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO
UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo
2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo
2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teorems de punto fijo Definición 1. Se X un espcio vectoril rel. Se dice que un
Integrales Impropias. ,b) , c) Cuando no existe límite se dice que no existe valor de la integral o ésta es. 0 senxdx
Integrles Imrois. INTEGRALES IMPROPIAS L integrl f ()d se die imroi si ourre l menos un de ls hiótesis siguientes: º, o mos son infinitos. º L funión f() no está otd en el intervlo [,]. Ejemlos: d ; d
Tema9. Sucesiones. Tema 9. Sucesiones.
Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de
Definición de la función logaritmo natural.
L función logritmo Definición de l función logritmo nturl. Se sbe que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo
Tema 11: Integrales denidas
Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl
CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.
CÁLCULO Ingenierí Industril. Curso 9-1. Deprtmento de Mtemátic Aplicd II. Universidd de Sevill. Lección. Métodos numéricos en un vrible. Resumen de l lección..1. Método de Newton pr l resolución de ecuciones.
y se dice que dicha aplicación σ = σ(t) es una parametrización de la curva C.
Cpítulo I Concepto de curv 1. Curvs regulres Intuitivmente, un curv en R n es un conjunto C R n que puede describirse con un único prámetro que vrí en un intervlo I de l rect rel R. Dich descripción se
Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.
Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número
Muchos cálculos algebraicos, que son difíciles o imposibles por otros métodos, son fáciles de desarrollar por medio de los logaritmos.
1.3. L función Logrítmic Con el uso de los ritmos, los procesos de multiplicción, división, elevción potencis extrcción de ríces entre números reles pueden simplificrse notorimente. El proceso de multiplicción
LÍMITES CONCEPTO INTUITIVO DE LÍMITE
Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos
n f j (x). j=0 f n Los teoremas que hemos obtenido anteriormente para sucesiones de funciones pueden aplicarse a las series de funciones.
Cpítulo 10 Series de Funciones 10.1. Series de Funciones Definición 10.1 Se X R y (f n ) n N un sucesión de funciones reles sobre X. Pr n N definimos S n : X R por S n (x) = f j (x). Llmmos (S n ) n N
6.1 Sumas de Riemann e integral definida
Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el
TEMA 4. Cálculo integral
TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl
INTEGRALES IMPROPIAS
INTEGRALES IMPROPIAS PROF. ÁLVARO ELIZONDO MONTOYA Diciembre; lvro.elizondo@sekcostric.com lgebro.elizondo@gmil.com Cpítulo INTEGRALES IMPROPIAS.. Integrles impropis por pso l ite Iniciemos este tem discutiendo
CORTADURAS DE DEDEKIND
CORTDURS DE DEDEKIND En l evolución de est teorí se distinguen tres etps: l primer prece influid por l ide del número rel como un objeto preexistente: cd número rel produce un cortdur; l cortdur define