Respuesta al escalón unitario
|
|
- Asunción María Nieves Montes del Río
- hace 5 años
- Vistas:
Transcripción
1 Rpua al caló uiario Epcificacio l domiio dl impo La ampliud duració d la rpua raioria db mar dro d lími olrabl dfiido E ima d corol lial la caracrizació dl raiorio comúm raliza uilizado u caló uiario a la rada Ig. Gabrila Oriz L. Ig. Gabrila Oriz L. Epcificacio l domiio dl impo Sobrimpulo máximo: max : Valor máximo qu alcaza : Valor d ado abl Sobrimpulo máximo: max max %máximo d obrimpulo: *00% Epcificacio l domiio dl impo Timpo d rardo d Timpo para qu la rpua alcac l 50% d u valor fial Timpo d lvaamio r Timpo para qu la rpua lv d u 0% a u 90% d u valor fial Mdida alraiva: rciproco d la pdi d la rpua al caló d Timpo d aamio Timpo para qu la rpua maga dro d ua bada drmiada. Frcum uiliza ±5% Ig. Gabrila Oriz L. 3 Ig. Gabrila Oriz L. 4
2 Sima d Primr Ord Sima d Primr Ord Y R Cualquir ima fíico d a forma, prará la mima alida rpua a la mima rada Ig. Gabrila Oriz L. 5 Rpua al caló uiario d ima d primr ord R / Y / como L mo { Y } / u Ig. Gabrila Oriz L. 6 Rpua al caló uiario d ima d primr ord Rpua a ua rampa uiaria d ima d primr ord T Caracríica Si dimiu, la rpua má rápida La pdi d la lía ag 0 / Timpo d aamio da para > 4, dod la rpua mai dro dl % dl valor R / Y como L mo / { Y } / u fial Ig. Gabrila Oriz L. 8 Ig. Gabrila Oriz L. 7
3 3 Ig. Gabrila Oriz L. 9 Rpua al impulo uiario d ima d primr ord { } / mo Y como Y R L Ig. Gabrila Oriz L. 0 Propidad d ima LTI La rpua a la drivada d ua ñal d rada obi drivado la rpua dl ima para la ñal origial δ / / / r Impulo u r Ecaló u r Rampa Ig. Gabrila Oriz L. Sima d Sgudo Ord R Y G E Y α auació frcucia aural o amoiguada facor d amoriguamio rlaivo 0 La cuació caracríica d u ima d gudo ord : Ig. Gabrila Oriz L. Rpua dl ima a ua rada caló uiario El comporamio diámico dcrib érmio d { } [ ] 0 co i / para Y Y R - L
4 Rpua dl ima a ua rada caló uiario Rpua dl ima a ua rada caló uiario La raíc d la cuació ± Codició 0<< > 0 caracríica o: Polo a lazo crrado Compljo cojugado cura l miplao izquirdo dl plao Polo ral difr Polo ral igual Polo j j, Tipo d ima Subamoriguado Sobramoriguada Críicam amoriguada Rpua raioria ocilaoria Ig. Gabrila Oriz L. 3 Rpua l impo Rpua al caló o pra obrimpulo Rpua raioria o amorigua i fco obr l impo d lvaamio, d rardo d aamio pro o afca l obrimpulo Ig. Gabrila Oriz L. 4 Rpua dl ima a ua rada caló uiario Facor d amoriguamio rlaivo facor d amoriguamio Lo fco d á ligado a la raíc d la cuació caracríica,,,, ± ± α ± j ± j α : la coa dl xpocial α corola la vlocidad d dcaimio, domia como facor d amoriguamio o coa d amoriguamio Ig. Gabrila Oriz L. 5 Ig. Gabrila Oriz L. 6 /α proporcioal a la coa dl impo dl ima 4
5 Facor d amoriguamio rlaivo facor d amoriguamio Lo fco d á ligado a la raíc d la cuació caracríica ± j,, α ± j Dl radical pud vr qu para i do raíc igual. d Frcucia Naural o amoriguada La raíc d la cuació caracríica, ± j, α ± jd 0 Amoriguamio cro Raíc imagiaria ± j puram oidal E cao domia Críicam amoriguado α Por ao α facor d amoriguamio Amoriguamio rlaivo facord amoriguamio críico Ig. Gabrila Oriz L. 8 Ig. Gabrila Oriz L. 7 0<< d frcucia d amoriguamio rpra la magiud d la par imagiaria d la raíc Para 0, o priódica Rlació r la localizació d la raíc amoriguamio frcucia Diámica d ima d gudo ord d α Ig. Gabrila Oriz L. 9 Ig. Gabrila Oriz L. 5
6 c cambia d - a Sobrimpulo máximo S dfi para la rada caló uiario M Máx[ ] lim Rcordar: [ θ ] Ig. Gabrila Oriz L. 6 Ig. Gabrila Oriz L. 7 Sobrimpulo máximo Rlació r l obrimpulo máximo : Para 0 < < mo qu lo máximo míimo d la rpua da cuado: π 0,,,... Para la rpua o pra obrimpulo l máximo d pra Ig. Gabrila Oriz L. 8 Sobrimpulo máximo 3 Para la rpua a u caló uiario, l primr obrpao o l máximo da max π Lo obrimpulo pra a irvalo priódico CoidradoK como l valor d la ñal ado acioario K lim Ig. Gabrila Oriz L. 9 6
7 Sobrimpulo máximo 4 Sobrimpulo máximo 5 Aumido qu l máximo d maor a K, oc porcaj: M % máximo dobrimpulo K *00% Ig. Gabrila Oriz L. 30 La magiud d lo obrimpulo á dada por: π para,, máxomí Como l obrimpulo máximo ocurr para ua rada caló uiaria ado abl : E porcaj: M max π π Ig. Gabrila Oriz L. % M 00 3 max Sobrimpulo máximo 6 Porcaj d obrimpulo como ua fució dl facor d amoriguamio rlaivo para la rpua al caló u ima d gudo ord Timpo d rardo ormalizado Timpo d rardo ormalizado cora Ig. Gabrila Oriz L. 3 Ig. Gabrila Oriz L. 33 7
8 Fórmula lm π Amoriguamio π M rlaivo lm obrimpulo π % r ; ; 5 % r 3.8 Timpo d abilizació Timpo d ubida Ejmplo La figura mura u ima vibraorio mcáico. Cuado aplica ua furza P d 3 N rada caló la maa ocila como pra la Figura. El dplazamio x mid a parir d la poició d quilibrio. Obga la fució d rafrcia dl ima X/P. Drmi m, b k dl ima a parir d la curva d rpua dada. Uidad m[kg], b [N/m], k[n/m] Ig. Gabrila Oriz L. 38 Ig. Gabrila Oriz L. 39 Ejmplo Ejmplo 3 Figura Ig. Gabrila Oriz L. 40 Ig. Gabrila Oriz L. 4 8
9 Rpua dl ima a ua rada impulo El comporamio diámico dcrib érmio d R Y L -{ Y } Rpua dl ima a ua rada impulo 0 < i [ ] para 0 Rpua ocila alrddor d cro, para 0 Rpua poiiva o cro Ig. Gabrila Oriz L. 4 Ig. Gabrila Oriz L. 43 Rpua dl ima a ua rada impulo Rpua dl ima a ua rada impulo M p max para la R/ al caló uiario Ig. Gabrila Oriz L. 44 Ig. Gabrila Oriz L. 45 9
10 Efco d añadir polo cro a la fucio d rafrcia Adició d u polo a la fució d rafrcia d racoria dirca La raíc d la cuació caracríica o lo polo d la fució d rafrcia a lazo crrado Afca la rpua raioria d ima LTI la abilidad dl ima La adició d polo cro afca la rpua raioria. Ig. Gabrila Oriz L. 46 S añad polo /T p a la fució d rafrcia dl ima d do ord. G T Fució d rafrcia a lazo crrado : G T 3 G Tp Tp Añadir u polo a G gralm icrma l obrimpulo máximo dl ima Ig. Gabrila Oriz L. 47 p Adició d u polo a la fució d rafrcia d racoria dirca Adició d u polo a la fució d rafrcia d lazo crrado Lo polo d T o la raíc d la cuació caracríica T T p Ig. Gabrila Oriz L. 48 Ig. Gabrila Oriz L. 49 0
11 Adició d u polo a la fució d rafrcia d lazo crrado Adició d u cro la fució d rafrcia a lazo crrado E cao Tz T Añadir u cro a T Dimiu impo d lvaamio Icrma obrimpulo máximo Ig. Gabrila Oriz L. 50 Ig. Gabrila Oriz L. 5 Adició d u cro la fució d rafrcia a lazo crrado Polo domia d la fucio d rafrcia Polo domia a lazo crrado Polo qu i u fco domia la rpua raioria S pud uilizar para corolar l dmpño diámico dl ima Ig. Gabrila Oriz L. 5 Ig. Gabrila Oriz L. 53
12 Rfrcia [] Dorf, Richard, Bihop Robr. Sima d corol modro, 0ª Ed., Pric Hall, 005, Epaña. [] Ogaa, Kauhiko. Igiría d Corol Modra, Paro, Pric Hall, 003, 4ª Ed., Madrid. [3] Kuo, Bjami C.. Sima d Corol Auomáico, Ed. 7, Pric Hall, 996, México. Ig. Gabrila Oriz L. 54
TEMA 2: ANÁLISIS Y PARAMETRIZACIÓN DE LA VOZ.
EMA : AÁLISIS Y PARAMERIZACIÓ DE LA VOZ. ECOLOGÍA DEL HABLA. CURSO 9/.. REPRESEACIÓ DE LA VOZ: SEÑALES. * Coiua: la voz; oació. * Dicra: covrió uro-dólar; oació. Coiua Dicra La ñal origial pud r coiua
EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3
Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más
8 TRANSFORMADAS DE LAPLACE
8 TRANFORMADA DE LAPLACE 8 TRANFORMADA DE LAPLACE...89 8. INTRODUCCIÓN....9 8. DEFINICIONE...9 8.3 TRANFORMADA DE LAPLACE DE FUNCIONE ENCILLA...94 8.3. TRANFORMADA DE LA FUNCIÓN IMPULO:...94 8.3. TRANFORMADA
Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia
Aálisis e el Domiio de la Frecuecia Sistemas de Cotrol El desempeño se mide por características e el domiio del tiempo Respuesta e el tiempo es díficil de determiar aalíticamete, sobretodo e sistemas de
SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones
SISEMAS LIEALES ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s ( s) ( s) Lilidd + b ( ) ( s) b ( s) Dsplmio l impo ( ) Dsplmio l domiio s
a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.
(Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar
LA TRANSFORMADA DE LAPLACE
Circuio y Siema Diámico (3º IIND) Tema 2 A TRANSFORMADA DE APACE Curo 23/24 Tema 2: a Traformada de aplace 2. Iroducció: de dóde veimo y a dóde vamo 2.2 Defiició de la raformada de aplace 2.3 Traformada
IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE
IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE Determiació de la fució de trasferecia de lazo abierto de u sistema a partir de la curva asitótica de magitud del Diagrama de Bode.
Universidad Carlos III de Madrid
Uiversidad Carlos III de Madrid. El mudo físico: represeació co señales y sisemas Señales: Fucioes co las que represeamos variacioes de ua magiud física Volaje, iesidad, fuerza, emperaura, posició r ()
2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros
.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito
CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA.
APÍTULO UTOS EN EL DOMNO DE LA FEUENA... SSTEMAS LNEALES NAANTES. roducció. U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x ( Siema lieal
CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA
APÍTULO UTOS EN EL DOMNO DE LA FEUENA.. SSTEMAS LNEALES NAANTES roducció U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x () Siema lieal
2. MODELIZACIÓN DE LA VARIABLE DE PERTURBACIÓN ALEATORIA
Aálisis d Auocorrlació ANÁLISIS DE AUTOCORRELACIÓN. DEFINICIÓN Y CAUSAS DE AUTOCORRELACIÓN E s ma s cusioar, para los modlos qu rabaja co daos d sris d impo, ua d las hipósis qu dfi l Modlo d Rgrsió Lial
8 Límites de sucesiones y de funciones
Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...
Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin
Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,
PRÁCTICA 1: Análisis en el dominio del tiempo de sistemas continuos simples
Sismas Sñals Crso 4/5 Igiría Iformáia PRÁCTICA : Aálisis l omiio l impo sismas oios simpls I.- Prosamio sñal Malab Tal omo s vio l rso arior Malab rabaa o úio ipo lmos: las maris. Los ipos aos básios o
Sistemas de ecuaciones diferenciales lineales
695 Aálisis matmático para Igiría M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO Sistmas d cuacios difrcials lials d primr ord Cuado s studia matmáticamt ua situació d la ralidad, l modlo qu s
Diagramas de Bode. Respuesta En Frecuencia
Diagramas de Bode Respuesta E Frecuecia Ig. William Marí Moreo Geeralidades Es u diagrama asitótico: se puede aproximar fácilmete trazado líeas rectas (asítotas). Preseta la respuesta de Magitud y Fase
17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA
7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má
Sistemas de Segundo Orden
Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra
Transformador VALORES NOMINALES Y RELATIVOS
Tasfomado VAORE NOMNAE Y REATVO Nobto A. mozy VAORE NOMNAE as picipals caactísticas d las máquias vi dadas po los fabicats la domiada placa o chapa d caactísticas; dod s spcifica, t otas cosas, la potcia
Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano
(VSHFLILFDFLRQHVHQHOGRPLQLRGHOWLHPSR E capítulos ateriores se ha estudiado la respuesta de estado estable de los sistemas lieales ( cuado tæ ), estudiaremos ahora la respuesta trasitoria. La respuesta
CAPITULO 6.- LA TRANSFORMADA DE LAPLACE.
PITUO 6.- TRSFORD DE PE. 6. Irocció. 6. rform plc. 6.3 rform plc ilrl. 6.4 Ivrió l rform plc. 6.5 Solció ccio ifrcil co coicio iicil. 6.6 rform plc ilrl. 6.7 álii im mi l rform plc. 6. Irocció. Grlizmo
CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS
Capítlo 17. Drivada d las Fcios Epocial, Logarítmica. CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS Ejrcicio. Dibja la gráfica d la fció =, para sto lla la sigit tabla: 0 1 3 4-1 - -3-4 Vamos l sigit
Transformada de Laplace
Traformada d Laplac Traformada d Laplac Dada ua fució d variabl cotiua f, u traformada bilatral d Laplac dfi como: t [ f ] f dt L dod ua variabl complja, σ iω Para qu ta itgral covrja, dcir, para qu ita
Definición: valores están relacionados en momentos diferentes en el tiempo. Un valor positivo (o negativo) de u
7 Aocorrlació Dfiició casas d aocorrlació Dfiició: valors sá rlacioados momos difrs l impo. U valor posiivo o gaivo d gra a scsió d valors posiivos o gaivos. Eso s aocorrlació posiiva. Aocorrlació ambié
LA TRANSFORMADA DE LAPLACE
LA RANSFORMADA DE LAPLACE (pun crio por Dr. Mnul Prgd). INRODUCCIÓN Enr l rnformcion má uul qu oprn con funcion f(x) cumplindo condicion dcud n I[,b, pr obnr or funcion n I, án por jmplo : L oprción D
6. FAST FOURIER TRANSFORM (FFT)
6. FAS FOURIER RASFORM FF Las rasformadas Rápidas d Fourir so algoritmos spcializados qu prmit a u procsador digital acr l cálculo d la rasformada Discrta d Fourir d ua forma ficit, lo qu rspcta a carga
Tema 1: Números Complejos
Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto
MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:
FÓRMULAS PARA LA ESTIMACIÓN DE LA CAPACIDAD
APÉNDICE: FÓRMULAS PARA LA ESTIMACIÓN DE LA CAPACIDAD Fórmula uificada d Kimbr Kimbr aglutia la xpricia d muchos años d sayos ralizados por l TRRL Gra Brtaña y propo ua fórmula uificada para l cálculo
Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.
MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El
Tema 8. Limite de funciones. Continuidad
. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.
Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi
u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo
CURSO CONVOCATORIA:
PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como
Análisis del caso promedio El plan:
Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros
RESOLUCIÓN DE CIRCUITOS APLICANDO TRANSFORMADA DE LAPLACE
A.4. TEORÍA DE CIRCUITOS I CAPÍTUO RESOUCIÓN DE CIRCUITOS APICANDO TRANSFORMADA DE APACE Cáedra de Teoría de Circuio I Edició 03 RESOUCION DE CIRCUITOS APICANDO TRANSFORMADA DE APACE.. Iroducció El cálculo
Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas
Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció
MACROECONOMÍA III EL MODELO DE SOLOW
MACROECONOMÍA III E MODEO DE SOOW Blaca Sachez-Roble Equema de la preetació. Supueto del modelo. Dicuió 3. Implicacioe 4. co proreo técico Supueto:. Fució de producció: < < (). o idividuo ahorra ua taa
CONTENIDO 1 LA POLIGONAL CERRADA: CASO DE TENER EL AZIMUT DE P1 a P2 (SENTIDO ANTIHORARIO, ÁNGULOS INTERNOS) 2
CÁLCULO D POLIGOAL COTIDO Pág. LA POLIGOAL CRRADA:.... CAO D TR L AZIMUT D a (TIDO ATIHORARIO, ÁGULO ITRO). CAO D TR L AZIMUT D A (TIDO HORARIO, ÁGULO XTRO)... 9 LA POLIGOAL ABIRTA.... CÁLCULO D LA POLIGOAL
2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13
º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y
Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia.
lgbra d diagrama n bloqu y ranformada d aplac. Función d ranfrncia. Diagrama n bloqu. En o quma l lmno n udio prna a modo d caa ngra n la cual una alida á rlacionada con una nrada a ravé d modificacion
FUNCIONES EXPONENCIALES
1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto
UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero
TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS
TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS Cuál s su opinión? Influyn las xpcaivas n sus dcisions conómicas, como por jmplo, a la hora d comprar un coch, coninuar con su ducación, o abrir una cuna d ahorros
Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar
Flujo máximo: Rede de flujo y méodo de Ford-Fulkeron Joe Aguilar b a d c 0 0 0 0 0 Flujo en Rede. Flujo máximo Algorimo de Flujo Lo algorimo de flujo reuelven el problema de enconrar el flujo máximo de
& fun. viajeglamour Por silvia lópez
viajglamour Por silvia lópz A ts d sumrgirs l rodaj d Holms. Madrid Suit. 1890, la visió dl dtctiv lodis d José Luis Garci ( itrprto a Alcátara, u priodista lgat y romático, amigo d Watso ), l actor Migul
TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.
Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de
TEMA 3 TRANSFORMADA DE LAPLACE 3.1. MOTIVACIÓN 3.2. TRANSFORMADA DE LAPLACE
TEMA TRANSFORMADA DE APACE MOTIVACIÓN En ma anrior aprndió cómo rolvr cuacion difrncial linal con coficin conan uja a condicion dada llamada d fronra o condicion inicial S rcordará qu l méodo coni n nconrar
HOTELES SINDICATO DE TRABAJADORES DE LA CAMARA DE DIPUTADOS DEL H. CONGRESO DE LA UNION
HL IDIA RABAJADR D ÁMARA D DIPAD IDIA RABAJADR D AMARA D DIPADL I DL 40% D D BR ARIFA AL PBLI VIG 15% D D PAQ IIIAL, L IGI HL: B WR PADA D VA PAZAR, MIH, RAL D PB, PL A MRLIA, PL I PR VALRA. DA I 01800
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d
IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A
IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el
Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier
Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas
Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.
Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4
PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O
PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x
. Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)
n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES
l bim cm CACIÓN EDU bim cm DOS TO C u m ó i c c i d r t m m i trá d D qu d r p d i, r u q rd p l rd m p d T d 2 d u g S g prid Mi mbr: Cudrill 1 Mi umr d rd: II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR
REPRESENTACION GRAFICA.
REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:
Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata
Dprmo d Mmáic Fculd d Igirí Uivridd Nciol d Mr dl Pl Mmáic Avzd hp:://www3..ffii..mdp.du.r/mvzd mvzd@ffii..mdp.du.r 4 Coido INRODUCCIÓN.3 EMAS DE VARIABLE COMPLEJA 8 ANÁLISIS EN EL DOMINIO EMPORAL /REAL
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los
UNIDAD 13. 1.- Places (lugares) Actividad: Escribe en español los lugares que puedes encontrar en una ciudad
UNDAD 13 E a uidad aprdrás los siguits tmas: 1.-ugars 2.-Prposicios 3. Dar dirccios 1.- Placs (lugars) Actividad: Escrib spañol los lugars qu puds cotrar ua ciudad Ejmplo: 1.- scula 11.- 2.- oficia poal
PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441
PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder
CURSOS DE FORMACIÓN 2016
CURSOS D FORMACIÓ 2016 Opción horizontal positivo // secundaria DIRIGIDO POR SPCIAL PARTR PROGRAMA D DSARROLLO DIRCTIVO (PDD) LUGAR D RALIZACIÓ BARCLOA ste programa de desarrollo directivo está compuesto
Cómo es la distribución de los alimentos servidos?
Cómo s l distribució d los limtos srvis? 5 " Co u bu limt ció, p Los iños y iñs s ppr pr cosumir los limtos 6 CUÁL ES EL OBJETIVO? Promovr y forzr buos hábitos d higi los iños y iñs como l lv d mos ts
ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma
CAPÍULO RES ANÁLISIS DE FOURIER IEMPO CONINUO Iroducció La represeació de la señal de erada a u sisema (eediedo como sisema u cojuo de elemeos o bloques fucioales coecados para alcazar u objeivo deseado)
1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)
1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :
CEPAL SERIE Manuales Nº 9. Sexta parte
CEPAL SERIE Mauals Nº 9 Sxa ar 7 CEPAL SERIE Mauals Nº 9 Caíulo 4 El rocso d risió Sísis Ua caracrísica imora d los daos qu ublica acualm los INEs s qu sul xrimar u rocso d risió rcurr as d cosidrarlos
6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES
6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:
SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS
SISEMAS INÁMICOS IEMº - Modelo de Sitema Mecánico PROBLEMAS P. Para lo itema mecánico de tralación motrado en la figura, e pide: a uncione de tranferencia entre la fuerza f y la velocidade de la maa. b
Descripción y Objetivos Etapas del proyecto Presentación del producto Balance final Conclusiones generales. Universidad Técnica Federico Santa María
f s = 22050 x[n] n y[n] n x n x[n] C C D D L y n = L x n L C x n + sign x n 1 C D, x n < D, x n D x[n] n y[n] n x n x[n] D D u y 1 n = a x n 1,6 x n 1,6 x n + sign x n D 1 D a k = 2,5 D 0,997 D c L, x
2. ECUACIONES GENERALES DE LA MECÁNICA DE FLUIDOS
. ECUACIONES GENERALES DE LA MECÁNICA DE FLUIDOS. ECUACIONES GENERALES DE LA MECÁNICA DE FLUIDOS. Torma d Traport d Ryold. Ecuació d Cotiuidad.3 Ecuació d Corvació d Catidad d Movimito.4 Ecuació d Corvació
CAPITULO 3.- Representaciones de Fourier para señales.
CAPIULO 3.- Rprsacios Fourir para sñals. 3. Iroucció. 3. Sñals prióicas impo iscro: la sri Fourir impo iscro. 3.3 Sñals prióicas impo coiuo: la sri Fourir. 3.4 Sñals o prióicas impo iscro: la rasformaa
DISENO DE UN CONTROLADOR PIO AUTOSINTONIZADO MEDIANTE LOGICA BORROSA Miguel Strefezza Bianco
40. SBAI-Simpósio Brasiliro d Automação Itligt, São Paulo, SP, 08-10 d Stmbro d 1999 DISENO DE UN CONTROLADOR PIO AUTOSINTONIZADO MEDIANTE LOGICA BORROSA Migul Strfzza Biaco Yasuhiko Dot Uivrsidad Sim6
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica
Límite y Continuidad de Funciones.
Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por
SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.
CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio
10 EJERCICIOS de FRACCIONES ALGEBRAICAS 4º ESO opc. B
0 EJERCICIOS de FRACCIONES ALGEBRAICAS º ESO opc. B. Utilizado idetidades otables, desarrollar las siguietes epresioes: () (-) ()(-) () (-5) () (-) ( (a- (-) (5) (-5) (-) (--) m) ( )( ) ) ( ) o) ( ). Razoar
DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)
UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar
REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL
375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la
El calor transferido de un fluido a otro a través de la pared de un tubo es: = / r1 r. ) + h
INERCAMBIO DE CALOR ENRE DOS FLUIDOS El calor tranfrido d un fluido a otro a travé d la pard d un tubo : πl( - ln( r / r + + hr k h r ( Eta cuación la ba dl diño d intrcambiador d calor tubular. Si dfin
VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA
AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.
Centro de Capacitación en Tecnologías de la Información Diplomado en Gestión de Proyectos Informáticos
maió f I la d lgía T ió paia a C d C Diplmad d ó i G i á m f I Diplmad Gió d ái Ifm Objiv El diplmad d Gió d Ifmái i m bjiv, pa da la apa d u p baj u pu d via pái, laiad la gla implíia jmpl al. S aaliza
Sistemas Físicos. Sistemas Físicos. Sistemas Eléctricos. Sistemas Eléctricos. Dependiendo de los elementos del sistema, los podemos clasificar en:
Sisemas Físicos Dependiendo de los elemenos del sisema, los podemos clasificar en: Sisemas elécricos Sisemas mecánicos Sisemas elecromecánicos Sisemas de fluídos Sisemas ermodinámicos Sisemas Físicos En
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma
IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir
IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)
DIAGRAMAS DE BLOQUES
Univeridad Carlo III de Madrid Señale y Sitema DIAGRAMAS DE BLOQUES Diagrama de bloque. 1. Repreentación en diagrama de bloque. 2. Operacione con bloque. Dolore Blanco, Ramón Barber, María Malfaz y Miguel
ÁNALISIS BIVARIADO Estudiar la relación entre dos variables cualitativas. Estudiar la relación entre dos variables cuantitativas
ÁNLISIS IVRIDO Etudiar a raió tr do variab uaitativa NLISIS DE FRECUENCIS, INDEPENDENCI Etudiar a raió tr do variab uatitativa CORRELCIÓN Y REGRESIÓN LINEL. Cotratar i a MEDI igua a u vaor orto H 0 : µ
Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm
Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la
José Morón SEÑALES Y SISTEMAS
SEÑALES Y SISTEMAS José Moró SEÑALES Y SISTEMAS Uiversidad Rafael Urdaea Auoridades Recorales Dr. Jesús Esparza Bracho, Recor Ig. Maulio Rodríguez, Vicerrecor Académico Ig. Salvador Code, Secreario Lic.
SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN
TEMA Nº SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN. TEOREMA PRELIMINAR INTRODUCCIÓN.- Sism d cucios dircils lils co icógis d l orm P D P D P D P D P P D D... P... P... P D D D b b b dod ls P
INFERENCIA ESTADISTICA
Uivrsidad Católica Adrés Bllo UIVERSIDAD CATOLICA ADRES BELLO Urb. Motalbá La Vga Apartado 068 Tléfoo: 47-448 Fa: 47-3043 Caracas, 0 - Vzula Facultad d Igiría Escula d Igiría Iformática -----------------------
Transformada de Laplace
Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y
MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO
FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo
0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1
IS Fco Ayala de Graada Sobrates 009 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A JRCICIO 1 ( putos) Sea las matrices: -1 4-1 - 1 5 - -6 A ; B 0-1 y C 0-1 1 0 1-0 -1 Determie X e la ecuació matricial