Práctica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica"

Transcripción

1 UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE MATEMATICA HPV/ Práctica Problema 1. Determinar el área de la región comprendida entre los gráficos de las ecuaciones siguientes: (a) y = x +,y= x +6,y= x. y = x +,y= x +6, y = x El gráfico de la región es el siguiente: Las intersecciones entre las rectas, son: Entre (1) y (): x =1 Entre () y (): x = Entre (1) y (): x = 1 Así el área queda dada por la siguiente expresión: A = R 1 1 (1) ()dx + R 1 () ()dx A = R 1 x 1 (x +) ( )dx + R x 1 ( x +6) ( )dx A = R 1 1 ( 4 x + 4 )dx + R 1 ( 8 x + 16 )dx A = 4 R 1 1 (x +1)dx + 8 ( x +)dx =4 R 1 (b) y =16 x e (y +) = x +4. El gráfico de la región es el siguiente:

2 Buscamos los puntos de intersección de las parábolas y =16 x x =16 y (y +) = x +4 x =(y +) 4,así y =(y +) 4 16 y = y +4y +4 4 =y +4y 16 y 1 = 4,y = Entonces los puntos de intersección son: (, 4) y (1, ) Como podemos observar en el gráfico, es mas fácil obtener el área integrando a lo largo de y que a lo largo de x (como tradicionalmente se hace). Entonces definimos: G (y) =16 y F (y) =(y +4) 4 Como F (y) G (y) en el intervalo 4 y, luego: Ar = R 4 [G (y) F (y)] dy A = R 4 h 16 y ³ (y +) 4 A = R 4 y y +4y +4 dy A = R 4 i dy 16 4y y dy = 16y y y 4 =7 (c) y = x 1 x +1 e y =1. El gráfico de la región es el siguiente:

3 Al igualar las ecuaciones se ve que no hay intersecciones entre las curvas (esta aseveración se puede apoyar con el gráfico). Ademas la curva y =1es mayor a la curva y = x 1 x R x +1 Por lo tanto el area entre las curvas es: A = R ³ + 1 x 1 dx x +1 A = R ³ + dx x +1 A = R ³ dx + R ³ + x +1 dx x +1 Como R dx = arctan(x) x +1 Luego: A = lim [ a arctan(x)] a + lim [ a + arctan(x)]a A = lim [ arctan() arctan(a)] + lim [ arctan(a) arctan()] a a + A = π + π =π. Problema. Un sólido tiene una base en forma de elipse, cuyos ejes mayor y menor miden 1 cm y 8 cm respectivamente. Determinar su volumen sabiendo que toda sección transversal perpendicular al eje mayor es un triángulo isósceles de altura igual a 6 cm. Convenientemente, podemos considerar la ecuación de la elipse como: x 6 + y 4 =1. En las siguientes figuras se puede apreciar un esquema del sólido en cuestión: Claramente, se puede notar que toda sección transversal perpendicular al eje mayor posee un área, A, dada por la fórmula: A = 1 y 6.

4 Figure.1: Dado que: x 6 + y 4 =1 y = ± p 6 x, considerando la parte positiva, se tiene que: A(x) =4 p 6 x, 6 x 6. Finalmente, el volumen, V, del sólido está dado por: Haciendo la sustitución: V = = 4 = 8 Z 6 6 Z 6 6 Z 6 A(x)dx p 6 x dx p 6 x dx x = 6sinu dx = 6cosudu x = u = x =6 u = π 4

5 se tiene que: Z π V = 88 Z π cos udu = 144 [cos(u)+1]du π π = 7sin(u) + 144u = 7π cm Problema. Hallar el volumen del sólido limitado por el paraboloide x yelplanoz = y 5 = z Una sección transversal del paraboloide determinada por el plano z = k con k 1 es el conjunto S(k) definido por: ¾ S(k) = ½(x, y) R : x 16 + y = k, k 1 ½ 5 S(k) = (x, y) R x ¾ : 16k + y =1, k 1, es decir, la sección 5k transversal corresponde a una elipse. En el ejercicio de la práctica se demostró que la región encerrada por la elipse x a + y b =1tiene área πab.por lo tanto, el área de cualquier elipse de S(k) tiene área π4 k5 k =πk.así z [, 1], S(z) es una región plana con área A(z) =πz.luego, por el "método de la sección transversal" el volumen del sólido limitado por el paraboloide x 16 + y 5 = z yel plano z =1es: Z 1 Z 1 V = A(z)dz = πzdz =π z 1 = 1π. Problema 4. En un cilindro circular recto de madera de 8cm.de radio, se efectua un corte que pasa por el diámetro de la base y forma con ella un ángulo de 6. Hallar el volúmen de la madera eliminada. La figura a estudiar es la siguiente: El corte eliminado del cilíndro está formado por una serie de triángulos(cortes perpendiculares al eje x) con ángulos iguales(6 9 ). Las variables que se tiene para cada corte son la base y la altura. El siguiente dibujo aclara esta situación: La base de el triángulo en todo momento es la semicircunferencia de la base del cilindro. Tomando la ecuación de la circunferencia de la base del cilíndro, se tiene: x + y =8 5

6 Figure.: Figure.: 6

7 De esta ecuación, despejando y (positiva) como la base del triángulo, se tiene: y = p 8 x La altura en todo momento está dada por: tan π = h y Luego despejando h en función de y, setiene: h =tan π y Entonces el área del triángulo en todo momento está dado por: A(h, y) = y h 8 x tan π A(x) = 8 x tan π = 8 x A(x) = x [ 8, 8] Luego el volúmen de madera eliminado está dado por la suma de todos los infinitesimales de volúmen de la siguiente forma: V = V = Z x dx = Z 8 8 x dx 8 x x 8 = 14cm de Problema 5. Determinar el volumen del sólido generado por la rotación del círculo ecuación (x 5) + y =4, en torno al eje y. Considerando y = q 4 (x 5), y usando el métodos de los anillos (la distancia al eje de giro es x y la altura del cilindro es q 4 (x 5) ) y por simetría, se tiene que la mitad del volumen pedido está dado por π R 7 x q4 (x 5) dx, para calcular esta integral puede considerarse el cambio dado por x 5=sinθ. 7

8 π R q 7 x 4 (x 5) dx =π R π π π R q 7 x 4 (x 5) dx =16π R π π R 7 x q 4 (x 5) dx =π π Luego el volumen pedido es V =4π. ( sin θ +5)4cos θdθ sin θ cos θdθ +π R π π (1 + sin (θ)) dθ Problema 6. La región acotada por la parábola y = 1 4x, y las rectas x =,y =,y =, giran en torno al eje x. Determinar el volumen del sólido generado. y x Antes de calcular el volumen del sólido determinaremos los puntos de intersección de las curvas que delimitan dicha región. Puntos de intersección de las curvas y = 1 4x intersectado con x =, y =e y =, respectivamente tenemos x == y = y == x = y == x = Como vimos, la curva y = 1 4x se interseca con y = en el punto (, ). Por tanto el sólido que se genera al rotar la región comprendida en [, ] es un cilindro de radio unidades de longitud al igual que su altura. Luego, su volumen es V 1 (x) =π() =8π. Ahora para determinar el volumen del sólido total basta calcular aquel,que se genera al rotar sobre el eje de las abscisas la región comprendida en [, ] V (x) =π R [y] = π R 1 4x = π R (1 4x) =π 1x x = π [6 18 (4 8)] = π Finalmente el volumen total es V t (x) =V 1 (x)+v (x) =1πu Problema 7 (preguntar a Manuel Sanchez) 8

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A Cálculo II Volúmenes de Sólidos M. en C. Ricardo Romero Departamento de Ciencias Básicas, UAM-A Grupo CTG87 Trimestre 11-P Grupo CTG87 Trimestre 11-P 1 / Programa 1 Cálculo de volúmenes a partir de secciones

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura. Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía

Más detalles

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:

Más detalles

SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS

SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS (Apuntes en revisión para orientar el aprendizaje) SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS - Leer cuidadosamente el enunciado para comprender la problemática presentada y ver qué se pretende

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

PARABOLA Y ELIPSE. 1. La ecuación general una parábola es: x y 40 = 0. Poner la ecuación en la forma: (x h) 2 = 4p (y k).

PARABOLA Y ELIPSE. 1. La ecuación general una parábola es: x y 40 = 0. Poner la ecuación en la forma: (x h) 2 = 4p (y k). PARABOLA Y ELIPSE 1. La ecuación general una parábola es: x + 0y 40 = 0. Poner la ecuación en la forma: (x h) = 4p (y k). x = 0 (y ) (x ) = 0y x = 0 (y ) x = 0 (y + ) (x 40) = 0y. Hallar la ecuación de

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0 Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES

Más detalles

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

PROBLEMAS DE INTEGRALES INDEFINIDAS

PROBLEMAS DE INTEGRALES INDEFINIDAS PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

Ejercicios propuestos para el cálculo de áreas

Ejercicios propuestos para el cálculo de áreas Aplicaciones geométricas y mecánicas de la integral definida 191 Ejercicios propuestos para el cálculo de áreas 1) Calcular el área de la figura limitada por la parábola verticales = 1, = y el eje OX y

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

( ) + cos 2 ( 2x) = 2, x! ( ( )) = 8 ( ) { } P( D) ( ) = 9. a) # b) # c) # d) # { }. Identifique la proposición FALSA: logπ $ ' = 2 r : sen 2 2x

( ) + cos 2 ( 2x) = 2, x! ( ( )) = 8 ( ) { } P( D) ( ) = 9. a) # b) # c) # d) # { }. Identifique la proposición FALSA: logπ $ ' = 2 r : sen 2 2x ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 04 S TERCERA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN

Más detalles

SOLUCIONARIO Ejercitación Área y volumen de sólidos

SOLUCIONARIO Ejercitación Área y volumen de sólidos SOLUCIONARIO Ejercitación Área y volumen de sólidos SGUICAC00MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN DE ÁREA Y VOLUMEN DE SÓLIDOS Ítem Alternativa 1 E B C 4 B 5 A Comprensión 6 D 7 E

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

CURSO DE NIVELACIÓN Guía 13 FUNCIONES Y TRIGONOMETRÍA

CURSO DE NIVELACIÓN Guía 13 FUNCIONES Y TRIGONOMETRÍA FUNCIONES Y TRIGONOMETRÍA 1. Determine el dominio de las siguientes funciones: a) f() = + 7 b) g() = + 7, 0 6 c) f() = 5 d) f() = 5 + + 1 e) f() = 1 f ) f() = 1 g) f() = ( 1)( )( ) h) g() = i) g() = 1

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2 CAPÍTULO 5 Geometría analítica En el tema de Geometría Analítica se asume cierta familiaridad con el plano cartesiano. Se entregan básicamente los conceptos más básicos y los principales resultados (fórmulas)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

1. Determinar el volumen del solido que se genera al rotar la región acotada por las parabolas x = y 2 3 y x = y y 2,alrededor de la recta x = 4.

1. Determinar el volumen del solido que se genera al rotar la región acotada por las parabolas x = y 2 3 y x = y y 2,alrededor de la recta x = 4. Practica. Determinar el volumen del solido que se genera al rotar la región acotada or las arabolas x = y y x = y y,alrededor de la recta x = 4. Encontremos los untos de interceccion de ambas curvas: y

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx INTEGRAL DEFINIDA. PROBLEMAS. º-Calcular las siguientes integrales definidas: π sen. ln(+ )d. d. + sen - cos -π +. d.5 -) - ( - d.6 E[]d -.7 E[] d.8 cos d - º-Calcular el área limitada por las gráficas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

= λ + 1 y el punto A(0, 7, 5)

= λ + 1 y el punto A(0, 7, 5) 94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 8 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

CÓNICAS. 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses:

CÓNICAS. 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses: CÓNICAS 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses: a) b) c) a) =(3,1), A(5,1), A (1,1), B(3,), B (3,0) e=0'866; b) =(-,1), A(-1,1), A (-3,1),B(-,4/3), B (-,/3),

Más detalles

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción

Más detalles

, siendo ln(1+x) el logaritmo neperiano de 1+x. x

, siendo ln(1+x) el logaritmo neperiano de 1+x. x Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

CURVAS TÉCNICAS CURVAS CÓNICAS

CURVAS TÉCNICAS CURVAS CÓNICAS 2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos

Más detalles

Uso no comercial 12.4 CUERPOS REDONDOS

Uso no comercial 12.4 CUERPOS REDONDOS 1.4 CUERPOS REDONDOS Designamos en general como cuerpos redondos el conjunto de puntos del espacio obtenido cuando una figura gira alrededor de una recta, de tal forma que cada punto de la figura conserva,

Más detalles

27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo?

27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo? EJERCICIOS 1.- Calcular la altura a la hipotenusa de un triángulo rectángulo cuyos catetos miden 6 y 8 cm. 5 2.- En un triángulo rectángulo, un cateto mide 15 cm., y la proyección del otro sobre la hipotenusa

Más detalles

LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica

LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN LA PARÁBOLA Parábola es el lugar geométrico de todos los puntos P del plano que equidistan de una recta fija llamada directriz (L) y de un punto fijo exterior

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U

Más detalles

MATEMÁTICAS II (PAUU XUÑO 2011)

MATEMÁTICAS II (PAUU XUÑO 2011) MATEMÁTICAS II (PAUU XUÑO 0) OPCIÓN A. a) Sean C, C, C 3 las columnas primera, segunda y tercera, respectivamente, de una matriz cuadrada M de orden 3 con det (M ) = 4. Calcula enunciando las propiedades

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas

Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas U.C.V. Facultad de Ingeniería CÁLCULO I (5) Guía de estudio Nº : Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas.- Determine la ecuación del lugar geométrico de los puntos (, ) del plano

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA CAPÍTULO XI. APLICACIONES DE LA INTEGRAL DEFINIDA SECCIONES A. Áreas de figuras planas. B. Cálculo de volúmenes. C. Longitud de curvas planas. D. Ejercicios propuestos. 37 A. ÁREAS DE FIGURAS PLANAS. En

Más detalles

RECTAS, PLANOS EN EL ESPACIO.

RECTAS, PLANOS EN EL ESPACIO. COMUNICACIÓN MATEMÁTICA: Grafica rectas, planos y sólidos geométricos en el espacio RESOLUCIÓN DE PROBLEMAS Resuelve problemas geométricos que involucran rectas y planos en el espacio. Resuelve problemas

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Geometría Plana y Trigonometría (SEP-INAOE)

Geometría Plana y Trigonometría (SEP-INAOE) xamen -Nov-008 Geometría Plana y Trigonometría (SP-IN) Nombre completo: Nombre instructor: No. de grupo: alificación: 1.- Los radios de dos circunferencias son 10 y 16 cm. Hallar la distancia entre los

Más detalles

GUÍA DE EJERCICIOS GEOMETRÍA ANALÍTICA (CURVAS CÓNICAS)

GUÍA DE EJERCICIOS GEOMETRÍA ANALÍTICA (CURVAS CÓNICAS) U N E X P O INTRODUCCIÓN: UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA GUÍA DE EJERCICIOS GEOMETRÍA

Más detalles

UNIDAD 5.C :INTEGRALES Y SUPERFICIES DE REVOLUCIÓN

UNIDAD 5.C :INTEGRALES Y SUPERFICIES DE REVOLUCIÓN UNIDAD 5.C :INTEGRALES Y SUPERFICIES DE REVOLUCIÓN 5.C.1 Concepto de integral Primitiva de una función: Sea f una función definida en el intervalo (a,b). Llamamos primitiva, antiderivada o integral indefinida

Más detalles

RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA.

RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA. RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA. 1. Sea f : IR IR definida por f() = 2 + 1, IR. Probar, utilizando la definición, que f es derivable en cualquier punto de IR. Encontrar los

Más detalles

Examen de integración Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) x arcsin x. 1 x. u = arcsin x du = v = 1 x 2

Examen de integración Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) x arcsin x. 1 x. u = arcsin x du = v = 1 x 2 Eamen de integración Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.).- ( puntos) Calcular las integrales indefinidas siguientes: ln d arcsin (ii) d (iii) e d ln d ln C arcsin (ii) d u arcsin du

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA SISTEMA COORDENADO CARTESIANO, DISTANCIA ENTRE DOS PUNTOS ANGULO ENTRE DOS RECTAS y AREA 1) Transportar a una gráfica los siguientes puntos: a) ( 5, 2 ) b) (0, 0 ) c) ( 1 + 3, 1-3 ) d) ( 0, 3 ) e) ( -

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos. Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

ESTUDIO GRÁFICO DE LA ELIPSE.

ESTUDIO GRÁFICO DE LA ELIPSE. Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO

Más detalles

IES Francico Ayala Examen modelo 1 del Libro 1996_97 con soluciones Germán Jesús Rubio luna. Opción A

IES Francico Ayala Examen modelo 1 del Libro 1996_97 con soluciones Germán Jesús Rubio luna. Opción A Opción A Ejercicio n 1 de la opción A del modelo 1 del libro 96_97 De una función continua f : R R se sabe que si F : R R es una primitiva suya, entonces también lo es la función G dada por G(x) 3 - F(x).

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

CALCULO DE CENTROS DE MASA

CALCULO DE CENTROS DE MASA CALCULO DE CENTOS DE MASA Determinar la posición del C.M. de un semicono. Solución: I.T.I., I.T.T., 4 Sea el semicono de la figura orientado a lo largo del eje X, de altura radio. Dado que el plano XY

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5. Graficar. R: (x +8) 2 + (y 2) 2 = 25

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5. Graficar. R: (x +8) 2 + (y 2) 2 = 25 SECCIONES CONICAS CIRCUNFERENCIA 1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) r = 5. Graficar. R: ( +8) 2 + ( 2) 2 = 25 2- Dar la ecuación general de la circunferencia de centro

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene Capítulo 5 Fuerzas distribuidas. Centroides y centros de gravedad Introducción La acción de la Tierra sobre un cuerpo rígido debe representarse por un gran número de pequeñas fuerzas distribuidas sobre

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

Formulario de Geometría Analítica

Formulario de Geometría Analítica 1. El Punto 1.1. Distancia entre dos puntos Sean A(x 1, y 1 ) y B(x, y ) dos puntos en el plano. La distancia d entre ambos está dada por la ecuación: d(a, B) = (x x 1 ) + (y y 1 ) 1.. Punto medio: Sean

Más detalles

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES Hasta el momento hemos tratado integrales dobles en las cuales la región de integración es una región rectangular de la forma *(

Más detalles

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES POLIEDROS : Cuerpo sólido limitado por polígonos, llamados caras; en la que algunas de las caras confluyen en líneas rectas, llamadas aristas; y algunas de las aristas confluyen en puntos,llamados vértices.

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

2) Estudia crecimiento, decrecimiento y existencia de extremos relativos. x 4x

2) Estudia crecimiento, decrecimiento y existencia de extremos relativos. x 4x EJERCICIOS DE ANÄLISIS 1) Estudia el dominio, ceros y signo, continuidad, límites en caso que tienda a + y -, máimos y mínimos relativos de las siguientes funciones. Realiza en cada caso el bosquejo correspondiente.

Más detalles