Se utilizan tres enunciados para básicos para definir los procesos de Poisson. Sea t un t 0, entonces se tiene:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Se utilizan tres enunciados para básicos para definir los procesos de Poisson. Sea t un t 0, entonces se tiene:"

Transcripción

1 9 TEORÍA DE TRÁFIO La teoría de tráfico es ua herramieta ampliamete utilizada para el aálisis del comportamieto de las redes de comuicacioes, las cuales puede ser de comutació de circuitos, como las redes telefóicas, o de comutació de paquetes como las redes de datos I. E este capítulo el efoque irá orietado pricipalmete a las primeras, ya que so la base e dode se susteta el sistema telefóico fijo. La comutació de circuitos cosiste el establecimieto de u caal dedicado físico (real), de extremo a extremo, etre los cuales existe elemetos de comutació, que e el caso de la red telefóica se trata de cetrales públicas (O etral Office) o BX (rivate Brach exchage), para el caso de empresas. Los elaces puede cosistir e rauras de tiempo e u sistema de multiplexació temporal (TDM) o badas de frecuecia para el caso de multiplexació e frecuecia (FDM). omo se verá más adelate co mayor detalle, las redes telefóicas puede operar e base a bloqueo de llamadas o a la utilizació de colas de espera, siedo la más utilizada la primera e las redes públicas debido a su equidad y eficacia. El modelamieto para este tipo de comportamieto se realiza co teorías de cola, utilizado distitas otacioes depediedo de los supuestos y modelos a aplicar para cada proceso. La otació de Kedall para u sistema geeral de formació de colas es de la forma: A / B / : A represeta la distribució de llegada de requerimietos e u comutador B repeseta la distribució de servicio e u elemeto comutador es el úmero de trocales de salida para el caso de ua cetral telefóica A cotiuació se hará ua breve descripció de los procesos de oisso para luego deducir formulas que servirá para medir el grado de servicio de los sistemas ates descritos. 9. rocesos de oisso Se utiliza tres euciados para básicos para defiir los procesos de oisso. Sea t u t 0, etoces se tiee: itervalo de tiempo pequeño ( ). La probabilidad de ua llegada e el itervalo t se defie como λ t + O( t), λ t <<, siedo λ ua costate de proporcioalidad especificada. 2. La probabilidad de cero llegadas e t es - λ t + O( t). 3. Las llegadas so procesos si memoria: cada llegada (eveto) e u itervalo de tiempo es idepediete de evetos e itervalos previos o futuros. 87

2 El termio O( t) deota los elemetos ( t) co igual o superior a 2. De acuerdo co y 2, o es posible más de ua llegada u ocurrecia de u eveto e el itervalo t, al meos a O( t). Sea u itervalo fiito T, etoces la probabilidad p() de llegadas e T está dada por: ( λt ) λt e p( )! 0,, 2,3,... A (9.) se le cooce como la distribució de oisso, e la cual se cumple: (9.) E( ) 0 2 p( ) σ λt (9.2) Ahora cosiderado u itervalo de tiempo mayor, se tedrá ua serie de evetos de oisso, los cuales estará separados e itervalos. Sea τ el tiempo etre llegadas sucesivas, siedo esta ua variable aleatoria. E la estadística de oisso, τ es ua variable aleatoria co distribució expoecial, es decir su fució desidad de probabilidad f τ (τ ) está dada por λτ τ ( τ λe (9.3) f ) A cotiuació se describe los sistemas utilizados e teoría de tráfico, secció que se basa pricipalmete e el texto Wireless ommuicatios de Theodore S. Rappaport, y específicamete e el apédice A que trata de Teoría de etrocamieto. Existe dos clases pricipales de sistemas de etrocamieto: Borrado de llamada pérdida (Lost all leared o L), si cola de espera. Retraso de llamada pérdida (Lost all Delayed o LD), co cola de espera. E el primer sistema cuado u usuario requiere servicio, existe u tiempo míimo de cofiguració, después del cual se le es otorgado el acceso a u caal si este esta dispoible. E la evetualidad de o existir caal dispoible, la llamada es iterrumpida si acceso al sistema, teiedo el usuario la oportuidad de volver a itetar después de u tiempo. Se asume que las llamadas llega co ua distribució de oisso, y además que existe u úmero casi ifiito de usuarios. La formula de Erlag B describe el grado de servicio (GOS) como la probabilidad que u usuario arbitrario experimete u bloqueo de llamada e u sistema L. Se asume que todas las llamadas bloqueadas so retoradas istatáeamete a u recipiete de usuarios ifiito, y que cada usuario puede volver a llamar e cualquier mometo. El tiempo etre llamadas sucesivas para u usuario bloqueado es u proceso aleatorio y es asumido co distribució de oisso. E el sistema LD, se utiliza colas para mateer e espera las llamadas iicialmete bloqueadas. Si u usuario llama y los caales se ecuetra ocupados, su requerimieto es retrasado hasta que u caal se desocupe. Etoces, dado que u caal o esta dispoible iicialmete, es ecesario coocer la probabilidad de que ua llamada sea 88

3 retrasada, hasta que u caal este dispoible para su uso. La probabilidad de que u caal o este imediatamete dispoible e u sistema LD esta determiada por la fórmula Erlag. E LD el GOS es medido por la probabilidad que la llamada sea retrasada e u tiempo mayor que t segudos. Se asume que existe u úmero ifiito de usuarios, y que todas las llamadas e la cola so evetualmete servidas. A cotiuació se describirá las formulas de Erlag B e L y Erlag e LD, los cuales se basa e modelos de cola M/M/, que implica proceso de llegada de oisso, estadísticas de servicio co distribució expoecial y trocales de salida (la M viee de procesos de Marov). 9.2 Erlag B La formula de Erlag B determia la probabilidad que ua llamada sea bloqueada, para sistemas que o utiliza colas de espera (L). Está basada e los siguietes supuestos: Todos los usuarios, icluso los bloqueados, puede pedir u caal e cualquier mometo (si memoria). Todos los caales libres está dispoibles para etregar servicio hasta que todos sea ocupados. La probabilidad de utilizació de u caal (tiempo de servicio) está expoecialmete distribuido. Es decir, las llamadas largas tiee meos probabilidad de ocurrecia. Hay u úmero fiito de caales dispoibles. La petició de tráfico esta descrita por ua distribució de oisso, lo cual implica u arribo de llamadas e itervalos de tiempo expoeciales. Los itervalos de llegada de peticioes de llamada so idepedietes uas de otras. El úmero de caales ocupados es igual al úmero de usuarios ocupados. Sea u sistema co: caales U usuarios λ úmero medio de llegada de llamadas por uidad de tiempo (tasa de llegada) H duració promedio de ua llamada A tráfico total ofrecido por el sistema A U tráfico promedio ofrecido para cada usuario λ tasa promedio de llegada de llamada de u usuario etoces A U λ H A UA U λh. Esta situació se muestra e la Figura 9.. La probabilidad que ua petició de caal de u usuario sea bloqueada esta dada por: [ Bloqueo] r[ Niguo delos caalesestelibre] r (9.4) 89

4 Figura 9.: Modelo geérico de cetral de comutació omo las llamadas llega de acuerdo a ua distribució de oisso se tiee λτ e r{ a( t + τ ) a( t) } ( λτ ) para 0,,2,... (9.5)! Dode a(t) es el úmero de llegadas o evetos que ha ocurrido desde t0, y τ es el itervalo de tiempo etre dos evetos sucesivos. omo se vio co aterioridad el tiempo de llegada etre evetos es expoecial del tipo descrito e (9.3). Etoces la probabilidad que el tiempo de llegada sea meor que u tiempo s esta dada por: λs r( τ s) e (9.6) El tiempo de servicio es la duració de ua llamada particular que ha sido atedida exitosamete e el sistema. El tiempo de servicio se asume expoecial co duració de llamada promedio H, co lo que µ / H es la tasa de servicio media (úmero de llamadas por uidad de tiempo). La probabilidad que el tiempo de servicio del -ésimo usuario sea meor que algú tiempo de duració s esta dada por: s { S < s} e s 0 r > Dode la fució desidad d probabilidad de tiempo de servicio es p µ (9.7) s ( S ) µ e µ (9.8) y S es el tiempo de servicio del -ésimo usuario. ara derivar la formula para Erlag B es ecesario utilizar propiedades de las cadeas de Marov. osideremos u proceso estocástico de tiempo discreto que toma valores desde u cojuto de eteros o egativos, tal que los posibles estados del proceso so i 0,, 2,...-,. E otras palabras, cada estado de la cadea de Marov correspode al úmero de trocales de salidas siedo utilizados. El proceso es ua cadea de Marov si la trasició desde el estado presete i al estado próximo i+ depede solo del estado i y o de estados previos. La operació de sistemas de etrocamieto es de 90

5 tiempo cotiuo, pero puede ser aalizado e pequeños itervalos δ ( δ 0), dode δ >0. Si N es el úmero de llamadas (caales ocupados) e el istate δ, etoces N puede ser represetado como La probabilidad de trasició está dada por N N( δ ) (9.9) { N j N i} i, j r + (9.0) Usado el euciado básico úmero 2 de procesos de oisso y permitiedo que δ 0, se tiee λδ + O( ) (9.) 00 δ ii λδ µδ + O( δ ) i (9.2) i, i λδ + O( δ ) 0 (9.3) i, i + i i µ δ + O 0 ( δ ) i (9.4) i, O( δ ) j i, j i +, j i (9.5) j Estas relacioes queda mejor graficadas e la figura 9.2. Figura 9.2: robabilidades de trasició represetada como ua cadea de Marov ara eteder la cadea supogase que al comiezo se tiee 0 caales ocupados, es decir o hay usuarios. Sobre u pequeño itervalo de tiempo, la probabilidad que el sistema cotiué si usuarios es ( - λδ). La probabilidad de que haya u cambio desde 0 a usuario esta dada por λδ. E el otro extremo, si u caal esta e uso, la probabilidad de que el sistema pase a 0 caales ocupados esta dada por µδ. Similarmete, la probabilidad que el 9

6 sistema cotiué co u caal e uso esta dada por λδ µδ. Todas las probabilidades de salida para u cierto estado suma. Sobre u gra período de tiempo, el sistema alcaza el estado de régime permaete y tiee caales e uso. Etoces bajo régime permaete se cumple λδ µδ (9.6) La ecuació (9.6) es coocida como la ecuació geeral de balace. Además 0 (9.7) Ocupado (9.6) se obtiee λ 0 (9.8) µ Evaluado (9.6) para diferetes valores se obtiee λ 0 µ! (9.9) Y Sustituyedo (9.9) e (9.20) µ 0! λ i i (9.20) 0 λ (9.2) 0 µ! E (9.9) la probabilidad de bloqueo para caales es λ c 0 (9.22) µ! Sustituyedo (9.2) e (9.22), co AλHλ/µ se tiee c A! A 0! (9.23) La cual represeta la formula para Erlag B. E la Figura 9.3 se aprecia las curvas características de probabilidad de bloqueo como fució del úmero de caales e itesidad de tráfico e Erlag. 92

7 Figura 9.3: robabilidad de bloqueo como fució del úmero de caales y la itesidad de tráfico e Erlags. * * Fuete: Wireless ommuicatios, T. Rappaport, apítulo 2 93

8 9.3 Erlag Sea u sistema co úmeros de trocales de salida, como se muestra e la figura 9.. ara derivar la formula de Erlag se procede de maera similar que e la secció aterior, excepto que ahora se asume que si a ua llamada o se le asocia u caal, esta es puesta e ua cola (o es bloqueada), la cual tiee u largo ifiito. Luego las ecuacioes (9.5), (9.6) y (9.8) sigue siedo validas. El diagrama de estado para este modelo se muestra e la Figura 9.4. Figura 9.4: robabilidades de trasició como ua cadea de Marov E estado permaete, la probabilidad que el sistema este e estado y se produzca ua trasició al estado - e el próximo itervalo de trasició es la misma que la probabilidad que el sistema esté e estado y trasite hacia el estado. Etoces desde el diagrama de estado de la figura 9.4 λδ µδ para (9.24) etoces λ µ para (9.25) y λδ µδ para (9.26) etoces λ µ para (9.27) de lo cual se puede despreder que λ 0 µ! λ! µ 0 (9.28) 94

9 Ya que 0 etoces 0 (9.29) λ µ λ +!! µ λ µ La probabilidad que ua llamada llegue cuado todos los caales esté ocupados y etoces tega que esperar puede ser determiada usado la ecuació (9.28) [ ] λ r caales este ocupados 0 (9.30)! µ λ µ λ La cual es válida para <. Sustituyedo 0 desde (9.29) y haciedo µ AUλ Hλ/µ se obtiee: r [ caales este ocupados] A A A +! A 0! (9.3) La cual correspode a la formula de Erlag. E la el gráfico de la Figura 9.5 se muestra la probabilidad de llamadas siedo retrasadas como ua fució del úmero de caales y la itesidad de tráfico e Erlags. 95

10 Figura 9.5: robabilidad que la llamada sea retrasada como ua fució del úmero de caales y la itesidad de tráfico e Erlags. * * Fuete: Wireless ommuicatios, T. Rappaport, apítulo 2 96

11

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t.

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t. PROCESOS ROBABILIDADES ESTOCÁSTICOS (ITEL-3005) (80807) Tema 4. Los Procesos Tema. de Fudametos Poisso y otros de Estadística procesos asociados Descriptiva Semaa Distribució 5 Clase 07 de frecuecias Lues

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

PROCESAMIENTO DIGITAL DE SEÑALES

PROCESAMIENTO DIGITAL DE SEÑALES PROCESAMIENTO DIGITAL DE SEÑALES TEMA : FUNDAMENTOS DE SISTEMAS DE TIEMPO DISCRETO. Señales y Sistemas de Tiempo Discreto Se itroducirá coceptos de señales y sistemas de tiempo discreto. Para ello se detallará

Más detalles

Identificación de Sistemas

Identificación de Sistemas Departameto de Electróica Facultad de Ciecias Eactas Igeiería y Agrimesura Uiversidad Nacioal de osario Idetificació de Sistemas Coceptos Fudametales de robabilidad Variables Aleatorias y rocesos Aleatorios

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... }

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... } SEÑALES DE TIEMPO DISCRETO SEÑALES Y SISTEMAS DE TIEMPO DISCRETO Las señales está clasificadas de maera amplia, e señales aalógicas y señales discretas. Ua señal aalógica será deotada por a t e la cual

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

Sistemas de colas: clase 1. Amedeo R. Odoni 10 de octubre de 2001

Sistemas de colas: clase 1. Amedeo R. Odoni 10 de octubre de 2001 Sistemas de colas: clase Amedeo R. Odoi de octubre de 2 Temas de teoría de colas 9. Itroducció a las colas: ley de Little; M/M/. olas de acimieto y muerte de Markov. ola M/G/ y extesioes 2. olas de prioridad:

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Tema 3. Procesos estocásticos básicos en teoría de colas.

Tema 3. Procesos estocásticos básicos en teoría de colas. Tema 3. Procesos estocásticos básicos e teoría de colas. 3.1 Itroducció. Plateamieto geeral. U proceso estocástico es e esecia u modelo matemático de u feómeo que evolucioa e el tiempo de forma aleatoria.

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

UNIDAD 9 MODELO DE LÍNEAS DE ESPERA. servicio. de servicio.

UNIDAD 9 MODELO DE LÍNEAS DE ESPERA. servicio. de servicio. UNIDAD 9 MODELO DE LÍNEAS DE ESERA servicio. de servicio. Ivestigació de operacioes Itroducció Al iicio del S. XX, la idustria de la telefoía se efretó al siguiete problema: Cómo determiar el úmero óptimo

Más detalles

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares 2 Matemáticas 1 : Prelimiares Capítulo 1 Números Complejos Este tema de úmeros complejos es más iformativo que recordatorio, siedo el uso explícito de los complejos escaso e las asigaturas de Matemáticas

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Series de Fourier Aplicación: Análisis de Señales

Series de Fourier Aplicación: Análisis de Señales Series de Fourier Aplicació: Aálisis de Señales Jua E Dombald Estudiate de Igeiería Electróica Uiversidad Nacioal del Sur, Avda Alem 53, B8CPB Bahía Blaca, Argetia Juae_ce@hotmailcom Agosto Resume: E este

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS 9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS OBJETIVO El objetivo de la práctica es determiar la desidad de líquidos utilizado la balaza de Möhr y su aplicació a la determiació de la desidad de disolucioes co

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

bc (b) a b + c d = ad+bc a b = b a

bc (b) a b + c d = ad+bc a b = b a 1 Cojutos 1 Describa los elemetos de los siguietes cojutos A = { x x 1 = 0 } D = { x x 3 x + x = } B = { x x 1 = 0 } E = { x x + 8 = 9 } C = {x x + 8 = 9} F = { x x + 16x = 17 } Para los cojutos del ejercicio

Más detalles

CAPÍTULO IV: CONSTRUCCIÓN DE LA TABLA DE MORTALIDAD. Es un hecho bien conocido que la probabilidad de que un individuo fallezca en un periodo

CAPÍTULO IV: CONSTRUCCIÓN DE LA TABLA DE MORTALIDAD. Es un hecho bien conocido que la probabilidad de que un individuo fallezca en un periodo CAPÍTULO IV: CONSTRUCCIÓN DE LA TABLA DE MORTALIDAD 4.1 Geeralidades Es u hecho bie coocido que la probabilidad de que u idividuo fallezca e u periodo determiado de tiempo depede de muchos factores, etre

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

Arquitectura de conmutadores

Arquitectura de conmutadores Arquitectura de comutadores Area de Igeiería Telemática http://www.tlm.uavarra.es Arquitectura de Redes, Sistemas y Servicios 3º Igeiería de Telecomuicació Temario Itroducció Arquitecturas, protocolos

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1 Probabilidad BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimeez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es) ALEJANDRO SANABRIA

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

( 3.c) INTRODUCCIÓN A LOS MODELOS NO EXPONENCIALES Y REDES DE COLAS

( 3.c) INTRODUCCIÓN A LOS MODELOS NO EXPONENCIALES Y REDES DE COLAS (.c) INTRODUCCIÓN A LOS MODELOS NO EXONENCIALES Y REDES DE COLAS INTRODUCCIÓN A LAS REDES DE COLAS. Cocepto de red abierta y cerrada. Redes abiertas y Teorema de Jackso. MODELOS NO EXONENCIALES Cola M/G/:

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco Capítulo 4 (Cotiuació MÉTODOS ESTADÍSTICOS Autor: José María García Palaco Técicas Eperimetales Medida de magitudes 4.8 Métodos Estadísticos Ya hemos visto e los apartados ateriores, que u procedimieto

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Síntesis de señales periódicas empleando las series trigonométrica y exponencial de Fourier

Síntesis de señales periódicas empleando las series trigonométrica y exponencial de Fourier Sítesis de señales periódicas empleado las series trigoométrica y expoecial de Fourier Propuesta de práctica para el laboratorio de las asigaturas: ANÁLISIS DE SISEMAS Y SEÑALES y SEÑALES Y SISEMAS Hecha

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 3) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 3) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 200 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U establecimieto poe a la veta tres tipos de camisas A, B y C. Se sabe que la razó etre los

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. Població: El cojuto de todos los elemetos o idividuos que posee ua determiada característica o cualidad de iterés. Existe situacioes e las que o es posible aalizar

Más detalles

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO Diplomatura e Óptica y Optometría Adelia Felipe Marcet TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO I Adaptació de las relacioes paraiales II.- Proimidades y potecias III.- Ecuació de Gauss IV.- Ecuació de

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

2 FUNDAMENTOS DE PROBABILIDAD

2 FUNDAMENTOS DE PROBABILIDAD 2 FUNDAMENTOS DE PROBABILIDAD T al vez el estudio de la probabilidad toma setido cuado se percibe y se acepta la existecia de la aleatoriedad e diversos aspectos de la vida diaria. Si embargo, si cosideramos

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

Ejercicios resueltos de Muestreo

Ejercicios resueltos de Muestreo Tema Ejercicios resueltos de Muestreo Ejercicio Sea ua població ita de 4 elemetos: P = f; 4; ; g : Se cosidera muestras de elemetos que se supoe extraidos y o devueltos a la població y que el muestreo

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

CAPITULO 4 COMPARACIÓN DE REACTORES IDEALES Y REACTORES MÚLTIPLES

CAPITULO 4 COMPARACIÓN DE REACTORES IDEALES Y REACTORES MÚLTIPLES omparació de Reactores Ideales y Reactores Múltiples PITULO 4 OMPRIÓN DE RETORES IDELES Y RETORES MÚLTIPLES 4. INTRODUIÓN E este capítulo se comparará los reactores T y. Se diseñará baterías de reactores

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles