PROPIEDADES GENERALES DE LOS GASES INTRODUCCIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROPIEDADES GENERALES DE LOS GASES INTRODUCCIÓN"

Transcripción

1 RESPIRACIÓN El aire es una mezcla de gases entre los cuales se encuentran principalmente el nitrógeno (78,62%), el oxígeno (20,84%), el dióxido de carbono (0,04%) y el agua (0,50%). El oxígeno es indispensable para la vida al ser el aceptor final de la cadena respiratoria ubicada en la membrana mitocondrial interna y además está vinculado en una serie de procesos patológicos denominados en conjunto estrés oxidativo. La difusión del oxígeno a los tejidos es posible gracias a una cascada de gradiente de presión, desde el aire ambiental hasta la mitocondria. A nivel del mar la presión barométrica es de 760 mm Hg y la presión parcial de oxígeno (PO 2 ) a la inspiración es de 160 mm Hg, considerando que el aire que respiran los animales contiene un 21% de oxígeno. A su paso por las vías respiratorias el aire se entibia y humedece; de éste modo la influencia de la presión de vapor de agua a nivel alveolar hace que la PO 2 disminuya a un valor de 110 mm Hg aproximadamente. A continuación, por el efecto de la PCO 2 (presión parcial de dióxido de carbono) y de la difusión a través de la membrana alveolo-capilar, la PO 2 en los capilares pulmonares es de 100 mm Hg y al llegar a la aurícula izquierda se reduce a 95 mm Hg a causa del cortocircuito anatómico. En la sangre que se transporta a los tejidos dicha presión es de 90 mm Hg y en los capilares es de 40 mm Hg. Se cree que la PO 2 intersticial es de mm Hg, que a nivel de la membrana celular es de 10 mm Hg y en la mitocondria oscila entre 1 y 5 mm Hg. Así es como el oxígeno difunde de sitios de mayor presión a menor presión, o sea a favor del gradiente. Lo mismo pero en dirección contraria ocurre con el CO 2, que al producirse por la combustión de moléculas en el interior de las células, tiende a difundir desde tejidos hacia los pulmones y ser eliminado por la espiración del animal. Como veremos más adelante, no todo el CO 2 se elimina completamente sino que parte del mismo se utiliza en reacciones metabólicas, por ejemplo en las carboxilaciones (adición de grupos carboxilo, COO - ). Cuando el oxígeno difunde a través de la membrana alveolo-capilar, el 97% se une a la hemoglobina y el 3% restante permanece disuelto en el plasma.

2 Recordemos que la hemoglobina consiste en cuatro cadenas polipeptídicas y cuatro grupos hemo, estando las cuatro cadenas mantenidas juntas por atracciones no covalentes; cada cadena contiene un grupo hemo que se une al oxígeno (que participa en el intercambio de gases). PROPIEDADES GENERALES DE LOS GASES INTRODUCCIÓN La función primordial de los pulmones es intercambiar gases desde la atmósfera hasta la sangre y desde ésta hacia el aire del ambiente. La mejor manera de saber si el aparato respiratorio realiza correctamente esta función es comprobar el resultado final, es decir, determinar el oxígeno y el dióxido de carbono en la sangre arterial. Pero esta no es la verdadera necesidad biológica del organismo

3 "vivo". Los seres aeróbicos lo son en tanto y en cuanto el oxígeno es utilizado por las células en su metabolismo, en la misma medida que los residuos son eliminados para evitar la intoxicación. Una vez que la membrana alveolo-capilar (verdadera unidad funcional en el pulmón) ha realizado su labor de simple difusión de gases, cada uno de ellos debe alcanzar su destino, el oxígeno debe llegar hasta las mitocondrias y el CO 2 salir a la atmósfera. El paso del oxígeno desde la atmósfera hasta las mitocondrias se realiza a través de la ventilación, la distribución de gas en el pulmón (ventilación/perfusión), la difusión a través de la membrana alvéolo-capilar, el transporte por la sangre y su transferencia hacia el tejido y la célula. El CO 2 debe realizar el mismo camino pero en sentido contrario. Este deambular de los gases por los territorios respiratorio, cardiocirculatorio y sanguíneo puede expresarse en términos físicos mediante el concepto de conductancia, donde en cada lugar del trayecto, la presión parcial del gas es ligeramente inferior a su localización inmediatamente anterior. INTRODUCCIÓN A LA FÍSICA DE GASES La materia (todo aquello que nos rodea) puede encontrarse en tres estados de agregación que conocemos como sólido, líquido y gaseoso. Estos estados dependen fundamentalmente de las condiciones de presión y temperatura a la que la materia esté sometida. En el estado sólido los átomos o moléculas ocupan posiciones fijas aunque se encuentran vibrando en esas posiciones con una capacidad de movimiento limitada. En un líquido las fuerzas de cohesión que mantienen unidas estas moléculas es mucho menor; en este estado las moléculas tienen cierta capacidad de movimiento que está limitada en gran medida por las demás moléculas. En el estado gaseoso las moléculas se encuentran muy alejadas unas de otras y se mueven en todas direcciones con libertad absoluta. Vamos a estudiar el comportamiento de los gases y como la ciencia ha tratado de encontrar una explicación para este comportamiento

4 LEY DE BOYLE (LEY DE MARIOTTE) Esto quiere decir que si el volumen del contenedor aumenta, la presión en su interior disminuye y, viceversa, si el volumen del contenedor disminuye, la presión en su interior aumenta (más grande el recipiente, menor presión del gas en su interior; más pequeño el recipiente, mayor presión del gas en su interior). La ley de Boyle permite explicar la ventilación pulmonar: el aire entra en los pulmones porque la presión interna de estos es inferior a la atmosférica y por lo tanto existe un gradiente de presión. Inversamente, el aire es expulsado de los pulmones cuando estos ejercen sobre el aire contenido una presión superior a la atmosférica. Cuando aumenta la presión el volumen disminuye, mientras que si la presión disminuye el volumen aumenta. LA LEY DE CHARLES Charles describió que el aire seco aumentaba de volumen en una forma exactamente igual al aumento de la temperatura, y que el aire húmedo aumentaba

5 en una forma proporcional al aumento de temperatura según un determinado coeficiente de expansión térmica del gas en cuestión. Esto quiere decir que en un recipiente flexible que se mantiene a presión constante el aumento de temperatura conlleva un aumento del volumen o, en otras palabras, lo que se conocen como Ley de Charles y Gay-Lussac. La ley de Charles se aplica en la respiración cuando el aire entra en los pulmones, generalmente más calientes que el ambiente, se expanden aumentando el volumen pulmonar. Un buen experimento para demostrar esta ley es calentar una lata con un poco de agua, al hervir el agua se sumerge en agua fría y su volumen cambia. La ley fue publicada primero por Gay Lussac en 1875, pero hacía referencia al trabajo no publicado de Jacques Charles, de alrededor de 1787, lo que condujo a que la ley sea usualmente atribuida a Charles. La Ley de Charles y Gay-Lussac, o simplemente Ley de Charles, es una de las leyes de los gases ideales. Relaciona el volumen y la temperatura de una cierta cantidad de gas ideal, mantenido a una presión constante, mediante una constante de proporcionalidad directa

6 LEY DE DALTON DE LAS PRESIONES PARCIALES Es decir, la ley de Dalton establece que en una mezcla de gases cada gas ejerce su presión como si los restantes gases no estuvieran presentes. La presión específica de un determinado gas en una mezcla se llama presión parcial, y se representa con la letra p. La presión total de la mezcla se calcula sumando las presiones parciales de todos los gases que la componen. Por ejemplo, la presión atmosférica es: Presión atmosférica (760 mm de Hg) = po 2 (160 mm) + pn 2 (593 mm Hg) + pco 2 (0.3 mm Hg) + ph 2 O (alrededor de 8 mm de Hg) LEY DE HENRY

7 La ley de Henry explica, por ejemplo, la narcosis por nitrógeno o intoxicación que se manifiesta en los buceadores que respiran aire en botellas cuando la presión debida a la profundidad disuelve grandes cantidades de nitrógeno en la sangre. Altas concentraciones de este gas producen un efecto narcotizante. Además, la ley de Henry también explica por qué al retornar a la superficie los buceadores deben subir escalonadamente para permitir que el nitrógeno disuelto en la sangre se libere al disminuir la presión. De no hacerlo así, el buceador corre el riesgo de experimentar los síntomas de la descompresión, resultantes de las burbujas de gas que se desprenden de la sangre al retornar a la presión atmosférica. LEY DE FICK El área de la superficie total de membrana en los pulmones (alvéolos) puede estar en el orden de los 100 m 2 y tiene un grosor de menos de una millonésima de metro, de modo que conforma un interfaz intercambiadora de gas muy efectiva (en otras palabras, posee un gran área de poco grosor). Los factores de los cuales depende la velocidad de paso de un gas a través de una membrana son: Área de intercambio: en el caso de los pulmones, de 70 a 100 m 2 de superficie de intercambio (en algunas alteraciones patológicas este área disminuye). Constante de difusión (D) de un gas: el CO 2 es 20 veces más difusible que el O 2. Diferencia de presiones entre uno y otro lado de la membrana: Inversamente proporcional al grosor de la membrana (G): a pesar de que consta de varias capas, la membrana respiratoria alveolar es finísima: menos de 1 micrómetro de ancho.

8 La sangre demora 0,75 segundos en pasar por el alvéolo, y en solo 0,25 segundos se alcanza el equilibrio de las presiones de los gases. Cuando un animal hace ejercicio la sangre pasa más rápido, e igualmente se alcanza el equilibrio. Cuando la membrana está engrosada (alteración de la difusión), en reposo no hay problema porque puede demorarse 0,50 o 0,75 segundos en alcanzar el equilibrio; pero si se hace ejercicio, la sangre pasa más rápido y ese tiempo no será suficiente para alcanzar el equilibrio y la presión parcial de oxígeno será menor. Las consecuencias de este tipo de alteraciones son evidentes en, por ejemplo, los equinos de carrera. ECUACIÓN DE LOS GASES IDEALES LEY DE LOS GASES IDEALES Según la teoría atómica, las moléculas pueden tener cierta libertad de movimientos en el espacio. La libertad de movimiento de las moléculas de un sólido está restringida a pequeñas vibraciones; en cambio, las moléculas de un gas se mueven aleatoriamente, y sólo están limitadas por las paredes del recipiente que las contiene. Se han desarrollado como hemos visto leyes que relacionan las variables macroscópicas en base a las experiencias en laboratorio. En los gases ideales, estas variables incluyen la presión (p), el volumen (V) y la temperatura (T). Repasando: La ley de Boyle-Mariotte relaciona inversamente las proporciones de volumen y presión de un gas, manteniendo la temperatura constante: P1.V1 = P2.V2 La ley de Gay-Lussac afirma que el volumen de un gas, a presión constante, es directamente proporcional a la temperatura absoluta:

9 La ley de Charles sostiene que, a volumen constante, la presión de un gas es directamente proporcional a la temperatura absoluta del sistema. De las tres se deduce la ley universal de los gases: HIPOTESIS DE AVOGADRO Cada molécula, dependiendo de los átomos que la compongan, deberá tener la misma masa. Es así que puede hallarse la masa relativa de un gas de acuerdo al

10 volumen que ocupe. La hipótesis de Avogadro permite determinar la masa molecular relativa de esos gases. Analicemos el orden lógico que sigue: 1) La masa de 1 litro de cualquier gas es la masa de todas las moléculas de ese gas. 2) Un litro de cualquier gas contiene el mismo número de moléculas de cualquier otro gas 3) Por lo tanto, un litro de un gas posee el doble de masa de un litro de otro gas si cada molécula del primer gas pesa el doble de la molécula del segundo gas. 4) En general las masas relativas de las moléculas de todos los gases pueden determinarse pesando volúmenes equivalentes de los gases. En condiciones normales de presión y temperatura (CNPT) [P = 1 atm y T = -273 ºK] un litro de hidrógeno pesa 0,09 g y un litro de oxígeno pesa 1,43 g. Según la hipótesis de Avogadro ambos gases poseen la misma cantidad de moléculas. La proporción de los pesos entre ambos gases es: 1,43/0,09 = 15,9 (aproximadamente 16); por lo tanto, la relación que existe entre una molécula de oxígeno e hidrógeno es de 16 a 1. Las masas atómicas relativas que aparecen en la tabla periódica están consideradas a partir de un volumen de 22,4 litros en CNPT. Como consecuencia de la hipótesis de Avogadro puede considerarse una generalización de la ley de los gases. Si el volumen molar (volumen que ocupa un mol de molécula de gas) es el mismo para todos los gases en CNPT, entonces podemos considerar que es el mismo para todos los gases ideales a cualquier temperatura y presión que se someta al sistema. Esto es cierto porque las leyes que gobiernan los cambios de volumen de los gases con variaciones de temperatura y presión son las mismas para todos los gases ideales. Estamos relacionando proporcionalmente el número de moles (n), el volumen, la presión y la temperatura: P.V ~ n.t. Para establecer una igualdad debemos añadir una constante (R) quedando:

11 DIFUSIÓN DE LOS GASES RESPIRATORIOS A TRAVÉS DE LA MEMBRANA ALVEOLO-CAPILAR El intercambio pulmonar de gases requiere de la constante renovación del contenido del gas alveolar y de la sangre capilar pulmonar a través de los procesos de la ventilación y la circulación pulmonares. Así se consigue mantener gradientes de presiones parciales de O 2 y de CO 2 a ambos lados de la membrana alveolo-capilar, imprescindible para el proceso de la difusión de los gases a través de la misma. De un lado de la membrana, el aire fresco que aporta la respiración renueva la presión parcial de oxígeno y al otro lado, el componente capilar, que contiene la sangre que recibirá el gas desde el espacio alveolar. El componente capilar representa la totalidad del volumen sanguíneo que está en contacto con la zona de intercambio en el momento de la difusión. La velocidad de paso de esta sangre por el capilar pulmonar, o gasto cardiaco, será el tercer mecanismo participante en el proceso, junto a los componentes de membrana y capilar, por lo que también puede influir en el resultado final de la difusión. Los gases respiratorios, O 2 y CO 2, están afectados por los tres mecanismos anteriormente mencionados. En el intercambio de gases, una vez que el gas inspirado ha conseguido acceder al espacio alveolar a través de los mecanismos de transporte y mezclado en fase gaseosa, comienza el proceso conocido como difusión en fase líquida, que es el que participa en la transferencia o difusión de los gases a través de la membrana

12 alveolo-capilar. Esta membrana, que se interpone en el proceso de la difusión, tiene un grosor aproximado de 0,4 micrómetros y está compuesta por surfactante, epitelio alveolar, membrana basal y endotelio capilar (estos dos últimos están fusionados). Traspasada esta membrana, el gas implicado debe difundir dentro de la sangre y combinarse con la hemoglobina, donde termina el proceso de la difusión. TRANSPORTE ALVEOLO-CAPILAR DE LOS GASES RESPIRATORIOS En el transporte alveolo-capilar de los gases respiratorios, O 2 y CO 2, intervienen los tres factores del transporte alveolo-capilar de los gases. En el caso del oxígeno, el factor de membrana representa la primera limitante, debido a que este gas tiene una tasa de difusión muy baja, es 20 veces menor que la del CO 2. En el lado alveolar de la membrana, la presión parcial de oxígeno varía dependiendo de la ventilación por minuto, pudiéndose apreciar un descenso durante la espiración respecto de la inspiración y puede incrementarse o disminuirse con variaciones de la fracción inspirada de oxígeno. El factor sanguíneo interviene a través de la tasa de recombinación del oxígeno con la hemoglobina. La difusión y la convección directa de las moléculas de oxígeno en el plasma no intervienen en este componente porque son prácticamente instantáneas, pero el factor circulatorio hace que su valor esté limitado por el gasto cardiaco, lo puede apreciarse en los casos de incrementos de gasto cardiaco, o bien durante el ejercicio, en los de descenso del gasto cardiaco, o en la insuficiencia cardiaca. El CO 2 es producto del metabolismo celular el cuál es eliminado por el pulmón durante el ciclo respiratorio. El control en la cinética de este gas en el organismo es muy estricto y depende de una compleja interacción entre el sistema nervioso central, el sistema nervioso autónomo y la función cardiopulmonar. El gas se produce a nivel celular a un ritmo directamente proporcional a la actividad metabólica (producción normal basal de 200 ml/min). Se transporta por la sangre principalmente como ión bicarbonato (HCO - 3, 85%) y en menor proporción como disuelto o combinado con grupos aminos de la hemoglobina.

13 EFECTO BOHR La oxigenación de la Hb aumenta la acidez, o dicho de otra manera, la desoxigenación aumenta la basicidad porque la unión del oxigeno a la Hb implica la participación en el equilibrio del ion hidrógeno: Hb + 4 O > Hb(O 2 ) 4 + H + T R Cuando el CO2 llega al eritrocito se dan dos situaciones: la primera es que el CO 2 reacciona con el H 2 O, reacción catalizada por la anhidrasa carbónica, produciendo H 2 CO 3 en un 90%. La segunda es que el CO 2 en un 7%, se une a la Hb generando carbaminohb. El - ácido carbónico pasa automáticamente a HCO 3 y H +. El H + generado se incorpora a la desoxihb, esto genera HbH +, proceso facilitado por el efecto Bohr. La Hb retiene 2 H + por cada molécula de O 2 que pierde. El HCO - 3 por su parte, difunde a través de la membrana eritrocitaria y en parte se intercambia con iones Cl - del plasma, mecanismo denominado desplazamiento del cloruro. Así se transporta la mayoría del CO 2. El restante, se transporta como CO 2 disuelto (5%) y como reacción del CO 2 con los grupos amino de la Hb, donde se generan entre 1 y 2 equivalentes de H +. En los pulmones se da el proceso inverso, el oxigeno se une a la desoxihb y los H + se liberan. El HCO - 3 que está en sangre entra al eritrocito, y sale el Cl -. El H + reacciona con el HCO - 3 y forma el ácido carbónico, este se desdobla en CO 2 y H2 O. El CO 2 es exhalado y el agua sale a favor de gradiente, a medida que aumenta su concentración. Este fenómeno reversible que se da en el eritrocito, entre pulmón y tejidos es lo que se conoce como Efecto Bohr.

14 EFECTO HALDANE El efecto Haldane es el resultado del simple hecho que la combinación del oxigeno con la hemoglobina en los pulmones hace que la hemoglobina se convierta en un acido más fuerte. Esto a su vez desplaza el dióxido de carbono de la sangre al interior de los alvéolos de dos maneras. En los capilares tisulares, el efecto Haldane produce un aumento de la toma de dióxido de carbono, debido a que el oxigeno sale de la hemoglobina, y en los pulmones produce un aumento en la liberación de dióxido de carbono, porque la hemoglobina toma oxigeno. Por tanto, el efecto Haldane duplica aproximadamente la cantidad de dióxido de carbono liberada por la sangre en los pulmones y duplica aproximadamente la cantidad de dióxido de carbono tomada en los tejidos Al oxigenar la Hb se libera H + de la misma, lo que da lugar a un aumento en la acidez titulable (transporta menos CO 2 como carboxihemoglobina) Los pacientes con problemas pulmonares obstructivos, que por mecanismos de compensación fisiopatologicos (hipoxemia), elevan su concentraciones de Hto y Hb en un 20-30%, por lo tanto considerando las bases fisiológicas del Efecto de Haldane, los pacientes obstructivos y sobre todos los que ya tiene indicación de oxigeno en una internación, se deben manejar con flujos o concentraciones bajas de O 2 (no más de 2 litros por minuto), por el peligro de exacerbar una acidosis respiratoria ó agregar una metabólica; poniendo en peligro la vida del paciente.

DIFUSIÓN - TRANSPORTE DE GASES EN SANGRE. Material de uso interno

DIFUSIÓN - TRANSPORTE DE GASES EN SANGRE. Material de uso interno DIFUSIÓN - TRANSPORTE DE GASES EN SANGRE Material de uso interno 2010 Hoy hablaremos de: * Leyes de los gases: aspectos aplicados * Hematosis ó intercambio alvéolo-capilar * Transporte de gases en sangre

Más detalles

LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas:

LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas: LEYES DE LOS GASES LEY DE AVOGADRO: Esta ley, descubierta por Avogadro a principios del siglo XIX, establece la relación entre la cantidad de gas y su volumen cuando se mantienen constantes la temperatura

Más detalles

FISIOLOGIA RESPIRATORIA DR. JOSÉ CARLOS MORALES NÁJERA

FISIOLOGIA RESPIRATORIA DR. JOSÉ CARLOS MORALES NÁJERA FISIOLOGIA RESPIRATORIA DR. JOSÉ CARLOS MORALES NÁJERA PRINCIPIOS BASICOS: FÍSICA DE LOS GASES La ventilación y la perfusión pulmonares y la transferencia de los gases obedecen estrictamente a fuerzas

Más detalles

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría

Más detalles

2. Sobre los valores de las diferentes presiones parciales de los gases, marca con una cruz (X) la respuesta correcta según corresponda.

2. Sobre los valores de las diferentes presiones parciales de los gases, marca con una cruz (X) la respuesta correcta según corresponda. Semana 7 Consolidación 7. 1. Acerca de la mecánica de la ventilación pulmonar, escribe en el espacio en blanco (V) si son verdaderos o (F) si son falsos los siguientes planteamientos: a) _F_ Los intercostales

Más detalles

GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha:

GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha: Sector: Naturaleza Nivel: 8 Básico Nombre Profesora: Nancy Erazo Rosa Unidad V : Leyes de los gases GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso:

Más detalles

SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA

SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA I. CONTENIDOS: 1. Leyes de los gases. 2. Presión y temperatura. 3. Principio de Le Chatelier. 4. Constante de equilibrio. SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA II. OBJETIVOS: Al término de la Sesión,

Más detalles

Física y Química 1º Bach.

Física y Química 1º Bach. Física y Química 1º Bach. Leyes de los gases. Teoría cinético-molecular 05/11/10 DEPARTAMENTO FÍSICA E QUÍMICA Nombre: OPCIÓN 1 1. Observa el aparato de la Figura. Si la temperatura del aceite se eleva

Más detalles

UNIDAD 8: LA RESPIRACIÓN DE LOS SERES VIVOS

UNIDAD 8: LA RESPIRACIÓN DE LOS SERES VIVOS UNIDAD 8: LA RESPIRACIÓN DE LOS SERES VIVOS Lee con atención. 1. LA RESPIRACIÓN DE LOS ANIMALES Los animales necesitan toma el gas oxígeno (O 2 ) presente en el medio que les rodea y expulsar el gas dióxido

Más detalles

Tarjeta pedagógica EL SISTEMA RESPIRATORIO. Biología. Cómo obtienen los seres vivos la energía de las moléculas? RECOMENDACIONES:

Tarjeta pedagógica EL SISTEMA RESPIRATORIO. Biología. Cómo obtienen los seres vivos la energía de las moléculas? RECOMENDACIONES: Así como es indispensable incorporar materia del medio, también es EL SISTEMA RESPIRATORIO importante liberar la energía química que se encuentra almacenada en las distintas moléculas orgánicas incorporadas.

Más detalles

TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha

TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha TAREA 1 Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha INSTRUCCIONES: Investiga como es el puente de Hidrógeno en las estructuras del H 2 O, NH 3 y HF. Dibuja los modelos resaltando con color

Más detalles

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales.

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. 1. LEYES PONDERALES En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. Ley de conservación de la masa de Lavoisier Lavosier

Más detalles

Pv = nrt P T P T. Ing. Magno Cuba Atahua

Pv = nrt P T P T. Ing. Magno Cuba Atahua TEORI CINÉTIC DE LOS GSES Un gas ideal es un gas cuyas moléculas están tan separadas que raramente chocan unas con otras. uesto que éste es el caso para cualquier gas real a baja ideales a baja densidad

Más detalles

GUÍA DE EJERCICIOS GASES

GUÍA DE EJERCICIOS GASES GUÍA DE EJERCICIOS GASES Área Química Resultados de aprendizaje Aplicar conceptos básicos de gases en la resolución de ejercicios. Desarrollar pensamiento lógico y sistemático en la resolución de problemas.

Más detalles

Dr. Miguel Ángel González Sosa

Dr. Miguel Ángel González Sosa Dr. Miguel Ángel González Sosa Presentación realizada en el curso de Clinopatología del Aparato Respiratorio dentro de la Licenciatura de Médico Cirujano del Área Académica de Medicina en el semestre Julio

Más detalles

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos.

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos. GASES Contenidos Postulados de la teoría cinética de los gases y su relación con las características (expansión, comprensión y difusión) y las propiedades ( presión, volumen y temperatura) que los definen.

Más detalles

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas.

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. Química 1º bachillerato La materia 1 1. TEORÍA ATÓMICA DE DALTON

Más detalles

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases LEYES DE LOS GASES Estado gaseoso Medidas en gases Ley de Avogadro Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac (2ª) Ecuación n general de los gases ideales Teoría

Más detalles

El sistema respiratorio

El sistema respiratorio El sistema respiratorio Así como es indispensable incorporar materia del medio, también es importante liberar la energía química que se encuentra almacenada en las distintas moléculas orgánicas incorporadas.

Más detalles

Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO. Nombre Grupo Matrícula PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P)

Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO. Nombre Grupo Matrícula PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P) Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO Nombre Grupo Matrícula PROPIEDADES DE LOS GASES: I. Completa correctamente la siguiente tabla. PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P) VOLUMEN (V)

Más detalles

P V = n R T LEYES DE LOS GASES

P V = n R T LEYES DE LOS GASES P V = n R T LEYES DE LOS GASES Estado gaseoso Medidas en gases Leyes de los gases Ley de Avogadro Leyes de los gases Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac

Más detalles

TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA

TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA 1. SUSTANCIAS PURAS Y MEZCLAS 2. LEYES PONDERALES DE LAS COMBINACIONES QUÍMICAS 2.1. LEY DE CONSERVACIÓN DE LA MATERIA Enunciada en 1783 por Lavoisier: La materia ni se crea ni se destruye, únicamente

Más detalles

6. MANTENIMIENTO DEL ph EN EL MEDIO EXTRACELULAR

6. MANTENIMIENTO DEL ph EN EL MEDIO EXTRACELULAR Departamento de Bioquímica y Biología Molecular ph y equilibrios acido-base 6. MANTENIMIENTO DEL ph EN EL MEDIO EXTRACELULAR ESQUEMA - Composición iónica de los medios corporales - Capacidad tampón - Mantenimiento

Más detalles

Reacciones Químicas. Homogéneas.

Reacciones Químicas. Homogéneas. Como se sabe, la materia está formada por partículas, dependiendo el comportamiento de esta (la materia) del estado físico en que se encuentran las partículas. Igualmente, sabemos que la materia no es

Más detalles

GASES IDEALES. P. V = n. R. T

GASES IDEALES. P. V = n. R. T GASES IDEALES Lic. Lidia Iñigo A esta altura de tus estudios seguramente ya sabés que hay muchas sustancias formadas por moléculas, qué es una molécula, y que una sustancia determinada puede presentarse

Más detalles

Ventilación Pulmonar. -durante al ejercicio- Elaborado por Lic. Manuel Salazar Leitón

Ventilación Pulmonar. -durante al ejercicio- Elaborado por Lic. Manuel Salazar Leitón Ventilación Pulmonar -durante al ejercicio- Elaborado por Lic. Manuel Salazar Leitón Funciones básicas de la ventilación pulmonar Intercambio gaseoso con el ambiente. Regular el acidez en sangre. Comunicación

Más detalles

Biofísica de la Respiración. Matías Enrique Puello Chamorro

Biofísica de la Respiración. Matías Enrique Puello Chamorro Biofísica de la Respiración Matías Enrique Puello Chamorro www.matiaspuello.wordpress.com 10 de octubre de 2014 Índice 1. INTRODUCCIÓN 4 2. BREVE RESEÑA ANATOMICA 5 2.1. Vias respiratorias...............................................

Más detalles

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

C: GASES Y PRESIÓN DE VAPOR DEL AGUA hecho el vacío. Calcula a) Cantidad de gas que se tiene ; b) la presión en los dos recipientes después de abrir la llave de paso y fluir el gas de A a B, si no varía la temperatura. C) Qué cantidad de

Más detalles

Aspectos destacados del sistema cardiocirculatorio y respiratorio, ligados al entrenamiento deportivo. Dr. Juan Carlos Mazza (Argentina)

Aspectos destacados del sistema cardiocirculatorio y respiratorio, ligados al entrenamiento deportivo. Dr. Juan Carlos Mazza (Argentina) Aspectos destacados del sistema cardiocirculatorio y respiratorio, ligados al entrenamiento deportivo Dr. Juan Carlos Mazza (Argentina) SISTEMA CARDIOVASCULAR Cualquier sistema de circulación requiere

Más detalles

Unidad 0 CÁLCULOS QUÍMICOS. Unidad 0. Cálculos químicos

Unidad 0 CÁLCULOS QUÍMICOS. Unidad 0. Cálculos químicos Unidad 0 CÁLCULOS QUÍMICOS Unidad 0. Cálculos químicos 1 0. Leyes ponderales Leyes que rigen las combinaciones químicas. Se basan en la experimentación y miden cuantitativamente la cantidad de materia

Más detalles

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES FUNDAMENTO TEÓRICO: La materia puede estar en tres estados: sólido, líquido y gaseoso. Los gases, no tienen forma ni volumen fijo, las fuerzas que mantienen

Más detalles

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla ASPECTOS CUANTITATIVOS DE LA QUÍMICA UNIDAD 2: Los gases ideales ÍNDICE 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA

Más detalles

Sistema respiratorio CLASE 1

Sistema respiratorio CLASE 1 Sistema respiratorio CLASE 1 En la respiración celular se libera dióxido de carbono y, para obtener energía, las células oxidan compuestos que contienen carbono, en reacciones químicas que requieren oxígeno.

Más detalles

Transporte de oxígeno y de dióxido de carbono (CO 2 ) en la sangre. La hemoglobina aumenta la capacidad de la sangre para transportar oxígeno.

Transporte de oxígeno y de dióxido de carbono (CO 2 ) en la sangre. La hemoglobina aumenta la capacidad de la sangre para transportar oxígeno. Transporte de oxígeno y de dióxido de carbono (CO 2 ) en la sangre La sangre transporta los gases respiratorios por todo el organismo. El O2 se transporta desde los pulmones hasta todos los tejidos del

Más detalles

ESTADOS DE LA MATERIA

ESTADOS DE LA MATERIA ESTADOS DE LA MATERIA M en C Alicia Cea Bonilla 1 Existen tres estados de la materia: sólido, líquido y gaseoso, dependiendo de la distancia entre sus partículas, de las fuerzas de atracción entre éstas

Más detalles

Capítulo 6. Valoración respiratoria

Capítulo 6. Valoración respiratoria 498 Capítulo 6. Valoración respiratoria 6.19. La respiración. Intercambio gaseoso y modificaciones durante el esfuerzo 6.19 La respiración. Intercambio gaseoso y modificaciones durante el esfuerzo 499

Más detalles

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO LOS GASES Y LAS DISOLUCIONES Departamento de Física y Química 3º ESO 0. Mapa conceptual SÓLIDO ESTADOS DE LA MATERIA LÍQUIDO Presión atmosférica GAS Solubilidad Disolución saturada Disoluciones Soluto

Más detalles

Director de Curso Francisco J. Giraldo R.

Director de Curso Francisco J. Giraldo R. Director de Curso Francisco J. Giraldo R. EL AIRE El aire seco es una mezcla de gases: El 78% es Nitrógeno. El 21% es Oxígeno. El 1% es Argón. El Dioxido de carbono (CO 2 ), Helio (He), Neón (Ne), Kripton

Más detalles

Proceso de liberación de energía, requiere aporte continuo de oxigeno(o2) y eliminación de bióxido de carbono(co2) principal función del aparato

Proceso de liberación de energía, requiere aporte continuo de oxigeno(o2) y eliminación de bióxido de carbono(co2) principal función del aparato Proceso de liberación de energía, requiere aporte continuo de oxigeno(o2) y eliminación de bióxido de carbono(co2) principal función del aparato respiratorio. En condiciones normales la respiración es

Más detalles

E.E.T. Nº9. Físico-Química de 2do año. Guía Nº3. Profesor: Alumno: Curso:

E.E.T. Nº9. Físico-Química de 2do año. Guía Nº3. Profesor: Alumno: Curso: E.E.T. Nº9 Físico-Química de 2do año Guía Nº3 Profesor: Alumno: Curso: Soluciones Una solución es un sistema homogéneo formado por dos o más componentes. En una solución formada por dos componentes se

Más detalles

Capítulo 10. Efectos de superficie. Sistema respiratorio

Capítulo 10. Efectos de superficie. Sistema respiratorio Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:

Más detalles

Proporciona el oxígeno que el cuerpo necesita y elimina el dióxido de carbono o gas carbónico que se produce en todas las células.

Proporciona el oxígeno que el cuerpo necesita y elimina el dióxido de carbono o gas carbónico que se produce en todas las células. Proporciona el oxígeno que el cuerpo necesita y elimina el dióxido de carbono o gas carbónico que se produce en todas las células. La respiración es un proceso involuntario y automático, en que se extrae

Más detalles

TEST APARATO RESPIRATORIO BIR 2015-2016

TEST APARATO RESPIRATORIO BIR 2015-2016 1.- Cuál de los siguientes es el estímulo directo para las neuronas del área quimiosensible de la zona bulbar reguladora de la respiración?: 1. po 2. 2. pco 2. 3. CO 3 H 2. 4. CO 3 H -. 5. Concentración

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

Organización Funcional y el Medio Interno

Organización Funcional y el Medio Interno Organización Funcional y el Medio Interno Aproximadamente el 50 % del cuerpo humano es líquido y la mayor parte es intracelular, la tercera parte es extracelular, la misma que se encuentra en movimiento

Más detalles

- Leyes ponderales: Las leyes ponderales relacionan las masas de las sustancias que intervienen en una reacción química.

- Leyes ponderales: Las leyes ponderales relacionan las masas de las sustancias que intervienen en una reacción química. FÍSICA Y QUÍMICA 4ºESO COLEGIO GIBRALJAIRE CÁLCULOS QUÍMICOS 1.- LA REACCIÓN QUÍMICA. LEYES PONDERALES Una reacción química es el proceso en el que, mediante una reorganización de enlaces y átomos, una

Más detalles

Gases Respiración Externa

Gases Respiración Externa Gases Respiración Externa Respiración Interna o Celular Externa 1 Respiración Interna o Celular - Común a casi todos los seres vivos - Implica el intercambio de ciertos gases entre el medio y las células.

Más detalles

Verónica Mate García Isabel Moreno Moraleda Gracia Guajardo-Fajardo Adriana Serrano Olave

Verónica Mate García Isabel Moreno Moraleda Gracia Guajardo-Fajardo Adriana Serrano Olave Verónica Mate García Isabel Moreno Moraleda Gracia Guajardo-Fajardo Adriana Serrano Olave Introducción Efectos del tabaco fumado Afectaciones por polución aérea Intoxicación por CO Intoxicación por oxígeno

Más detalles

FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN

FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN 1 Física y Química 3º Curso Educación Secundaria Obligatoria Curso académico 2015/2016 FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN 2 Física y Química 3º Curso Educación Secundaria Obligatoria

Más detalles

SUSTANCIA QUÍMICA mercurio oxígeno

SUSTANCIA QUÍMICA mercurio oxígeno ELEMENTO O SUSTANCIA ELEMENTAL: Sustancia formada por un mismo tipo de átomos, por ejemplo: Hg, H 2, Cu, O 2 SUSTANCIA QUÍMICA mercurio oxígeno COMPUESTO O SUSTANCIA COMPUESTA: Sustancia formada por dos

Más detalles

UNIDAD 3 ESTADO GASEOSO

UNIDAD 3 ESTADO GASEOSO UNIDAD DIDÁCTICA 3 UNIDAD 3 ESTADO GASEOSO En la naturaleza, las sustancias se puede presentar en tres diferentes estados de agregación: sólido, líquido y gaseoso, cada uno de los cuales se distingue por

Más detalles

GUIA DE ESTUDIO Nº 7: Equilibrio Químico

GUIA DE ESTUDIO Nº 7: Equilibrio Químico Página26 GUIA DE ESTUDIO Nº 7: Equilibrio Químico I.- Conceptos básicos: Equilibrio químico y constante de equilibrio. Concentraciones en el equilibrio y evolución de un sistema hacia el equilibrio. Principio

Más detalles

Estequiometría y Leyes Ponderales

Estequiometría y Leyes Ponderales Estequiometría y Leyes Ponderales Equipo de Educación en Química Verde Centro Interdisciplinario de Líquidos Iónicos Programa de Educación Continua para el Magisterio Introducción Leyes fundamentales de

Más detalles

Los gases y la Teoría Cinética

Los gases y la Teoría Cinética Para practicar Utiliza tu cuaderno y trata de resolver los siguientes ejercicios: 1.-En una tabla similar a la siguiente, introduce las propiedades características de un SÓLIDO, un LÍQUDO o un GAS, como

Más detalles

Instituto Carlos Tejedor Educación Secundaria Fisicaquímica Segundo año A Profesor Carlos Castañón. Trabajo Práctico: Leyes de los gases

Instituto Carlos Tejedor Educación Secundaria Fisicaquímica Segundo año A Profesor Carlos Castañón. Trabajo Práctico: Leyes de los gases Instituto Carlos Tejedor Educación Secundaria Fisicaquímica Segundo año A Profesor Carlos Castañón Trabajo Práctico: Leyes de los gases 1) La ley de Boyle establece que, a temperatura constante, la presión

Más detalles

Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión

Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión LOS GASES Un gas es una porción de materia cuya forma y volumen son variables ya que se adaptan a la del recipiente que lo contiene, el cual ocupan totalmente. LEYES DE LOS GASES Ley de Boyle Robert Boyle,

Más detalles

capnografia volumetrica NICO Claudia Eyzaguirre G. Enfermera clínica.

capnografia volumetrica NICO Claudia Eyzaguirre G. Enfermera clínica. capnografia volumetrica NICO Claudia Eyzaguirre G. Enfermera clínica. El CO2 es un producto final del O2 utilizado por las células después del metabolismo celular. Una vez que el CO2 alcanza los pulmones

Más detalles

DEPARTAMENTO DE FISICA UNIVERSIDAD DE SANTIAGO DE CHILE GASES IDEALES

DEPARTAMENTO DE FISICA UNIVERSIDAD DE SANTIAGO DE CHILE GASES IDEALES INTRODUCCIÓN GASES IDEALES Las dos primeras unidades del programa de cuarto medio estudian temas estrechamente ligados entre si como lo es la teoría cinética, temperatura, calor, termodinámica. Abordaremos

Más detalles

FOURIER Y NEWTON). LEY DE FICK PARA DIFUSIÓN

FOURIER Y NEWTON). LEY DE FICK PARA DIFUSIÓN INTRODUCCIÓN. SEMEJANZA ENTRE TRANSFERENCIA DE MASA, CALOR Y MOMENTO (LEYES DE FICK, FOURIER Y NEWTON). LEY DE FICK PARA DIFUSIÓN MOLECULAR. E-mail: williamsscm@hotmail.com TRANSFERENCIA DE MASAS El transporte

Más detalles

todoesquimica.bligoo.cl

todoesquimica.bligoo.cl todoesquimica.bligoo.cl Ley de conservación de la masa (Lavoisier) Ley de proporciones definidas (Proust) Ley de proporciones múltiples (Dalton). Ley de proporciones recíprocas (Ritcher) Ley de volúmenes

Más detalles

Fisiopatología del aparato respiratorio II _ Pruebas complementarias

Fisiopatología del aparato respiratorio II _ Pruebas complementarias Fisiopatología del aparato respiratorio II _ Pruebas complementarias Gasometría arterial (GSA) Gasometría arterial: Punción de una arteria periférica Determina el equilibrio ácido-base: - ph - Las concentraciones

Más detalles

PRINCIPIOS FISICOS APLICABLES EN VENTILACION MECANICA. Julio Lloréns

PRINCIPIOS FISICOS APLICABLES EN VENTILACION MECANICA. Julio Lloréns PRINCIPIOS FISICOS APLICABLES EN VENTILACION MECANICA Julio Lloréns No se puede negar que los procesos vitales desempeñan un papel esencial en la función y mantenimiento de la integridad estructural del

Más detalles

La materia. Los gases

La materia. Los gases 1 La materia. Los gases 1 La materia y sus estados de agregación Características de los estados de la materia La materia se puede presentar en varios estados de agregación: sólido, líquido y gas, que tienen

Más detalles

LAS FUNCIONES DEL APARATO CIRCULATORIO Ó PARA QUÉ SIRVE EL APARATO CIRCULATORIO?

LAS FUNCIONES DEL APARATO CIRCULATORIO Ó PARA QUÉ SIRVE EL APARATO CIRCULATORIO? LAS FUNCIONES DEL APARATO CIRCULATORIO Ó PARA QUÉ SIRVE EL APARATO CIRCULATORIO? En el tema anterior estudiamos que las sustancias nutritivas pasaban a la sangre desde el intestino delgado y el oxígeno

Más detalles

EL APARATO RESPIRATORIO

EL APARATO RESPIRATORIO EL APARATO RESPIRATORIO El aparato respiratorio nos permite obtener el oxígeno del aire y expulsar el dióxido de carbono, procedente del metabolismo celular. Las partes de las que se compone el aparato

Más detalles

DISOLUCIONES. Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables.

DISOLUCIONES. Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables. DISOLUCIONES Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables. Soluto es la sustancia que se encuentra en menor proporción. Disolvente es la sustancia

Más detalles

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: GASES Nitrógeno 78% Oxígeno 21% Otros gases 1% La atmósfera también almacena otros gases Vapor

Más detalles

Tema 28 Funciones pulmonares. Mecánica respiratoria. Elasticidad. El surfactante pulmonar.

Tema 28 Funciones pulmonares. Mecánica respiratoria. Elasticidad. El surfactante pulmonar. Tema 28 Funciones pulmonares. Mecánica respiratoria. Elasticidad. El surfactante pulmonar. 1. Introducción. 2. Anatomía del aparato respiratorio. 3. Mecánica respiratoria. 4. Propiedades elásticas del

Más detalles

FISIOLOGIA RESPIRATORIA

FISIOLOGIA RESPIRATORIA FISIOLOGIA RESPIRATORIA LA RESPIRACION TIENE COMO FUNCION PROPORCIONAR O 2 A LAS CELULAS Y EXTRAER EL EXCESO DE CO 2 PRODUCIDO POR ELLAS Componentes de las vías aéreas TRÁQUEA BRONQUIOS BRONQUÍOLOS ZONA

Más detalles

UNIDAD IV GASES PROPIEDADES FISICAS DE LOS GASES

UNIDAD IV GASES PROPIEDADES FISICAS DE LOS GASES UNIDAD IV GASES PROPIEDADES FISICAS DE LOS GASES Muchas sustancias familiares para nosotros existen a temperatura y presión normal en forma gaseosa, éstas incluyen muchos sustancias elementales (H 2, N

Más detalles

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm.

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm. 1) Dada la siguiente reacción química: 2 AgNO3 + Cl2 N2O5 + 2 AgCl + ½ O2. a) Calcule los moles de N2O5 que se obtienen a partir de 20 g de AgNO3. b) Calcule el volumen de O2 obtenido, medido a 20 ºC y

Más detalles

La presión y sus efectos Presión en sólidos Actividad:

La presión y sus efectos Presión en sólidos Actividad: La presión y sus efectos Presión en sólidos Por ejemplo, si una persona desea clavar sobre una viga de madera, le resultará mucho más fácil utilizar un clavo cuya punta es fina que otro cuya punta se encuentra

Más detalles

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 2. El Primer Principio de la Termodinámica

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 2. El Primer Principio de la Termodinámica María del Pilar García Santos GRADO EN FARMACIA FÍSICA APLICADA Y FISICOQUÍMICA I Tema 2 El Primer Principio de la Termodinámica Esquema Tema 2. Primer Principio de la Termodinámica 2.1 Primer Principio

Más detalles

Clasificación de la materia hasta el nivel atómico

Clasificación de la materia hasta el nivel atómico 1. Estequiometría Clasificación de la materia hasta el nivel atómico Materia puede separarse por un proceso físico? SÍ NO Mezcla es homogénea? Sustancia puede descomponerse por un proceso químico? SÍ NO

Más detalles

Física y Química 1º Bachillerato LOMCE

Física y Química 1º Bachillerato LOMCE Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera Bloque 2 Aspectos Cuantitativos de la Química 201 2016 Unidad Didáctica 1 Rev 01 Las Leyes Ponderales y Las Leyes de los Gases Ideales 1.1 Las

Más detalles

GUÍA N 3: Equilibrio Químico y Cinética Química

GUÍA N 3: Equilibrio Químico y Cinética Química 1 PRIMERA PARTE: Ejercicios de desarrollo. 1.- Defina los siguientes términos: a) Reacción irreversible b) Reacción reversible c) Equilibrio químico d) Constante de equilibrio e) Principio de Le Chatelier

Más detalles

1. Estequiometría. 1.Estequiometría

1. Estequiometría. 1.Estequiometría 1. Estequiometría Contenidos Reacciones químicas y ecuaciones químicas Mezclas y sustancias puras; compuestos y elementos; moléculas y átomos; iones Reacciones químicas; estequiometría; ecuaciones químicas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción A Reserva 1, Ejercicio 6, Opción B Reserva, Ejercicio 5, Opción

Más detalles

Termodinámica Temas Selectos de Física 2. Prof. Daniel Valerio Martínez Universidad La Salle Nezahualcóyotl

Termodinámica Temas Selectos de Física 2. Prof. Daniel Valerio Martínez Universidad La Salle Nezahualcóyotl Termodinámica Temas Selectos de Física 2 Prof. Daniel Valerio Martínez Universidad La Salle Nezahualcóyotl Conceptos básicos Termodinámica Sistema Sistema abierto Sistema cerrado Sistema aislado Frontera

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

Gases...1. Características: Volumen:...1. Temperatura:

Gases...1. Características: Volumen:...1. Temperatura: Índice de contenido Gases......1 Características:......1 Volumen:......1 Temperatura:......1 Presión:......2 Medición de presiones:......2 Ley de Boyle (relación presión volumen):......2 Ley de Charles

Más detalles

CLASE Nº 2 ESTEQUIOMETRÍA

CLASE Nº 2 ESTEQUIOMETRÍA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL CLASE Nº 2 ESTEQUIOMETRÍA 1 Estequiometría Leyes que rigen

Más detalles

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289 GASES IDEALES PROBLEMA 10 Mezclas de los gases ciclopropano (C 3H 8) y oxígeno se utilizan mucho como anestésicos. a) Cuántos moles de cada gas están presentes en un recipiente de 1 litro a 23 C, si la

Más detalles

Conceptos básicos en estequiometría

Conceptos básicos en estequiometría Conceptos básicos en estequiometría Tomado de: http://www.eis.uva.es/~qgintro/esteq/tutorial-01.html El Mol Un mol se define como la cantidad de materia que tiene tantos objetos como el número de átomos

Más detalles

INDICE - Parte 2. Cap 7 Parte 2 p. 1 7.4 TRANSPORTE DE OXIGENO POR LA SANGRE 7.4 TRANSPORTE DE OXIGENO POR LA SANGRE

INDICE - Parte 2. Cap 7 Parte 2 p. 1 7.4 TRANSPORTE DE OXIGENO POR LA SANGRE 7.4 TRANSPORTE DE OXIGENO POR LA SANGRE Capítulo 7 PARTE 2/3 7.4 TRANSPORTE DE OXIGENO POR LA SANGRE Para tratar de entender cómo el oxígeno es transportado, vamos ahora a MEDIR, en una persona, algunos elementos de la fisiología respiratoria.

Más detalles

GASES IDEALES. 1 atm = 760 mmhg = 760 Torr = 1013 hpa

GASES IDEALES. 1 atm = 760 mmhg = 760 Torr = 1013 hpa GASES IDEALES Para comprender los problemas de este capítulo es necesario leer previamente la Teoría Cinética de los Gases, el concepto de Variables de Estado y las Leyes de los Gases. Ecuación general

Más detalles

Energía y metabolismo

Energía y metabolismo Energía y metabolismo Sesión 17 Introducción a la Biología Prof. Nelson A. Lagos Los sistemas vivos son abiertos y requieren energía para mantenerse La energía es la capacidad de hacer trabajo. Cinético

Más detalles

INTERPRETACION DE LOS GASES ARTERIALES

INTERPRETACION DE LOS GASES ARTERIALES INTERPRETACION DE LOS GASES ARTERIALES ph PaO2 PaCO2 HCO3 BE Hb SaO2 Bloque 6 Modulo 2 Dr Erick Valencia Anestesiologo Intensivista. Que son los Gases Arteriales? Una muestra de sangre anticoagulada que

Más detalles

QUÍMICA. La MATERIA REPRESENTACIÓN. Observación Datos Ley Hipótesis Teoría DEFINICIONES BÁSICAS. Propiedades

QUÍMICA. La MATERIA REPRESENTACIÓN. Observación Datos Ley Hipótesis Teoría DEFINICIONES BÁSICAS. Propiedades QUÍMICA La MATERIA Relación constante TEORÍA EXPERIMENTACIÓN Ciencia básica - Estructura - Composición - Propiedades - Transformaciones REPRESENTACIÓN OBSERVACIÓN mundo macroscópico Técnica sistemática

Más detalles

Ley de los Gases Unidad II

Ley de los Gases Unidad II Ley de los Gases Unidad II Introducción Presión Volumen Cantidad de gas Ley de Abogadro Enunciado Ejemplos Recurso Educaplus Ley de Boyle Enunciado Ejemplos Ley de Charles Enunciado Ejemplos Actividades

Más detalles

III. ESTADOS DE LA MATERIA

III. ESTADOS DE LA MATERIA III. ESTADOS DE LA MATERIA Fuerzas Intermoleculares Las fuerzas intermoleculares Son fuerzas de atracción entre las moléculas y son mas débiles que las fuerzas intramoleculares (enlaces químicos). Ejercen

Más detalles

Bioquímica Tema 2: Soluciones. Unidades Año: 2013

Bioquímica Tema 2: Soluciones. Unidades Año: 2013 TEMA 2: SOLUCIONES Al estudio de las soluciones se le asigna gran importancia, teniendo en cuenta que la mayoría de las reacciones químicas ocurren entre soluciones, particularmente en medios acuosos.

Más detalles

Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos

Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos Sección 901. Nombre: Cuenta: Nombre: Cuenta: Instrucciones: Contesta lo que se te pide clara y ordenadamente, si necesitas

Más detalles

GUIA: GASES y LEYES QUE LOS RIGEN

GUIA: GASES y LEYES QUE LOS RIGEN DEPARTAMENTO DE CIENCIAS QUÍMICA Sèptimo Básico GUIA: GASES y LEYES QUE LOS RIGEN 1_ La ley de Gay-Lussac nos dice que, a volumen constante, la presión y la temperatura de un gas son directamente proporcionales

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Electricidad y calor. Gases. Temas. 3. Gases ideales y estados termodinámicos. Webpage:

Electricidad y calor. Gases. Temas. 3. Gases ideales y estados termodinámicos. Webpage: Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 3. Gases ideales y estados termodinámicos. i. Concepto y características del gas ideal.

Más detalles

Propiedades térmicas de la materia

Propiedades térmicas de la materia 1 Propiedades térmicas de la materia Ahora que hemos comprendido los conceptos de calor y temperatura, procederemos a estudiar el comportamiento térmico de la materia. Para esto, nos interesan cuatro cantidades

Más detalles

UNIDAD I. TEMA III. ESTEQUIOMETRÍA

UNIDAD I. TEMA III. ESTEQUIOMETRÍA REPUBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD EXPERIMENTAL SUR DEL LAGO Jesús María Semprúm PROGRAMA DE INGENIERIA DE ALIMENTOS UNIDAD CURRICULAR: QUIMICA GENERAL UNIDAD I. TEMA III. ESTEQUIOMETRÍA Prof.

Más detalles

PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA.

PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA. PORTAFOLIO DE EVIDENCIAS QUÍMICA I DE SEGUNDA OPORTUNIDAD I LEE DETENIDAMENTE CADA ENUNCIADO Y CONTESTA SEGÚN SE TE PIDA. 1.- Ciencia que estudia las características y la composición de los materiales,

Más detalles