Curso Introductorio a las Matemáticas Universitarias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso Introductorio a las Matemáticas Universitarias"

Transcripción

1 Curso Introductorio a las Matemáticas Universitarias Tema 9: Integración Víctor M. Almeida Lozano Rosa M. Gómez Reñasco Licencia Creative Commons 03

2 9. INTEGRACIÓN Este tema es una introducción al cálculo integral. En él introduciremos el concepto de primitiva de una función y analizaremos algunos métodos básicos de cálculo de primitivas. 9.. Integrales indefinidas. Primitiva de una función Dada una función f definida sobre un intervalo J R, unaprimitiva o antiderivada de f en J es una función F continua en J, queverifica: F () =f() para todo en el interior de J Ejemplo: una primitiva de f() =cos es F () =sen. Si F () es una primitiva de f(), entonces F ()+C es también una primitiva de f(), siendo C un número real cualquiera. De hecho, cualquier otra primitiva de f() esdeestaforma. Ejemplo: una primitiva de f() = es F () =ln, luegof () =ln también es una primitiva de f() paracualquierc R. El conjunto formado por todas las primitivas de f() sedenominaintegral indefinida de f(), y se designa por f() d. Ejemplo: d =arctg. + Tabla de integrales inmediatas En la siguiente tabla la letra C representa una constante arbitraria.

3 Curso Introductorio a las Matemáticas Universitarias Tema 9. Página. d =. n d = n+ (n ) n + d 3. = ln 4. e d = e 5. a d = a ln a (a ), (a >0) 6. cos d = sen 7. sen d = cos 8. sec d d= cos = ( + tg ) d = tg 9. cosec d d= sen = ( + cotg ) d = cotg d 0. a = arcsen a d. a + = a arctg a Reglas operacionales. Integrales inmediatas Si f() yg() sonfuncionesparalasqueeistenprimitivas,entoncesseverifica que:. [f() ± g()]d = f() d ± g() d. kf() d = k f() d Estas reglas, la tabla de integrales inmediatas y la operatoria básica, permiten calcular integrales que a priori paracen más complicadas. Ejemplos: (a) (b) ( )d =3 + d = d+ 9.. Métodos de integración 4 d 5 d = 9... Integración por cambio de variable d + d+ d = d = C = 3 (+3)+C A veces unaintegral puede transformarse en otra más sencilla haciendo un cambio de variable. Ello puede hacerse de dos maneras:

4 Curso Introductorio a las Matemáticas Universitarias Tema 9. Página 3. Hacer = g(t) siendog una función derivable con inversa derivable. Al hacer el cambio debe sustituirse d por g (t)dt, conloquenosquedará Ejemplo: f()d = f(g(t))g (t)dt = F (t)+c = F (g ()) sustituir d por cos t dt, conloqueobtenemos d. Siefectuamoselcambiodevariable = sen t, hemosde sen t sen t cos t dt = sen t cos t cos t dt = = cos t = cos(arcsen )+C sen t dt =. Hacer t = h() siendoh una función derivable con inversa derivable. Normalmente se elige una función h() queapareceenelintegrando,oquelaepresiónh ()d aparece en el integrando. Ejemplo: d. Siefectuamoselcambiodevariablet = obtenemos que dt = d; debemossustituird por dt,conloqueobtenemos ( dt t )= t dt = t = Es evidente que el segundo cambio de variable es más intuitivo, pero no deja de ser curioso el haber obtenido dos resultados, aparentemente, tan diferentes. Se propone al alumno que compruebe que en realidad es el mismo resultado en los dos casos Integración por partes Este método tiene por objeto transformar la integral dada en otramássencilla,utilizando una sencilla fórmula: Sean u = u() yv = v() dosfuncionesderivables.entonces,du = u ()d y dv = v ()d. Apartirdelaregladederivacióndeunproducto,seobtieneque: udv= uv vdu La elección de qué parte del integrando debe ser u ycuáldv depende de múltiples factores, lo que impide dar una regla genaral. No obstante los casos más frecuentessonlossiguientes: lnd. Para la elección de u debemos pensar en la parte del integrando que sea más fácil de derivar (en este caso tanto como ln son sencillos de derivar), para dv hemos de buscar la parte sencilla de integrar, que sin lugar a dudas es d.porlotantolaelecciónqueda cerrada u = ln y dv = d.enconsecuenciadu = d y v = d=. lnd= ln d = ln d= ln 4

5 Curso Introductorio a las Matemáticas Universitarias Tema 9. Página 4 e d En este caso tanto como e son sencillas de derivar y de integrar. Luego la elección debe basarse en otras estrategias. Si refleionamos un poco podremos darnos cuenta de que la mejor elección es u = y dv = e d, elmotivoesclarosiescribimoselrestodeelementos necesarios v = e, du = d. e d = e e d = e e sen e d Este último ejemplo corresponde a las llamadas integrales cíclicas. No hay lugar a dudas que en este caso la elección de u y dv es aleatoria, ya que en cualquier caso el método nos llevará a una integral esencialmente igual, en cuanto a dificultad, a la de partida. Tomemos, por ejemplo u = sen y dv = e d, loquenosllevaaquedu = cos d y v = e sen e d = sen e e cos d En principio parece que no hemos ganado nada con la aplicación del método. Sin embargo, si pensamos un poco antes de desecharlo, podremos darnos cuenta de que una nueva aplicación del método nos llevaría a la integral de partida. Es decir, si en la última integral tomamos u = cos y dv = e d, entonces,du = sen d y v = e,ytenemosque Å ã sen e e cos d = sen e cos e sen e d = =(sen cos )e I de donde obtendríamos (sen cos )e (sen cos )e El procedimiento seguido justifica el nombre asignado a estas integrales Integración de funciones racionales Se trata de encontrar primitivas de funciones que son un cociente de polinomios, es decir: P () Q() d P (), Q() polinomios. Cuando tenemos este tipo de integrando, lo primero que hay que haceresmirarsielgrado del polinomio del numerador, P (), es mayor o igual que el grado del polinomio del denominador, Q(). Si es así, dividimos P () entreq() paraobtenerelpolinomiocociente,c(), y el polinomio resto, R(). Es decir: P () Q() = C()+R() Q(), siendo el grado de R() < grado de Q()

6 Curso Introductorio a las Matemáticas Universitarias Tema 9. Página 5 Entonces, tenemos que: ñ P () Q() d = C()+ R() ô Q() La d = C() d + R() Q() d C() d es inmediata (C() esunpolinomio). Veamoscomoresolver R() d, sa- Q() biendo ya que el grado de R() esmenorqueelgradodeq(). Veamos diferentes casos. Denominador de grado : es inmediata: R() a + b d = A R() d. EnestecasoR() =A =constante.ylaintegral a + b d a + b = A a ad a + b = A ln a + b) a Ejemplo: d. Aldividirelpolinomio entre seobtiene como cociente C() = ycomorestor() = 6, por lo tanto, d = ( d + +)d 6 = = ln. Denominador de grado, y con raíces complejas: El grado de R() puedeser0ó. R() a + b + c d. a) Si el grado de R() escero,esdeciresunaconstante,seajustaparaobtenerun arcotangente. Ejemplo: d =3 ( +) d =3arctg( +)+C + b) SielgradodeR() esseseparaendosintegrales,unadaráunlogaritmoneperiano ylaotraunarcotangente. Ejemplo: d = + + d = =3 = d d d = ( +) + d = = 3 ln ( + +)+arctg( +)+C

7 Curso Introductorio a las Matemáticas Universitarias Tema 9. Página 6 3. Denominador de grado mayor o igual que y, a lo sumo, raíces complejassimples.loprimero que debe hacerse es factorizar Q(), para luego efectuar una descomposición de R() Q() en fracciones simples, cada una de las cuales generará integrales que sabremos resolver, en función de que trabajemos con raíces reales o complejas de Q(). 4 8 Ejemplo: ( ) d. Enprimerlugarhemosdedescomponerenfracciones simples el ( +) integrando: 4 8 ( ) ( +) = A + B ( ) + D + Efectuando los cálculos apropiados, se obtiene A =, B =, C = y D =4. Por tanto d +4 ( ) d + + d = = ln Integrales trigonométricas ln ( +)+4 arctg A la hora de calcular primitivas que involucran funciones trigonométricas, se suelen usar cambios de variables que usan las propiedades de estas funciones. Veremos dos tipos de estas integrales.. Integrales del tipo R(sen, cos )d, donde R es una función racional a) R es impar en sen. Esdecir,R( sen, cos ) = R(sen, cos ). Se efectúa el cambio de variable t = cos, conloqueseobtiene sen = t y d = t dt Ejemplo = sen t cos + d = t + dt = t dt = arc tg t = arctg(cos )+C +t b) R es impar en cos.esdecir,r(sen, cos ) = R(sen, cos ). Se efectúa el cambio de variable t = sen, conloqueseobtiene cos = t y d = t dt

8 Curso Introductorio a las Matemáticas Universitarias Tema 9. Página 7 Ejemplo sen cos 3 d= t ( t ) 3 t dt = (t t 4 ) dt = = t3 3 t5 5 = sen3 3 sen5 5 c) R es par en sen y cos.esdecir,r( sen, cos ) =R(sen, cos ). Se efectúa el cambio de variable t = tg, conloqueobtenemos, Ejemplo cos = sen sen + cos d = +t, sen = t +t t +t t + +t +t y d = +t dt. +t dt = t (t +)(+t ) dt = ( + t = ln ) 4 (t +) + 4 ( + tg arctg t = ln ) (tg +) Un caso particular lo constituyen las integrales del tipo + m pares. La resolución de éstas se simplifica si se aplican las fórmulas: sen = cos Ejemplo cos sen cos d=, cos = +cos +cos sen n cos m d,conn y cos d = d = 4 = 4 4 +cos 4 d = 4 8 sen 4 = 3 = 8 sen 4 3 d) El cambio de variable que siempre puede aplicarse, aunque sólo se aconseja cuando no estemos en alguno de los casos anteriores, es: Ejemplo t = tg ; sen = sen + cos d = = t ( ) ln t ( + ) = t t ; cos = +t +t ; d = +t dt t +t + t +t dt = +t tg ln ( ) tg ( + ) t t dt =

9 Curso Introductorio a las Matemáticas Universitarias Tema 9. Página 8. sen(a + b)sen(c + d)d, sen(a + b)cos(c + d)d, cos(a + b)cos(c + d)d. Se emplean las fórmulas: Ejemplos sen A cos B = [sen(a + B)+sen(A B)] cos A cos B = [cos(a + B)+cos(A B)] sen A sen B = [cos(a + B) cos(a B)] sen( )sen(3 +)d = [cos(5 +) cos( 3)] d = = ñ ô sen(5 +) sen( +3) 5 sen( )cos(5 +3)d = [sen(6 +)+sen( 4 5)] d = = ñ cos(6 +) + 6 ô cos(4 +5) 4 cos(3 +3)cos( +)d = [cos(4 +5)+cos( +)]d = = = ñ sen(4 +5) + 4 ô sen( +)

10 Curso Introductorio a las Matemáticas Universitarias Tema 9. Página Ejercicios. Resolver las siguientes integrales 3 a 3 a) a d d) g) j) m) p) ( + sec tg )d e) b) y ( + y ) 4 dy h) tg θ ln(cos θ)dθ k) + + d cos 3 sen 3 d q) n) d c) d +6 ( +) d f) 4 d d e + e i) e + e d d +8 l) o) cos sen d r) ln 3 ( + 3 ) + 3 d d d tag 3 θsec 4 θdθ s) cos sen 3 d t) cos 5 cos 7 d u) sen 5 sen7 d. Aplicar integración por partes para resolver las siguientes integrales: a) sen d b) arctag d c) ln d d) ln d e) sen d f) 3 e d g) sen θ ln(cos θ)dθ 3. Resolver las siguientes integrales racionales a) d b) + 4 d c) + ( ) 3 d 4. Resolver las siguientes integrales cos a) cos d b) d) g) +d e) e + e d + d c) d f) h) d i) tg d d cos 3 +sen d

11 Curso Introductorio a las Matemáticas Universitarias Tema 9. Página Soluciones. a) a + a b) 3 c) 4 4 +arctg d) e) ln + cos + f) arctg g) 6( + y ) 3 h) arctg(e )+C i) ln4 ( + 3 )+C j) ln (cos θ)+c k) ln ñ (e ) m) ln + + ñ arctg 3 ( + ô 3 ) n) arcsen e ô l) arcsen Å 43 ã Å + 3 ã o) ln Å ã arctg p) sen4 sen q) 8 3 sen4 r) s) Å cos 5 5 u) Å sen a) cos ã + cos t) ã sen + sen + cos 4 6cos 6 θ 4cos 4 θ Å sen + ã sen b) arctg ln( + )+C c) ln d) ln ln sen cos e) +(ln ) f) e g) cos θ ln(cos θ)+cos θ 4 e 3. a) +3 ln + ln( +) arctg( ) b) ln + + arctg c) ln ( )

12 Curso Introductorio a las Matemáticas Universitarias Tema 9. Página 4. a) tag b) arctg c) tag» ( +) 7 4» ( +) 5 5 +» ( +) 3 3 e) ln arctg 4 d) 7 Ã f) ln 6 ++ g) ln 6 (e ) (e +) e 3 h) 5 ln 4 ln( + 6 )+ ln 4 arctg(4 )+C i) sen +arctg(sen )+C

TEMA 5: INTEGRAL INDEFINIDA.

TEMA 5: INTEGRAL INDEFINIDA. TEMA : INTEGRAL INDEFINIDA.. Primitivas: propiedades. Integral indefinida.. Integración por partes.. Integración de funciones racionales (denominador con raíces reales simples y múltiples, denominador

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una

Más detalles

1. CÁLCULO DE PRIMITIVAS

1. CÁLCULO DE PRIMITIVAS . CÁLCULO DE PRIMITIVAS. Calcular las siguientes integrales indefinidas:. ( + Es inmediata. ( = (ln ln + + C +. + + + Descomponemos el integrando en fracciones parciales y obtenemos. + + = + arc tg + =

Más detalles

La integral indefinida

La integral indefinida Apuntes Matemáticas º de bachillerato Leibniz Tema 7 La integral indefinida Matemáticas º de bachillerato 7. Introducción Def.: Dadas dos funciones, F() y f(), si se verifica que: F () f(), para un cierto

Más detalles

UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES

UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES MARIA ELISA VODNIZZA LIRA e-mail : mvodnizz@cec.unap.cl url : www.unap.cl/~mvodnizz SEPTIEMBRE - 00 INTEGRALES Uno de los problemas importantes

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

Integral. F es primitiva de f F (x) = f(x)

Integral. F es primitiva de f F (x) = f(x) o Bachillerato, Matemáticas II. Integración. Integrales indefinidas. Métodos de integración. Primitiva de una función. Integral indefinida. Sean f y F dos funciones reales definidas en un mismo dominio.

Más detalles

GUÍA: INTEGRALES. Página 1 de 27

GUÍA: INTEGRALES. Página 1 de 27 GUÍA: INTEGRALES Área de EET Página de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 00. Página de 7 . INTEGRALES. La

Más detalles

TEMA 12.- CÁLCULO DE PRIMITIVAS

TEMA 12.- CÁLCULO DE PRIMITIVAS TEMA.- CÁLCULO DE PRIMITIVAS.-.- PRIMITIVA DE UNA FUNCIÓN Definición de Función Primitiva Una función F() se dice que es primitiva de otra función f() cuando F'() f() Ejemplos: F() es primitiva de f()

Más detalles

Repaso de integración

Repaso de integración TABLA DE INTEGRALES INMEDIATAS Repaso de integración. Tabla de integrales inmediatas n d = n+ + C, si n n + f() n f () d = f()n+ n + + C, si n d = ln + C f() f () d = ln f() + C e d = e + C e f() f ()

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática 06 Unidad 5 - Trabajo Práctico 5 Parte Unidad 5 Integral indefinida. Primitivas inmediatas. Uso de tablas de integrales. Integración por descomposición, por sustitución y por partes. Integral definida:

Más detalles

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición Funciones racionales Funciones racionales Tema 5: Integración. Integrales racionales y reducibles a racionales Análisis Matemático Grado en Física Definición Una función f se dice que es racional si f

Más detalles

Técnicas de Integración

Técnicas de Integración Técnicas de Integración Índice Capítulo único: Técnicas de Integración. Integración Directa....................................... Integración por Sustitución.................................. Integración

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

Ejercicios de Integrales resueltos

Ejercicios de Integrales resueltos Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN EJERCICIOS RESUELTOS Calcula una función real f : que cumple las condiciones siguientes: f (0) = 5, f (0) =, f (0) = 0 y f () = + Como f () = +, integremos esta

Más detalles

Contenidos de los preliminares

Contenidos de los preliminares Preliminares del tema Contenidos de los preliminares Propiedades de los logaritmos Un par de primitivas elementales Algunas ideas sobre la función arcotangente Funciones hiperbólicas Descomposición en

Más detalles

TEMA. 29 Cálculo de primitivas * ( ) = ( ) ( ) + ( ) ( ) Primitivas de las funciones racionales. P x Q x C x R x

TEMA. 29 Cálculo de primitivas * ( ) = ( ) ( ) + ( ) ( ) Primitivas de las funciones racionales. P x Q x C x R x TEMA 9 álculo de primitivas * Primitivas de las funciones racionales. omo ya sabemos ver tema ) una función racional es una función de la forma P f =, Q 0 Q donde P y Qson funciones polinómicas. omo ya

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas ir Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura ir ir Índice. Definiciones y propiedades Método de por

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 6: Integración. Primer cuatrimestre de (e) f(x) = cos x. F(x) = arccosx. Ejercicio 1.

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 6: Integración. Primer cuatrimestre de (e) f(x) = cos x. F(x) = arccosx. Ejercicio 1. Análisis Matemático I (Lic. en Cs. Biológicas) Primer cuatrimestre de 29 Práctica 6: Integración Ejercicio. Hallar en cada caso una función g : R R que cumpla (i) g () = 2 (ii) g () = (iii) g () = sen

Más detalles

ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017

ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017 ANÁLISIS MATEMÁTICO 4. INTEGRACIÓN INDEFINIDA UN POCO DE HISTORIA El símbolo de integración fue introducido por el matemático alemán Gottfried Leibniz en 1675, basándose en la palabra latina summa, suma,

Más detalles

B. Cálculo de primitivas.

B. Cálculo de primitivas. 50CAPÍTULO 5. INTEGRAL DEFINIDA. CÁLCULO DE PRIMITIVAS y y f(x) x y y F (x) x F (x) 8 >< >: x si x [0, ] x + six (, ] x si x (, ] Figura 5.5: B. Cálculo de primitivas. 5.. Integración inmediata. Definición

Más detalles

1. CÁLCULO DE PRIMITIVAS

1. CÁLCULO DE PRIMITIVAS 1 1. CÁLCULO DE PRIMITIVAS Definición 1.1. Primitiva. Una función F (x) es primitiva de f(x) si F (x) = f(x) para todo x del dominio de f. Obsérvese que si F (x) es primitiva de f(x), entonces F (x) +

Más detalles

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN MÉTODOS DE INTEGRACIÓN UNIDAD II MÉTODOS DE INTEGRACIÓN No todas las funciones en un integrando se pueden resolver mediante reglas inmediatas de integración, y requieren ser tratadas con técnicas especiales.

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Octubre 2013 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada En esta Presentación... En esta Presentación veremos: Definición de Antiderivada Ejemplos En esta Presentación...

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

INTEGRACIÓN INDEFINIDA

INTEGRACIÓN INDEFINIDA 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple quef'(x) = f(x), x. Dicho

Más detalles

Cálculo de Primitivas

Cálculo de Primitivas . Primitivas de una función Sea I un intervalo y f : I IR. Se dice que f tiene tiene una primitiva en I si existe una función G : I IR, continua en I, derivable en el interior de I y verificando que G

Más detalles

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Este método permite resolver un gran número de integrales no inmediatas. 1. Sean u y v dos funciones dependientes

Más detalles

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática CAPITULO 5 Integral Indefinida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr) Créditos

Más detalles

Integral indefinida (CCSS)

Integral indefinida (CCSS) ntegral indeinida SS achillerato SS ntegral indeinida (SS). Primitiva de una unción Deinición: Sea () una unción deinida en el intervalo (a,b), llamaremos primitiva de la unción () a toda unción real de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

UNIVERSIDAD DIEGO PORTALES CALCULO II. Autores: Sara Arancibia C Viviana Schiappacasse C. Universidad Diego Portales CALCULO II

UNIVERSIDAD DIEGO PORTALES CALCULO II. Autores: Sara Arancibia C Viviana Schiappacasse C. Universidad Diego Portales CALCULO II UNIVERSIDAD DIEGO PORTALES Autores: Sara Arancibia C Viviana Schiappacasse C PROGRAMA OBJETIVOS Comprender y aplicar los conceptos fundamentales del Cálculo Integral y Series Usar el Cálculo Integral y

Más detalles

MÉTODOS DE INTEGRACION

MÉTODOS DE INTEGRACION MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS INTEGRALES INDEFINIDAS Índice: 1. Primitiva de una función--------------------------------------------------------------------------- 2 2. Interpretación geométrica. Propiedades de la integral indefinida--------------------------

Más detalles

Unidad Temática Cálculo de primitivas

Unidad Temática Cálculo de primitivas Unidad Temática 5 5.1 Análisis Matemático (Ingeniería Informática) Departamento de Matemática Aplicada Facultad de Informática Universidad Politécnica de Valencia Contenidos 1 Integración Primitiva Integración

Más detalles

Unidad 10 Integrales definidas. Aplicaciones

Unidad 10 Integrales definidas. Aplicaciones Unidad Integrales definidas. Aplicaciones PÁGINA 5 SOLUCIONES. Las áreas quedan: A u A u A 5 u. El área del recinto viene dada por : ( ) ( ) Área d,5 u PÁGINA 9 SOLUCIONES. La solución queda: Directo:

Más detalles

2. La fórmula de la derivada de un producto de dos funciones, aplicada a f(x) g(x), permite escribir,

2. La fórmula de la derivada de un producto de dos funciones, aplicada a f(x) g(x), permite escribir, INTRO. MÉTODOS DE INTEGR. ( II ) En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: TÉCNICAS DE INTEGRACIÓN TÉCNICAS DE INTEGRACIÓN En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada

Más detalles

INTEGRACION POR PARTES

INTEGRACION POR PARTES INTEGRACION POR PARTES Se basa en la regla de derivación del producto de dos funciones derivables en un dominio común. Sean u(x)y v(x) común. Entonces: dos funciones derivables en un dominio udv = uv vdu

Más detalles

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

Guía de Ejercicios: Métodos de Integración

Guía de Ejercicios: Métodos de Integración Guía de Ejercicios: Métodos de Integración Área Matemática Resultados de aprendizaje Resolver integrales usando diferentes métodos de integración Contenidos 1. Método de sustitución simple 2. Método de

Más detalles

Ejercicios Departamental de marzo del 2016

Ejercicios Departamental de marzo del 2016 Ejercicios Departamental 06 Ciro Fabián Bermúez Márquez 7 de marzo del 06 El siguiente documento tiene la finalidad de revisar los ejercicios del eamen departamental de cálculo integral que se llevo acabo

Más detalles

Métodos de integración

Métodos de integración Integración por partes Métodos de integración De la derivada del producto de dos funciones obtenemos la fórmula de la derivación por partes. (uu. vv) = uu vv + uu vv que se puede escribir dd(uu. vv) =

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Un resumen de la asignatura. Junio, 2015

Un resumen de la asignatura. Junio, 2015 Un resumen de la asignatura Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones ETSIT (UPM) Junio, 2015 1 Los Números Reales(R) Los números Irracionales Continuidad

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden.5 Ecuaciones diferenciales homogéneas Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de

Más detalles

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013 Funciones Hiperbólicas Funciones Hiperbólicas Who? Verónica Briceño V. When? noviembre 2013 En esta Presentación... En esta Presentación veremos: Definición de Funciones Hiperbólicas En esta Presentación...

Más detalles

Técnicas de Integración, preparado por: Gil Sandro Gómez

Técnicas de Integración, preparado por: Gil Sandro Gómez Tema II. Técnicas de Integración. Integración por partes. La integración por partes surge del producto de una función trascendente y una algebraica, una inversa trigonométrica y una algébrica, una trigonométrica

Más detalles

duv = udv + vdu udv = uv vdu

duv = udv + vdu udv = uv vdu I. INTEGRACIÓN POR PARTES. Si la integración de una función no es posible encontrarla por alguna de las fórmulas conocidas, es posible que se pueda integrar utilizando el método conocido como integración

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Antiderivada o Promitiva agosto 2012 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada. En esta Presentación... En esta Presentación veremos: Definición de Antiderivada.

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

2 Unidad II: Ecuaciones Diferenciales de Orden Superior

2 Unidad II: Ecuaciones Diferenciales de Orden Superior ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales

Más detalles

PRACTICO: : LÍMITES DE FUNCIONES

PRACTICO: : LÍMITES DE FUNCIONES APUNTE TEORICO-PRACTICO PRACTICO: : LÍMITES DE FUNCIONES UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática 1 Carreras: Lic. en Economía Profesor: Prof. Mabel Chrestia Semestre: 1ero Año: 16 Introducción

Más detalles

UNIDAD I. DIFERENCIALES E INTEGRAL INDEFINIDA. Actividad 1. DIFERENCIALES

UNIDAD I. DIFERENCIALES E INTEGRAL INDEFINIDA. Actividad 1. DIFERENCIALES CENTRO DE ESTUDIOS DE BACHILLERATO Nº 4/ LIC. JESÚS REYES HEROLES GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO ASIGNATURA PROFESOR SEMESTRE CÁLCULO INTEGRAL L. M. A. JUAN MANUEL VALDEZ CHÁVEZ 0 0 B SEXTO

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II - Fernando Sánchez - - 3 Cálculo Cálculo II de primitivas 04 03 06 Si f es una función elemental, se trata de encontrar una función F que cumpla F (x = f (x. Para una clase amplia de funciones ya se ha

Más detalles

Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x).

Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x). Tema 5 Integración 5.1 Integral Indefinida Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x). Ejemplos: La

Más detalles

Cálculo Integral: Guía II

Cálculo Integral: Guía II 00 Cálculo Integral: Guía II Profr. Luis Alfonso Rondero García INSTITUTO POLITÉCNICO NACIONAL Departamento de Unidades de Aprendizaje del Área Básica /0/00 Integración de Potencias de Funciones Trigonométricas.

Más detalles

Matemáticas CÁLCULO DE DERIVADAS

Matemáticas CÁLCULO DE DERIVADAS Matemáticas Derivada de un cociente de funciones CÁLCULO DE DERIVADAS Considérense, como en los casos precedentes, dos funciones f y g definidas y derivables en un punto x. Además, en este caso, se tiene

Más detalles

FUNCIONES ELEMENTALES Y PROPIEDADES

FUNCIONES ELEMENTALES Y PROPIEDADES . NOCIONES INTRODUCTORIAS.. Concepto de función. Dominio e Imagen. Una función es una relación entre dos variables, de forma que a cada valor de la variable independiente x, le asocia un único valor de

Más detalles

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula . [] [ET-A] Calcula d. --. [] [ET-B] Calcula / d. (Sugerencia: integración por partes) cos. [] [JUN-A] Sean f: y g: las funciones definidas respectivamente por: f() = y g() = +. a) Esboza las gráficas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Tema 3. Calculo de primitivas (2ª parte)

Tema 3. Calculo de primitivas (2ª parte) Tema 3. Calculo de primitivas (2ª parte) Este tema es una continuación del anterior y está dedicado al estudio de los métodos de integración adecuados a la resolución de dos tipos de integrales concretas:

Más detalles

Cuadro de derivadas. Cuadro de Derivadas. y = k La derivada de una cte es igual a cero. Es decir: y = 0

Cuadro de derivadas. Cuadro de Derivadas. y = k La derivada de una cte es igual a cero. Es decir: y = 0 Cuadro de derivadas y = k La derivada de una cte es igual a cero. Es decir: 0 y = x y = + g(x) y = g(x) y = k y = g(x) La derivada de la función identidad es igual a. Es decir: La derivada de una suma

Más detalles

Integral indefinida Matemáticas I 1 INTEGRAL INDEFINIDA. Cuando utilizamos la notación diferencial, teniendo en cuenta que

Integral indefinida Matemáticas I 1 INTEGRAL INDEFINIDA. Cuando utilizamos la notación diferencial, teniendo en cuenta que Primitiva. Integral indefinida INTEGRAL INDEFINIDA Sean f y F dos funciones reales definidas en un mismo dominio. La función F es una función primitiva de f, o simplemente primitiva de f, si F tiene por

Más detalles

2.5 Ecuaciones diferenciales homogéneas

2.5 Ecuaciones diferenciales homogéneas .5 Ecuaciones diferenciales homogéneas 59.5 Ecuaciones diferenciales homogéneas Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de sus variables..

Más detalles

Funciones: Límites y continuidad.

Funciones: Límites y continuidad. Límites finitos de sucesiones. Funciones: límites y continuidad Matemáticas I Funciones: Límites y continuidad. + Decimos que una sucesión numérica ( ) n= tiene por límite r R y se escribe =r o de forma

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3 Ana María Albornoz R. Ejercicios resueltos. Calcular los siguientes ites algebraicos + + 5 + + + 0 0 + pero + 0 0 0, pero 0 + + + 4 que es una forma indeterminada. Pero + + + + + + + + + + + + + + + +

Más detalles

INTEGRALES LECCIÓN 10

INTEGRALES LECCIÓN 10 INTEGRALES LECCIÓN 10 Índice: Integración por partes. Problemas. 1.- Integración por partes Si f y g son dos funciones derivables, tenemos lo siguiente: (f g)'=f' g+f g' (f g)'= f' g+ f g' f g= f' g+ f

Más detalles

Cálculo de límites. Continuidad

Cálculo de límites. Continuidad Chapter 8 Cálculo de límites. Continuidad 8. Definición Una función f () tiene límite l en a, siparatodasucesióndevalores n a las imágines correspondientes f ( n ) l. Sediceentoncesque f () f (a) a 8.2

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad

Más detalles

integración de funciones racionales

integración de funciones racionales VIII 1 / 6 Ejercicios sugeridos para : los temas de las clases del 26 de febrero y 2 de marzo de 2004. Tema : Integración de funciones racionales. 1.- Diga, justificando, cuales de las siguientes fórmulas

Más detalles

INTEGRACIÓN Julián de la Horra Departamento de Matemáticas U.A.M.

INTEGRACIÓN Julián de la Horra Departamento de Matemáticas U.A.M. INTEGRACIÓN Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción En este capítulo vamos a abordar y estudiar el concepto de integral definida. Empezaremos planteando algunos ejemplos sencillos

Más detalles

P R I M E R B L O Q U E E C. D I F E R E N C I A L E S

P R I M E R B L O Q U E E C. D I F E R E N C I A L E S P R I M E R B L O Q U E E C. D I F E R E N C I A L E S Os proponemos una serie de ejercicios tipo examen de la asignatura Matemáticas II del Grado de Industriales. 1. y = t y t 1 + y ; y(0) = 1 2. Resolver

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II - Fernando Sánchez - - 3 Cálculo Cálculo II de primitivas 0 03 07 Si f es una función elemental, se trata de encontrar una función F que cumpla F (x) = f (x). Para una clase amplia de funciones ya se ha

Más detalles

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx . [] [SEP-B] Sea f: la función definida por f() = 9-. a) Halla la ecuación de la recta tangente a la gráfica de f en el punto de abscisa =. b) Esboza el recinto limitado por la gráfica de f, la recta +y

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Capítulo 5: Cálculo integral

Capítulo 5: Cálculo integral Capítulo 5: Cálculo integral 1. Lección 18. La integral indefinida 1.1. Concepto de integral indefinida En el capítulo 3 hemos visto la diferencial de una función: dada y = f(x), su diferencial es una

Más detalles

El cálculo integral fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow.

El cálculo integral fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow. INTRODUCCION El cálculo integral fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow. Los trabajos de este último y los aportes de

Más detalles

13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría

13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría Integral indefinida. Reglas de integración Piensa y calcula Calcula: a y =, y' = b y' =, y = c y = cos, y' = d y' = cos, y = a y' = b y = c y' = sen d y = sen Aplica la teoría. 7 Se aplica la integral

Más detalles

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple que F'(x) = f(x), x. Dicho

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

Ejercicios resueltos Matemáticas Universitaras II

Ejercicios resueltos Matemáticas Universitaras II Ejercicios resueltos Matemáticas Universitaras II Genaro Luna Carreto Octubre 06 Profesor de la Benemérita Universidad Autónoma de Puebla, Méico. OBJETIVO La finalidad de éste documento es resolver problemas

Más detalles

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Ingeniería Matemática SEMANA 6: PRIMITIVAS 3.3. Integración por partes Proposición 3. (Fórmula de integración

Más detalles

Tema 5: Funciones, límites y Continuidad

Tema 5: Funciones, límites y Continuidad Tema 5: Funciones, límites y Continuidad 0.- Introducción.- Definición de Función..- Funciones elementales..- Operaciones con funciones...- Composición de funciones...- Función inversa o recíproca 3.-

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

REGLA DE L'HÔPITAL. En cursos anteriores, al estudiar límites de funciones, aparecen las indeterminaciones e

REGLA DE L'HÔPITAL. En cursos anteriores, al estudiar límites de funciones, aparecen las indeterminaciones e REGLA DE L'HÔPITAL En cursos anteriores, al estudiar límites de funciones, aparecen las indeterminaciones e y se aprenden los artificios necesarios para resolverlas. Generalmente, surgen en límites de

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

Capítulo 2: Cálculo diferencial de una y varias variables

Capítulo 2: Cálculo diferencial de una y varias variables Capítulo 2: Cálculo diferencial de una y varias variables (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Límites y continuidad Límites laterales

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles