T2: Amplificadores de Instrumentación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "T2: Amplificadores de Instrumentación"

Transcripción

1 T2: 21 T2: Carácteristicas: Modo diferencial, CMRR, Resistencia de Entrada, Control de Ganancia. Estructuras con varios OPAMPs. Selección del canal de entrada: Reles, llaves analógicas. Multiplexores. Amplificadores de Aislamiento. Transformadores. Opticos. Amplificadores de Baja Deriva. Autocero. Chopper. BIBLIOGRAFIA: [PARA98] M. Parada, J. I. Escudero y P. Simón: Apuntes de Instrumentación, Técnicas de Medida y Mantenimiento. Facultad de Informática y Estadística, Sevilla [SEDR91]A. S. Sedra and K. C. Smith: Microelectronic Circuits. Saunders Collegue Publishing, Third Edition [COUG98]R. F. Coughlin and F. F. Driscoll: Operational Amplifier and Linear Integrated Circuits. Fihth Edition, PrenticeHall

2 T2: 22 CARACTERISTICAS: Entrada Diferencial. CMRR elevado. Resistencia de entrada elevada. Ganancia controlable. V id = ( V 1 ) V 1 = G d V id G cm V icm R id R icm CMRR

3 T2: 23 Amplificadores de Instrumentacion Amplificadores diferenciales: Trajan con SEÑALES DIFERENCIALES, rechazando el modo común (ruido) Transmisión de señales a equipos remotos. (cable coaxial, par trenzado). Corrigen las derivas de tierra. Son versatiles (Inversoresno inversores). CIRCUITO DIGITAL V1Vr V2Vr CIRCUITO REMOTO CIRCUITO DIGITAL GND1 R GND2 CIRCUITO REMOTO Elimina el ruido común Caida de tensión en las tierras

4 T2: 24 AMPLIFICADOR DIFERENCIAL BASICO R 4 = V 1 R 1 R 4 V1 Resistencia de entrada R in = Diferencial = R 4 R 4 CMRR Función del apareamiento entre resistencias (80dB para esta configuración) EJEMPLO 1: Diseñar un amplificador diferencial con Rin=20KΩ, y G D =10. Solución: Se puede seleccionar R1=R3=10KΩ y R2=R4=100KΩ. El factor determinante para la aparición de respuesta al modo común es el desapareamiento entre las resistencias. PROBLEMAS: Baja resistencia de entrada (seguidor) Ganancia poco controlable (variación de las resistencias por pares potenciómetros). CMRR bajo.

5 T2: 25 AMPLIFICADOR DIFERENCIAL CON 2 OPAMPs R G R 4 V1 = V 1 V R 4 R G R G 2 1 R G R G Resistencia de entrada Diferencial infinita = R 4 > La ganancia es solo función de R G : CMRR Función del apareamiento entre resistencias (80dB para esta configuración)

6 T2: 26 AMPLIFICADOR DIFERENCIAL CON 3 OPAMPs Resistencia de entrada infinita V 1 Va Ganancia: ' = V a V b = ' ' ' ( V R b V a ) 2 R G R 1 V a = V 1 1 R G R G R 2 R 3 ' V b = V 1 R G ' 1 R G Vb G d = 1 2 = R G G d1 G d2 Ganancia etapa de entrada X ganancia diferencial de salida

7 T2: 27 AMPLIFICADOR DIFERENCIAL CON 3 OPAMPs CMRR: Contribución de cada etapa V 1 Va CMRR G d = = G cm G d1 G d2 G cm R G 1ª ETAPA: G cm1 = 0 2ª ETAPA: G cm2 R 1 CMRR G d = = G G d1 CMRR2 cm R 2 R 3 Mejora en un factor de Gd1 Vb OFFSET: Contribución de cada etapa ffset = G d1 G d2 V IO1 G d2 V IO2

8 T2: 28 AMPLIFICADOR DIFERENCIAL CON 3 OPAMPs: Circuito Integrado V 1 Va V SENSE Reisistencias integradas CMRR elevado (130dB) R G1 R G variable. R G2 R 1 G d = 1 2 R G R 2 R 3 R1: dato del fabricante Vb V REF

9 T2: 29 MULTIPLEXADO DEL CANAL DE ENTRADA SENSOR1 SENSOR2 SENSOR3 V i1 V i2 V i R G1 Amplificador Integrado R G1 Selección del canal Selección de la ganancia en función de Vi Selección de la resistencia RGi Resistencias de los contactos y conmutadores. Frecuencia de conmutación Limitación.

10 T2: 210 MULTIPLEXADO DEL CANAL DE ENTRADA: IMPLEMENTACION DE LOS INTERRUPTORES RELES: Dispositivo electromecánico Tensiones de accionamiento: TTL, Amplificador BJT. Corrientes máximas. Velocidad de conmutación baja. INTERRUPTORES ANALÓGICOS: G D S D S G MULTIPLEXORES ANALÓGICOS: Bidireccionales TRANSISTORES MOS: corte > ALTA IMPEDANCIA (10MΩ) óhmica > BAJA IMPEDANCIA (10Ω) Resistencia a controlar. Salida Entradas Selección (DIGITAL)

11 T2: 211 MULTIPLEXADO DEL CANAL DE ENTRADA: IMPLEMENTACION DE LA GANANCIA AD524: Resistencia integradas: G RELE: < 10KHz I. ANALOGICOS: Rds(on) > Soluciones. V 1 V 1 R 1 R G Es necesario conmutar R1 R G R G R 1

12 T2: 212 MULTIPLEXADO DEL CANAL DE ENTRADA: IMPLEMENTACION DE LA GANANCIA Amplificador en cascada: Circuito amplificador NoInversor (Offset) Amplificador realimentado (K, offset,vref): GANANCIA V1 K 1 G d = 1 2 K R G OFFSET R 4 Vo = G d1 G d2 V IO1 V IO2

13 T2: 213 OBJETIVO: Amplificadores de AISLAMIENTO Provocar el AISLAMIENTO ELECTRICO entre la entrada y la salida del amplificador. Equipamiento electrónico sensible, electromedicina. NECESIDAD: Para VCM y CMRR elevados. TECNICAS: Mediante TRANSFORMADORES Aislamiento OPTICO. CARACTERISTICAS GENERALES: Parámetros de aislamiento (aislamiento eléctrico V) VISO Ri Ci Intensidad de pérdidas Ancho de banda IMR (similar al CMR debido al aislamiento) OPTICOS: Bajas perdidas, elevado ancho de banda TRAFO: Elevado IMR

14 T2: 214 Amplificadores de AISLAMIENTO A. TRANSFORMADOR: Basado en el funcionamiento de un TRAFO. I 1 I 2 N 1 V 1 = V N 1 2 V 1 N1:N2 PARA N1=N2 > G=1 V2 N 2 I 1 = V N 2 1 Para Instrumentación: f ~ 2KHz Amplifica SOLO SEÑALES DE AC. Las SEÑALES DE DC se convierten a AC > se transmiten a la salida > se reconstruyen (DC). I 1 I 2 E MODULADOR V 1 DEMODULADOR S AM > el TRAFO trabaja a frecuencia constante

15 T2: 215 Amplificadores de AISLAMIENTO A. OPTICO: Basado en el funcionamiento de semiconductores fotosensibles: Diodo emisor (LED) Diodo receptor (fotodiodo) CIRCUITO BÁSICO Para Instrumentación: f elevados (decenas de KHz) Amplifica SEÑALES DE AC y DC. V I 1 R 2 Signo de la entrada (IREF). Son baratos y BW elevado Requieren dos fuentes de alimentación perfectamente aisladas (DC DC)

16 T2: 216 Amplificadores de DERIVA CERO BUSCAN RESOLVER LOS PROBLEMAS DE CONTINUA: A. de AUTOCERO: Miden y Cancelan el offset a la entrada. Técnicas CHOPPER: DC > AC para procesar las señales. V IO R Vi V C = V IO C V IO R C MEDIDA CANCELACION CIRCUITO AUTOCERO

T7: Convertidores Digital-Analógico y Analógico-Digital

T7: Convertidores Digital-Analógico y Analógico-Digital T7: Convertidores Digital/Analógico y Analógico/Digital 71 T7: Convertidores DigitalAnalógico y AnalógicoDigital Introducción. Definición. Aplicaciones de convertidores D/A y A/D. Principio de operación.

Más detalles

DISPOSITIVOS ELECTRÓNICOS II

DISPOSITIVOS ELECTRÓNICOS II CURSO 2010- II Profesores: Miguel Ángel Domínguez Gómez Despacho 222, ETSI Industriales Camilo Quintáns Graña Despacho 222, ETSI Industriales Fernando Machado Domínguez Despacho 229, ETSI Industriales

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -

Más detalles

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción Temario Tema Teo. Pro. 1. Amplificación 2h 1h 2. Realimentación 2.5h 1.5h 3. Amplificador operacional (AO) y sus etapas lineales 7h 4h 4. Comparadores y generadores de onda 7h 4h 5. El amplificador operacional

Más detalles

MÓDULO Nº9 AMPLIFICADORES OPERACIONALES. Explicar que es un amplificador operacional. Entender el funcionamiento de los circuitos básicos con OP AMP.

MÓDULO Nº9 AMPLIFICADORES OPERACIONALES. Explicar que es un amplificador operacional. Entender el funcionamiento de los circuitos básicos con OP AMP. MÓDULO Nº9 AMPLIFICADORES OPERACIONALES UNIDAD: CONVERTIDORES TEMAS: Introducción a los Amplificadores Operacionales. Definición, funcionamiento y simbología. Parámetros Principales. Circuitos Básicos.

Más detalles

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS. Entender el comportamiento y las características del amplificador operacional.. Medir ganancia, impedancia de entrada y salida de las configuraciones básicas del amplificador operacional: amplificador

Más detalles

Anexo V: Amplificadores operacionales

Anexo V: Amplificadores operacionales Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas

Más detalles

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO Tema: El amplificador operacional. Objetivo: TRABAJO PRÁCTICO Determinar las limitaciones prácticas de un amplificador operacional. Comprender las diferencias entre un amplificador operacional ideal y

Más detalles

INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos

INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos INDICE Circuitos discretos e integrados Señales analógicas y digitales Notación 3 Resumen

Más detalles

Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas

Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas Titulación: Sistemas Electrónicos Tutores: Francisco Javier del Pino Suárez Sunil

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS 2. OBJETIVOS

ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS 2. OBJETIVOS ELECTRÓNICA I UNIDAD ACADÉMICA: CARRERA: ESPECIALIZACIÓN: ÁREA: TIPO DE MATERIA: EJE DE FORMACIÓN: Facultad de Ingeniería en Electricidad y Computación Ingeniería en Electricidad. Ingeniería en Telemática,

Más detalles

INDICE. XV I. Dispositivos de efecto de campo Capitulo 1. Transistores de unión de efecto de campo

INDICE. XV I. Dispositivos de efecto de campo Capitulo 1. Transistores de unión de efecto de campo INDICE Prefacio XV I. Dispositivos de efecto de campo Capitulo 1. Transistores de unión de efecto de campo 3 1.1. introducción 1.2. teoría de funcionamiento 5 1.3. parámetros del JFET 1.3.1. notación 11

Más detalles

Electrónica 1. Práctico 1 Amplificadores Operacionales 1

Electrónica 1. Práctico 1 Amplificadores Operacionales 1 Electrónica 1 Práctico 1 Amplificadores Operacionales 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Amplificadores diferenciales, de instrumentación y de puente

Amplificadores diferenciales, de instrumentación y de puente 3 mplificadores diferenciales, de instrumentación y de puente 3. Introducción En este capítulo se estudian los circuitos amplificadores diferenciales, de instrumentación y de puente. La aplicación de estos

Más detalles

Contenido. Capítulo 2 Semiconductores 26

Contenido. Capítulo 2 Semiconductores 26 ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión

Más detalles

PUERTAS LOGICAS. Objetivo específico Conectar los circuitos integrados CI TTL Comprobar el funcionamiento lógico del AND, OR, NOT, NAND y NOR

PUERTAS LOGICAS. Objetivo específico Conectar los circuitos integrados CI TTL Comprobar el funcionamiento lógico del AND, OR, NOT, NAND y NOR Cód. 25243 Laboratorio electrónico Nº 5 PUERTAS LOGICAS Objetivo Aplicar los conocimientos de puertas lógicas Familiarizarse con los circuitos integrados Objetivo específico Conectar los circuitos integrados

Más detalles

TEMA 6: Amplificadores con Transistores

TEMA 6: Amplificadores con Transistores TEMA 6: Amplificadores con Transistores Contenidos del tema: El transistor como amplificador. Característica de gran señal Polarización. Parámetros de pequeña señal Configuraciones de amplificadores con

Más detalles

ELECTRONICA III (ELT-2782)

ELECTRONICA III (ELT-2782) ELECTRONICA III (ELT-2782) HORARIO: JUEVES 10:30-12, VIERNES 10:30-12 PONDERACION 3 EX. PARCIALES 30% 1 EX. FINAL 30% LABORATORIOS 20% AUX, PROY Y TRABAJOS 20% BIBLIOGRAFIA DISEÑO ELECTRONICO, SAVANT RODAN

Más detalles

TECNOLOGÍA DE LOS SISTEMAS DIGITALES

TECNOLOGÍA DE LOS SISTEMAS DIGITALES TECNOLOGÍA DE LOS SISTEMAS DIGITALES ESCALAS DE INTEGRACIÓN TECNOLOGÍAS SOPORTES FAMILIAS LÓGICAS FAMILIAS LÓGICAS BIPOLAR MOS BICMOS GaAs TTL ECL CMOS NMOS TRANSMISIÓN DINÁMICOS PARÁMETROS CARACTERÍSTICOS

Más detalles

Accionamientos eléctricos Tema VI

Accionamientos eléctricos Tema VI Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización

Más detalles

Trabajo práctico: Amplificador Operacional

Trabajo práctico: Amplificador Operacional Problema 1 El amplificador operacional de la figura posee resistencia de entrada infinita, resistencia de salida cero y ganancia de lazo abierto A LA =50. Calcule la ganancia de lazo cerrado Ar=Vo/Vi si

Más detalles

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio se implementarán diferentes circuitos electrónicos

Más detalles

Problemas Tema 6. Figura 6.3

Problemas Tema 6. Figura 6.3 Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,

Más detalles

NOTA: Este documento se ha realizado intencionalmente con un formato de borrador.

NOTA: Este documento se ha realizado intencionalmente con un formato de borrador. NOTA: Este documento se ha realizado intencionalmente con un formato de borrador. Las características básicas del diseño del osciloscopio son las siguientes: La impedancia de entrada tiene que ser de 1

Más detalles

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Electrónica Analógica

Más detalles

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS.

Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. Tema: Circuito cicloconvertidor. GUÍA 8 Pág. Pág. 1 I. OBJETIVOS. Tema: Circuito cicloconvertidor. Facultad de Ingeniería. Escuela de Electrónica. Asignatura Electrónica Industrial. I. OBJETIVOS. Implementar diferentes circuitos de inversores utilizando SCR S de potencia.

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO DISPOSITIVOS Y CIRCUITOS ELECTRÓNICOS 1654 6º 11 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería Electrónica

Más detalles

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES LABORATORIO N Fundamentos de Electrónica APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

Más detalles

Herramientas Integradas para Laboratorios de Electrónica

Herramientas Integradas para Laboratorios de Electrónica Herramientas Integradas para Laboratorios de Electrónica NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) Integración y funcionalidad con múltiples instrumentos. Combina instrumentación,

Más detalles

ES B1. Aviso: ESPAÑA 11. Número de publicación: Número de solicitud: G01K 7/01 ( )

ES B1. Aviso: ESPAÑA 11. Número de publicación: Número de solicitud: G01K 7/01 ( ) 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 21 Número de publicación: 2 42 299 Número de solicitud: 12273 1 Int. CI.: G01K 7/01 (06.01) 12 PATENTE DE INVENCIÓN B1 22 Fecha de presentación: 23.02.12

Más detalles

Web:

Web: FACULTAD POLITÉCNICA DIRECCIÓN ACADÉMICA I. IDENTIFICACIÓN PROGRAMA DE ESTUDIO Carrera : Ingeniería Eléctrica CARGA HORARIA - (Horas reloj) Asignatura : Electrónica Básica Carga Horaria Semestral 75 Semestre

Más detalles

La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. Electromecánica Laboratorio de Electrónica I. Segundo Semestre 215 OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores BJT. 2. Obtener la ganancia del circuito a partir del

Más detalles

PROGRAMA ANALÍTICO DE ASIGNATURA

PROGRAMA ANALÍTICO DE ASIGNATURA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO COORDINACIÓN DE DOCENCIA DIRECCIÓN DE PLANEACIÓN Y DESARROLLO EDUCATIVO 1.- DATOS GENERALES 1.1 INSTITUTO: Ciencias Básica e Ingeniería. PROGRAMA ANALÍTICO DE

Más detalles

Índice analítico Capítulo 1 Conceptos y análisis de circuitos básicos en corriente alterna Resistencia puramente óhmica

Índice analítico Capítulo 1 Conceptos y análisis de circuitos básicos en corriente alterna Resistencia puramente óhmica Índice analítico Capítulo 1 Conceptos y análisis de circuitos básicos en corriente alterna... 1 1.1 Resistencia puramente óhmica... 1 1.2 La bobina en corriente alterna. Reactancia inductiva (XL)... 1

Más detalles

TECNOLOGÍA ELECTRÓNICA

TECNOLOGÍA ELECTRÓNICA Universidad de Burgos Departamento de Ingeniería Electromecánica TECNOLOGÍA ELECTRÓNICA Ingeniería Técnica en Informática de Gestión Curso 1º - Obligatoria - 2º Cuatrimestre Área de Tecnología Electrónica

Más detalles

UNIDAD I FUNDAMENTOS DE LOS AMPLIFICADORES OPERACIONALES

UNIDAD I FUNDAMENTOS DE LOS AMPLIFICADORES OPERACIONALES UNIDAD I FUNDAMENTOS DE LOS AMPLIFICADORES OPERACIONALES 1. Introducción al Amplificador Operacional El término amplificador operacional, o OPAMP en forma abreviada, fue acuñado por John R. Ragazzini en

Más detalles

Tema 2 El Amplificador Operacional

Tema 2 El Amplificador Operacional CICUITOS ANALÓGICOS (SEGUNDO CUSO) Tema El Amplificador Operacional Sebastián López y José Fco. López Instituto de Microelectrónica Aplicada (IUMA) Universidad de Las Palmas de Gran Canaria 3507 - Las

Más detalles

Ingeniería Eléctrica A S I G N A T U R A S C O R R E L A T I V A S P R E C E D E N T E S

Ingeniería Eléctrica A S I G N A T U R A S C O R R E L A T I V A S P R E C E D E N T E S UNIVERSIDAD NACIONAL DEL SUR 1/3 DEPARTAMENTO DE: Ingeniería Eléctrica H O R A S D E C L A S E P R O F E S O R R E S P O N S A B L E T E Ó R I C A S P R Á C T I C A S Ing. Pablo Mandolesi Por semana Por

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION PROGRAMA DE LA MATERIA CORRESPONDIENTE A LA INGENIERÍA EN CIENCIAS DE LA COMPUTACIÓN. Coordinación: NOMBRE DE LA MATERIA: Área

Más detalles

FUNDAMENTOS DE CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR

FUNDAMENTOS DE CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR FUNDAMENTOS DE ELECTRÓNICA CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR TRANSISTOR Es un tipo de semiconductor compuesto de tres regiones dopadas. Las uniones Base-Emisor y base colector se comportan

Más detalles

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL"

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 GENERADORES DE SEÑAL UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL" OBJETIVOS: Conocer el funcionamiento de circuitos

Más detalles

Electrónica. Carrera: Clave de la asignatura: Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos.

Electrónica. Carrera: Clave de la asignatura: Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Electrónica Ingeniería Mecánica MCE - 0511 2 2 6 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Electronica. Estudia los circuitos y componente que permiten modificar la corriente eléctrica: determinada velocidad (filtra)

Electronica. Estudia los circuitos y componente que permiten modificar la corriente eléctrica: determinada velocidad (filtra) Electronica Estudia los circuitos y componente que permiten modificar la corriente eléctrica: 1. Aumentar o disminuir la intensidad 2. Obliga a los electrones a circular en un sentido (rectifica) 3. Deja

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERIA PROGRAMA AL Nombre de la asignatura: Código Semestre U.C. Pre- Requisito ELECTRÓNICA I ELE-542 ELE-642 V VI 4 CIE-432 DENSIDAD HORARIA

Más detalles

Electrónica 2. Práctico 4 Amplificadores de Potencia

Electrónica 2. Práctico 4 Amplificadores de Potencia Electrónica 2 Práctico 4 Amplificadores de Potencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Parcial_2_Curso.2012_2013

Parcial_2_Curso.2012_2013 Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique

Más detalles

ELECTRÓNICA II. M. Teresa Higuera Toledano (Dep. Arquitectura de Computadores y Automática) FdI 310

ELECTRÓNICA II. M. Teresa Higuera Toledano (Dep. Arquitectura de Computadores y Automática) FdI 310 ELECTRÓNICA II M. Teresa Higuera Toledano (Dep. Arquitectura de Computadores y Automática) FdI 310 Electrónica II 2009-2010 1 Que es la electrónica? La electrónica es el campo de la ingeniería y de la

Más detalles

Laboratorio Amplificador Diferencial Discreto

Laboratorio Amplificador Diferencial Discreto Objetivos Laboratorio mplificador Diferencial Discreto Verificar el funcionamiento de un amplificador discreto. Textos de Referencia Principios de Electrónica, Cap. 17, mplificadores Diferenciales. Malvino,

Más detalles

Reticulado 3.5 mm 1 contacto 12 A Montaje en circuito impreso o en zócalo serie 95

Reticulado 3.5 mm 1 contacto 12 A Montaje en circuito impreso o en zócalo serie 95 8-12 - 16 A Características 41.31 41.52 41.61 1 o 2 contactos conmutados Bajo perfil (altura 15.7 mm) 41.31-1 contacto 12 A (reticulado 3.5 mm) 41.52-2 contactos 8 A (reticulado 5 mm) 41.61-1 contacto

Más detalles

AUDIOCAPACIMETRO (BC548/BC558)

AUDIOCAPACIMETRO (BC548/BC558) Fichas coleccionables que se publican mensualmente, con circuitos prácticos de fácil FICHA Nº 237 - SABER Nº 133 AUDIOCAPACIMETRO (BC548/BC558) La frecuencia del sonido emitido por el parlante depende

Más detalles

ELECTRONICA ANALOGICA

ELECTRONICA ANALOGICA ASIGNATURA: ELECTRONICA ANALOGICA Curso 2015/2016 (Código:01524086) AVISO IMPORTANTE En el Consejo de Gobierno del 30 de junio de 2015 se aprobó, por unanimidad, que la convocatoria de exámenes extraordinarios

Más detalles

Anchura 5 mm Bobina de bajo consumo. Montaje en circuito impreso. o en zócalo serie 93. Vista parte inferior

Anchura 5 mm Bobina de bajo consumo. Montaje en circuito impreso. o en zócalo serie 93. Vista parte inferior Serie 34 - Relé electromecánico para circuito impreso 6 A Características 34. Ultra fino con contacto - 6 A Montaje en circuito impreso - directo o en zócalo Montaje en carril de 3 mm (EN 0022) - en zócalos

Más detalles

INDICE 1. Componentes de la técnica digital 2. Circuitos de la microelectrónica 3. El amplificador lineal transistorizado

INDICE 1. Componentes de la técnica digital 2. Circuitos de la microelectrónica 3. El amplificador lineal transistorizado INDICE 1. Componentes de la técnica digital 1.1. componentes semiconductores 1 1.2. Propiedades físicas de los semiconductores 3 1.3. Propiedades de las uniones pn 4 1.4. El transistor bipolar 1.4.1. Mecanismo

Más detalles

Conocer la aplicación de dispositivos semiconductores, como conmutadores, así como las compuertas lógicas básicas y sus tablas de verdad.

Conocer la aplicación de dispositivos semiconductores, como conmutadores, así como las compuertas lógicas básicas y sus tablas de verdad. OBJETIVO GENERAL: PRACTICA No. 1: PRINCIPIOS BÁSICOS Conocer la aplicación de dispositivos semiconductores, como conmutadores, así como las compuertas lógicas básicas y sus tablas de verdad. OBJETIVOS

Más detalles

DISPOSITIVOS ELECTRONICOS

DISPOSITIVOS ELECTRONICOS DISPOSITIVOS ELECTRONICOS DISPOSITIVO ELECTRONICO Se denominan Dispositivos Electrónicos a la combinación de diversos elementos o componentes organizados en circuitos, destinados a controlar y aprovechar

Más detalles

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto. Docente: M. en C. Valentín Trujillo Mora

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto. Docente: M. en C. Valentín Trujillo Mora Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto Unidad de aprendizaje: Electrónica Digital(L41088 ) Unidad de Competencia: Unidad 3 TEMA: 3.1, 3.2, 3.3, 3.4 y 3.5 Docente:

Más detalles

Electrónica para Sistemas de Comunicación.

Electrónica para Sistemas de Comunicación. Electrónica para Sistemas de Comunicación. Profesor: Dr. Hildeberto Jardón Aguilar. OBJETIVOS. Los objetivos del curso son capacitar a los estudiantes de maestría en resolver una serie de tareas que se

Más detalles

EL AMPLIFICADOR OPERACIONAL (II)

EL AMPLIFICADOR OPERACIONAL (II) 1 DSPOSTVOS ELECTRÓNCOS Dispositivos Electrónicos CURSO 2010-2011 Tema 11 11 EL AMPLFCADOR OPERACONAL () Miguel Ángel Domínguez Gómez Camilo Quintáns Graña DEPARTAMENTO DE TECNOLOGÍA ELECTRÓNCA UNVERSDAD

Más detalles

CARACTERISTICAS INFORMACION

CARACTERISTICAS INFORMACION FACULTAD: PREGRADO: POSTGRADO: CIENCIAS BASICAS E INGENIERIA INGENIERIA ELECTRÓNICA Nro CARACTERISTICAS INFORMACION 1 DENOMINACION DEL CURSO: ELECTRÓNICA ANÁLOGA I 2 CODIGO: 612402 3 AREA: PROFESIONAL

Más detalles

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS 1. Evaluar e interpretar las características fundamentales del amplificador diferencial. 2. Analizar las ventajas y desventajas de las diferentes formas de polarización del amplificador diferencial.

Más detalles

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA PLAN DE ESTUDIOS 2006-II SÍLABO 1.- DATOS ADMINISTRATIVOS: Curso : CIRCUITOS ELECTRÓNICOS II Código

Más detalles

Electrónica Analógica

Electrónica Analógica Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto

Más detalles

Sistemas Electrónicos Especialidad del Grado de Ingeniería de Tecnologías de Telecomunicación

Sistemas Electrónicos Especialidad del Grado de Ingeniería de Tecnologías de Telecomunicación Especialidad del Grado de Ingeniería de Tecnologías de Telecomunicación Charlas Informativas sobre las Especialidades de los Grados E.T.S.I.I.T. Jesús Banqueri Ozáez Departamento de Electrónica y Tecnología

Más detalles

Circuitos Sample & Hold y Conversores. Introducción

Circuitos Sample & Hold y Conversores. Introducción Circuitos Sample & Hold y Conversores Introducción Los circuitos de muestreo y retención se utilizan para muestrear una señal analógica en un instante dado y mantener el valor de la muestra durante tanto

Más detalles

CONTENIDO PRESENTACIÓN. Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1

CONTENIDO PRESENTACIÓN. Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1 CONTENIDO PRESENTACIÓN Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1 1.1 INTRODUCCIÓN...1 1.2 EL DIODO...2 1.2.1 Polarización del diodo...2 1.3 CARACTERÍSTICAS DEL DIODO...4 1.3.1 Curva característica

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS ELECTRÓNICA ANALÓGICA Área a la que pertenece: Área de Formación Transversal Horas teóricas: 3 Horas prácticas: 3 Créditos: 9 Clave: F0143 Asignaturas antecedentes y subsecuentes PRESENTACIÓN

Más detalles

Reticulado 3.5 mm 1 contacto 12 A Montaje en circuito impreso o en zócalo serie 95

Reticulado 3.5 mm 1 contacto 12 A Montaje en circuito impreso o en zócalo serie 95 Serie 41 - Mini-relé para circuito impreso 8-12 - 16 A Características 41.31 41.52 41.61 1 o 2 contactos conmutados Bajo perfil (altura 15.7 mm) 41.31-1 contacto 12 A (reticulado 3.5 mm) 41.52-2 contactos

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Dispositivos y Circuitos

Más detalles

Las ventajas de la inserción de una impedancia alta y no de un corte real del circuito eléctrico son:

Las ventajas de la inserción de una impedancia alta y no de un corte real del circuito eléctrico son: Un interruptor estático consta de uno o más elementos semiconductores que constituyen el contacto, y un circuito de mando que determina la posición del contacto: - abierto (los semiconductores ofrecerán

Más detalles

APU NTES DE APOYO N 4 DEL MÓDULO DE INSTALACIÓN Y MANTENCIÓN DE EQUIPOS DE AUDIO Y VIDEO.

APU NTES DE APOYO N 4 DEL MÓDULO DE INSTALACIÓN Y MANTENCIÓN DE EQUIPOS DE AUDIO Y VIDEO. APU NTES DE APOYO N 4 DEL MÓDULO DE INSTALACIÓN Y MANTENCIÓN DE EQUIPOS DE AUDIO Y VIDEO. Continuación ETAPA DE FRECUENCIA INTERMEDIA (FI).- Esta etapa consta de una o más secciones amplificadoras sintonizadas

Más detalles

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como

Más detalles

Electrónica 1. Práctico 2 Amplificadores operacionales 2

Electrónica 1. Práctico 2 Amplificadores operacionales 2 Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Electrónica REPASO DE CONTENIDOS

Electrónica REPASO DE CONTENIDOS Tema 1 Electrónica Conocerás las principales componentes de los circuitos eléctricos. Resistencias, condensadores, diodos y transistores. Sabrás cómo montar circuitos eléctricos simples. REPASO DE CONTENIDOS

Más detalles

COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7

COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7 COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7 SEMICONDUCTORES Termistores Foto resistores Varistores Diodo Rectificador Puente Rectificador Diodo de Señal Diodo PIN Diodo Zener Diodo Varactor Fotodiodo

Más detalles

TECNOLOGÍA ELECTRÓNICA

TECNOLOGÍA ELECTRÓNICA ESCUELA UNIVERSITARIA POLITECNICA Segundo Curso INGENIERÍA TÉCNICA INDUSTRIAL Especialidad ELECTRICIDAD. Sección ELECTRÓNICA REGULACIÓN Y AUTOMATISMOS Prog. de la asignatura TECNOLOGÍA ELECTRÓNICA CURSO

Más detalles

Serie 34 - Relé electromecánico para circuito impreso 6 A. Características Ultra fino con 1 contacto - 6 A. Montaje en circuito impreso

Serie 34 - Relé electromecánico para circuito impreso 6 A. Características Ultra fino con 1 contacto - 6 A. Montaje en circuito impreso Serie 34 - Relé electromecánico para circuito impreso 6 A Características 34.51 Ultra fino con 1 contacto - 6 A Montaje en circuito impreso - directo o en zócalo Montaje en carril de 35 mm (EN 60715) -

Más detalles

Informe # 2 Modulador Balanceado

Informe # 2 Modulador Balanceado Universidad De Oriente Núcleo De Anzoátegui Escuela De Ingeniería Y Ciencias Aplicadas Departamento De Tecnología Área De Electrónica Lab. De comunicaciones 1 Informe # 2 Modulador Balanceado Profesor:

Más detalles

Lección 2. Circuitos electrónicos en instrumentación (I)

Lección 2. Circuitos electrónicos en instrumentación (I) Lección 2. Circuitos electrónicos en instrumentación (I) 2.1 Tipos de señales 2.2 Puentes de impedancias 2.3 Amplificadores de señal 2.4 Multiplicadores analógicos Apéndice: Especificaciones del amplificador

Más detalles

TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO. Samuel Escudero Melendo

TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO. Samuel Escudero Melendo TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO Samuel Escudero Melendo QUÉ VEREMOS? CONCEPTOS BÁSICOS ELECTRICIDAD y ELECTRÓNICA CANTIDAD DE CARGA, INTENSIDAD, VOLTAJE, RESISTENCIA LEY DE OHM ELEMENTOS DE CIRCUITOS

Más detalles

TEMPORIZADOR Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica

TEMPORIZADOR Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica Electrónica II. Guía 6 1 / 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). TEMPORIZADOR - 555. Objetivos

Más detalles

Sistemas Electrónicos Para Informática

Sistemas Electrónicos Para Informática Sistemas Electrónicos Para Informática Rafael Vázquez Pérez Unidad 1 Fundamentos de Electrónica Agenda 1.1. Componentes discretos. 1.1.1. Teoría de los semiconductores. 1.1.2. Diodos,BJT,FET. 1.2. Amplificadores

Más detalles

PROGRAMA INSTRUCCIONAL ELECTRONICA I

PROGRAMA INSTRUCCIONAL ELECTRONICA I UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

4.3.- EL AMPLIFICADOR DE INSTRUMENTACIÓN

4.3.- EL AMPLIFICADOR DE INSTRUMENTACIÓN Ignacio Moreno elasco..- EL MPLIFICDO DE INSTUMENTCIÓN nte las exigencias de medida que imponen los sensores, se necesitan amplificadores específicos llamados de instrumentación que deben cumplir unos

Más detalles

AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL

AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL Tensión de red baja (V1) Tensión de red alta (V1) Cable de red en circuito abierto Fusible de entrada o c.a. en circuito abierto Interruptor en circuito abierto

Más detalles

CAPITULO I INTRODUCCIÓN. Diseño Digital

CAPITULO I INTRODUCCIÓN. Diseño Digital CAPITULO I INTRODUCCIÓN Diseño Digital QUE ES DISEÑO DIGITAL? UN SISTEMA DIGITAL ES UN CONJUNTO DE DISPOSITIVOS DESTINADOS A LA GENERACIÓN, TRANSMISIÓN, PROCESAMIENTO O ALMACENAMIENTO DE SEÑALES DIGITALES.

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA ELECTROMECÁNICA MICROCURRICULO ELECTRÓNICA I

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA ELECTROMECÁNICA MICROCURRICULO ELECTRÓNICA I FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA ELECTROMECÁNICA MICROCURRICULO Asignatura Código 1090613 ELECTRÓNICA I Ciencias Ciencias Profesional Área de formación: Básicas Básicas especifica Aplicada

Más detalles

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica

Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica ELECTRÓNICA III PROBLEMAS RESUELTOS SOBRE CONVERSORES

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus montajes típicos que son como

Más detalles

CONVERTIDORES DE VOLTAJE A CORRIENTE Y DE CORRIENTE A VOLTAJE

CONVERTIDORES DE VOLTAJE A CORRIENTE Y DE CORRIENTE A VOLTAJE CONVERTIDORES DE VOLTAJE A CORRIENTE Y DE CORRIENTE A VOLTAJE En algunas aplicaciones, tales como en el control de bobinas (electroimanes) y en la transmisión de senales por líneas muy largas, a menudo

Más detalles

Universidad Ricardo Palma

Universidad Ricardo Palma Universidad Ricardo Palma FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRONICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA PLAN DE ESTUDIOS 2006-II SÍLAB0 1. DATOS ADMINISTRATIVOS 1.1

Más detalles

Parcial_1_Curso.2012_2013. Nota:

Parcial_1_Curso.2012_2013. Nota: Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.

Más detalles

SENSORES Y ACONDICIONADORES TEMA 15 (2) CIRCUITOS ACONDICIONADORES DE SENSORES ANALÓGICOS

SENSORES Y ACONDICIONADORES TEMA 15 (2) CIRCUITOS ACONDICIONADORES DE SENSORES ANALÓGICOS SENSORES Y ACONDICIONADORES TEMA 15 (2) CIRCUITOS ACONDICIONADORES DE SENSORES ANALÓGICOS CIRCUITOS DE EXCITACIÓN, CONVERTIDORES DE PARÁMETRO Y CONVERTIDORES DE FORMATO Profesores: Enrique Mandado Pérez

Más detalles

ELECTRONICA GENERAL. Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB

ELECTRONICA GENERAL. Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB 2.- La realimentación negativa: a) Desestabiliza la ganancia del sistema, haciéndolo

Más detalles

TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV CIRCUITOS AMPLIFICADORES

TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV CIRCUITOS AMPLIFICADORES TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV EB 21 TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV EB 22 CIRCUITOS AMPLIFICADORES MOD. MCM5/EV EB 23 CIRCUITOS OSCILADORES

Más detalles

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc INDICE Prólogo XI Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de 1 cc 1.1. Introducción 1 1.2. Magnitudes más relevantes del circuito electrónico 2 1.2.1. Tensión eléctrica 2 1.2.2. Intensidad

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 3.0 Semana 5.0 Optativa Prácticas Semanas 80.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 3.0 Semana 5.0 Optativa Prácticas Semanas 80.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del 15 de octubre de 2008 DISPOSITIVOS

Más detalles

Flat Amp. Pre-Amp PROTECTOR SOBRECARGA APAGADO TÉRMICO CORTO CIRCUITO. Pre-Amp 3.9K 10K

Flat Amp. Pre-Amp PROTECTOR SOBRECARGA APAGADO TÉRMICO CORTO CIRCUITO. Pre-Amp 3.9K 10K 1 Diagrama eléctrico 9 10 17 Pre-Vcc Power Vcc1 Power Vcc C5 0. Vcc R1 C1 C6 1000pF R C NC C3 Entrada1 Nf1 3 Pre-Amp 1 8 Mute SW Ripple Flat Amp PROTECTOR SOBRECARGA APAGADO TÉRMICO CORTO CIRCUITO Salida1

Más detalles