1).- Para > 0, B= {x R L : p. x I} = {x R L

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1).- Para > 0, B= {x R L : p. x I} = {x R L"

Transcripción

1 Pontfca Unversdad Católca del Perú Programa de Maestría en Economía Curso: Mcroeconomía Intermeda Profesores: Clauda Barrga & José Gallardo Asstente: César Gl Malca Propedades de las funcones de demanda Walrasana, utldad ndrecta y gasto I. Funcón de demanda Walrasana 1 : 1).- La X d d X ( P es homogénea de grado o en P y en I. 2).- La X d d X ( P cumple con la ley de Walras: p.x=i para todo x d X ( P, I ). 3).- La X d d X ( P s la preferenca es convexa, entonces u (.) es cuasconcava, d entonces, X ( P, I) es un conjunto convexo. Además, s las preferencas son d estrctamente cuasconcava, entonces X ( P, I) consta de un solo elemento. Demostracón: 1).- Para > 0, B= {x R L : p. x I} = {x R L : p. x I}; esto quere decr que el conjunto de cestas de consumo factble (que es convexa) en el problema de maxmzacón no camba cuando todos los precos y el Ingreso son multplcados por una constante > 0. Note que esta propedad no requere de algún supuesto sobre la utldad. Intutvamente, consderando la restrccón presupuestal lneal que tene como puntos de nterseccón en los ejes a I, los cambos en precos e ngreso en la msma P proporcón no produce cambo alguno en la poscón de la restrccón presupuestal lneal y por lo tanto no produce cambos en la canasta óptma. 2).- La Ley de Walras se satsface del supuesto de no sacedad local, esto es, s p. x < I para algún x x (p, ahí e > 0 y y x (p, tal que, y x e, entonces s x se elge contradce el óptmo del problema de maxmzacón de la utldad, es decr, la cesta óptma del problema de maxmzacón se va obtener en el punto donde se ntersecte la pendente de la funcón de utldad con la recta presupuestara dada por p.x=i, que cumple con la ley de Walras. 1 Ver: Chapter 3, Andreu Mas colell, Mchael Whnston y Jerry Green (1995), Mcroeconomcs Theory Oxford Unversty Press.

2 3).- Suponemos que (.) es cuasconcava y exsten 2 cestas x y x (x x ) las cuales son elementos x (p. Para establecer el resultado, nosotros demostraremos que x = x + (1- ) x pertenece a x (p para algún [0, 1]. Para empezar, sabemos que (x) = (x ) y la gualamos a * y dado que (.) es cuasconcava tenemos por defncón: ( x + (1 - ) x ) (x) + (1 - ) (x ) ( x + (1 - ) x ) * + (1 - ) * = * (X ) * Además, sabemos que p x I y px I, tenemos: px I y (1 - ) px (1 - ) I sumando tenemos: p ( x + (1 - ) x ) I p.x I Por lo tanto x está en el conjunto factble convexo (arrba defndo como B= {x R L : p. x I}). Por lo tanto, s (x ) * y x es factble tenemos que x x (p, w). Cuando (.) es estrctamente cuasconcava, sgue el msmo argumento pero usando el concepto estrctamente cuasconcava. II. Funcón de Utldad Indrecta 2 : 1).- La V ( P es homogénea de grado 0 en P y I. 2).- la V ( P es una funcón crecente en I y no crecente en P 3).- La V ( P es cuasconvexa. 4).- La V ( P es contnua en I y en P. Demostracón: 1).- S los precos y el ngreso se multplca ambos por un 0, el conjunto de cestas de consumo factble (que es convexa) en el problema de maxmzacón no camba por la propedad de homogenedad de grado 0 en P y en I de la demanda walrasana. Entonces dado que las cestas óptmas no camban, cuando varían precos e ngreso, al reemplazar esas en la funcón de utldad me da la funcón de utldad ndrecta que no sufre nngún cambo, así tenemos: V( P, I) V( P para cualquer. 2 Ver: captulo 7, Hal R. Varan, Análss mcroeconómco, tercera edcón.

3 2).- Sea B= {x: px I} y B = {x: p.x I} sendo p p. En ese caso, B B. Por lo tanto el máxmo de u(x) en B es, al menos tan elevado como u(x) en B, es decr, un aumento de los precos reduce la utldad del ndvduo evaluada monetaramente. El argumento es smlar para el caso del I. Intutvamente un ncremento en el ngreso aumenta la utldad del ndvduo evaluada monetaramente. 3).- Supongamos que p y p son tales que V ( P k, V ( P k. Sea p = p+ (1- ) p. Se quere demostrar que V ( P k defnmos los conjuntos presupuestaros: B= {x: px I} B = {x: p x I} B = {x: p x I} Se demostrara que cualquer x pertenecente a B debe pertenecer a B o a B, es decr, B B U B, Supongamos que no es así, en ese caso, x es tal que xp + (1- ) p x I, pero px > I y p x > I s multplcamos a ambos lados por y por (1- ) tenemos: px > I y (1- ) p x > (1- ) I, sumando tenemos: px + (1- ) p x > I, lo que contradce el supuesto ncal. Podemos ver: V ( P = máx. u(x) sujeta a x pertenece a B máx. u(x) sujeta a x pertenece a B U B k ya que V ( P k, V ( P k 4).- Para la contnudad es sufcente probar: para una secuenca {{p n, I n }} n 1 con (p n, I n ) (p para algún u, s V (p n, I n ) u para todo n, entonces V (p u; s V (p n, I n ) u para todo n, entonces V (p u. Suponemos V (p n, I n ) u para todo n, entonces por monotonocdad de e (.) en u 3, nosotros tenemos I n e (p n para todo n. Por la contnudad de e (.), I e (p, podemos decr que V (p u. El msmo argumento se usa para V (p n, I n ) u para toda n. 3 Por monotonocdad se sabe que I > I. Defnmos u = V(p,u) y u = V(p,u ), entonces e(p=i y e (p, u )=I, por la monotonocdad de e (.) y I > I, nosotros tenemos u > u, eso es, V (p, w ) > V (p, w). Tambén, se puede asumr que P P. Defnmos u = V (p y u = V (p, entonces e (p = e (p, u )= I. Por la monotonocdad de e (.) y P P, se tene u u, eso es, V (p V (p.

4 III. Funcón de gasto 4 : 1).- La e( P es homogénea de grado 1 en P. 2).- La e( P es una funcón crecente en P y en la u. 3).- La e( P es cóncava en P. 4).- La e( P es contnua en P. Demostracón: 1).- Dado que las cestas óptmas no camban en el problema de mnmzacón del gasto cuando a los precos se les multplca por un escalar > 0, es decr: mn. ( p). x y mn. p. x dan las msmas cestas óptmas, tenemos: e ( p, ) = p. X* = e (p, ). Es decr, el aumento en en los precos causa un aumento en la msma proporcón en el gasto. 2).- Suponendo que e (p, ) no fuera estrctamente crecente en y tenemos x y x las cestas de consumo óptmo para los nveles de utldad y respectvamente, donde > y p.x p.x > 0, construmos una cesta X = z, donde (0,1). Por contnudad de (.), entonces allí cercano a 1 tal que (x) > y p.x > p. x (esta vez es una relacón estrcta), pero esto se contradce con el óptmo x del problema de mnmzacón del gasto dada. Intutvamente, s el consumdor quere dsponer de mayor utldad necesaramente ncurrrá en un mayor gasto. Para demostrar que e (p, ) es crecente en p, suponemos que los vectores de precos p y p tenen p p y pk = pk para todo k. S tenemos que x es un vector óptmo en el problema de mnmzacón de gasto para el p. Entonces e (p, ) = p. X p. X e (p, ), donde la últma desgualdad se da de la defncón del e (p, ). 3).- Fjamos un nvel de utldad, y tenemos p = p + (1- ) p para un [0, 1]. Suponemos que x es una cesta óptma en el problema de mnmzacón del gasto cuando los precos son p. entonces tenemos: e (p, ) = p. X = px + (1 - ) p. X e (p, ) + (1 - ) e (p, ), Donde la últma desgualdad se da a causa (x ) y la defncón de la funcón de gasto mplca que p.x e (p. ) y p. X e (p, ). 4 Ver: Chapter 3, Andreu Mas colell, Mchael Whnston y Jerry Green (1995), Mcroeconomcs Theory Oxford Unversty Press.

5 Intutvamente, la concavdad de la funcón de gasto respecto al preco de un ben se da por que una varacón del preco de un ben, mantenendo todo lo demás constante, producrá una varacón en menos proporcón del gasto dado la posbldad de susttucón del ben. 4).- Para la contnudad es sufcente probar: para una secuenca {{p n, u n }} n 1 con (p n, u n ) (p para algún I, s e (p n, u n ) I para todo n, entonces e (p I; s e (p n, u n ) I para todo n, entonces e (p I. Suponemos e (p n, u n ) I para todo n, entonces por monotonocdad de V (.) en I ( menconada en la pe de págna 3), nosotros tenemos u n V (p n para todo n. Por la contnudad de V (.), u V (p. Por la monotonocdad de V (.) en I, nosotros tenemos e (p argumento se usa para e (p n, u n ) I. I. El msmo.

En un mercado hay dos consumidores con las siguientes funciones de utilidad:

En un mercado hay dos consumidores con las siguientes funciones de utilidad: En un mercado hay dos consumdores con las sguentes funcones de utldad: U ( + y, y = ln( + U ( = + y con a >,, y a ln( + donde, =,, es la cantdad del ben consumda por el ndvduo, y es la cantdad de renta

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA prada@autom.uva.es mn J() h() = g() Problema general NPL Para encontrar una solucón al

Más detalles

Guía de Equilibrio General. Ejercicio extraído de Mas-Colell, Whinston y Green, con algunas modificaciones

Guía de Equilibrio General. Ejercicio extraído de Mas-Colell, Whinston y Green, con algunas modificaciones Guía de Equlbro General Ejercco extraído de Mas-Colell, Whnston y Green, con algunas odfcacones - Consdere una econoía caja de Edgeworth en que dos consudores tenen referencas con no sacedad local. Sea

Más detalles

CONDICIONES DE KUHN Y TUCKER APLICACIONES A LA ECONOMIA Y AL MERCADO DE CAPITALES

CONDICIONES DE KUHN Y TUCKER APLICACIONES A LA ECONOMIA Y AL MERCADO DE CAPITALES CONDICIONES DE KUHN Y TUCKER APLICACIONES A LA ECONOMIA Y AL MERCADO DE CAPITALES Bernardello, Alca Blanca y Vcaro, Aldo Omar Departamento de Matemátca Facultad de Cencas Económcas de la Unversdad de Buenos

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

Tema 8: DESIGUALDAD, Xisco Oliver Economía del Bienestar (2º GECO)

Tema 8: DESIGUALDAD, Xisco Oliver Economía del Bienestar (2º GECO) Tema 8: DESIGUALDAD, REDISTRIBUCIÓN Y POBREZA Xsco Olver 20610 - Economía del Benestar (2º GECO) Motvacón Benestar: el objetvo últmo del Estado es maxmzar el benestar El benestar se obtene a partr de las

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa

Universidad Diego Portales Facultad de Economía y Empresa Unversdad Dego Portales Profesor: Carlos R. Ptta Hasta este momento nos hemos enfocado en juegos en los cuales cualquer nformacón que es conocda por un jugador es conocda por todos los demás (es decr,

Más detalles

EJERCICIOS MICROECONOMIA AVANZADA 4º ECONOMIA DEPARTAMENTO DE FUNDAMENTOS DEL ANALISIS ECONOMICO I TEMA 1

EJERCICIOS MICROECONOMIA AVANZADA 4º ECONOMIA DEPARTAMENTO DE FUNDAMENTOS DEL ANALISIS ECONOMICO I TEMA 1 EJERCICIOS MICROECONOMIA AVANZADA 4º ECONOMIA DEPARTAMENTO DE FUNDAMENTOS DEL ANALISIS ECONOMICO I TEMA TEMAS. Las preferencas el consumor: axomátca y funcón e utla. Teoría e la emana. Equlbro el consumor.

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Juegos estáticos con información completa

Juegos estáticos con información completa Teoría de las decsones y de los juegos. Tema : Juegos estátcos con nformacón completa Juego en forma normal g = ( N={,,,n},(S,,S n ), (u,,u n ) ) N conjunto de jugadores, œ N (fnto) S, conjunto de estrategas

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 0-03 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Olgopolo y competenca monopolístca.

Más detalles

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria Economía Industral Tema. La demanda de la ndustra Objetvo del tema Entender el modelo económco de comportamento del consumdor, fnalmente resumdo en la funcón de demanda. Comprender el carácter abstracto

Más detalles

UNIVERSIDAD NACIONAL DE MAR DEL PLATA. Facultad de Ciencias Económicas y Sociales

UNIVERSIDAD NACIONAL DE MAR DEL PLATA. Facultad de Ciencias Económicas y Sociales UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES UNIVERSIDAD NACIONAL DE MAR DEL PLATA Facultad de Cencas Económcas y Socales TESIS DE GRADO Lc. en Economía Estmacón de

Más detalles

3 LEYES DE DESPLAZAMIENTO

3 LEYES DE DESPLAZAMIENTO eyes de desplazamento EYES DE DESPAZAMIENTO En el capítulo dos se expone el método de obtencón de las leyes de desplazamento dseñadas por curvas de Bézer para mecansmos leva palpador según el planteamento

Más detalles

Variable aleatoria: definiciones básicas

Variable aleatoria: definiciones básicas Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado

Más detalles

Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA

Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA Oferta de Trabajo Parte 2 Economía Laboral Julo J. Elías LIE - UCEMA Curva de oferta de trabajo ndvdual Consumo Salaro por hora ($) G w=$20 F w=$25 25 Curva de Oferta de Trabajo Indvdual w=$14 20 14 w

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Geometría Axiomática de la Convexidad Parte II: Axiomática de Cápsula convexa

Geometría Axiomática de la Convexidad Parte II: Axiomática de Cápsula convexa Geometría Axomátca de la Convexdad Parte II: Axomátca de Cápsula convexa Juan Carlos Bressan Resumen En la Parte I estudamos una axomátca de segmentos, en la que defnmos los convexos y estudamos sus propedades

Más detalles

4.4. La ciudad circular El Modelo de Salop

4.4. La ciudad circular El Modelo de Salop Matlde Machado para bajar las transparencas: http://www.eco.uc3m.es/~mmachado/ Economía Industral - Matlde Machado La Cudad Crcular El modelo de Salop 1 En el modelo de Hotellng habíamos supuesto que solo

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

El Modelo IS-LM. El modelo IS-LM

El Modelo IS-LM. El modelo IS-LM El Modelo IS-LM El modelo IS-LM 4. Introduccón 4.2 La demanda agregada: La funcón de nversón 4.3 Equlbro del mercado de benes: La curva IS 4.4 Equlbro del mercado de dnero: La curva LM 4.5 Equlbro de la

Más detalles

TEMA 4. TEORÍA DE LA DUALIDAD.

TEMA 4. TEORÍA DE LA DUALIDAD. Investgacón Operatva TEMA. TEORÍA DE LA DUALIDAD. TEMA. TEORÍA DE LA DUALIDAD..... INTRODUIÓN... ALGORITMO DUAL DEL SIMPLEX.... EJEMPLO.... EJEMPLO.... EJEMPLO... TEORÍA DE LA DUALIDAD.... PROLEMA PRIMAL

Más detalles

3.- Programación por metas.

3.- Programación por metas. Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Universitas Scientiarum ISSN: Pontificia Universidad Javeriana Colombia

Universitas Scientiarum ISSN: Pontificia Universidad Javeriana Colombia Unverstas Scentarum ISS: 0-7483 revstascentfcasjaverana@gmal.com Pontfca Unversdad Javerana Colomba Aranda, Mosés; Molna, Fabo; Moreno, Vladmr EL PROBLEMA DEL CUMPLEAÑOS, UA GEERALIZACIÓ Unverstas Scentarum,

Más detalles

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70 Análss del caso promedo Técncas Avanzadas de Programacón - Javer Campos 70 Análss del caso promedo El plan: Probabldad Análss probablsta Árboles bnaros de búsqueda construdos aleatoramente Tres, árboles

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 Rcardo Ramírez Facultad de Físca, Pontfca Unversdad Católca, Chle 1er. Semestre 2008 Corrente eléctrca CORRIENTE ELECTRICA Corrente eléctrca mplca carga en movmento.

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

2ª Colección Tema 2 La oferta, la demanda y el mercado

2ª Colección Tema 2 La oferta, la demanda y el mercado Cuestones y problemas de Introduccón a la Teoría Económca Carmen olores Álvarez Albelo Mguel Becerra omínguez Rosa María Cáceres Alvarado María del Plar Osorno del Rosal Olga María Rodríguez Rodríguez

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

TEORÍA KEYNESIANA DE DEMANDA DE DINERO. Richard Roca 1

TEORÍA KEYNESIANA DE DEMANDA DE DINERO. Richard Roca 1 TEORÍA KEYNESIANA DE DEMANDA DE DINERO Rchard Roca 1 MOTIVOS PARA DEMANDAR DINERO Según Keynes hay tres motvos para retener dnero: Transaccones Precaucón Especulacón Motvo de Transaccones El dnero faclta

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

Apuntes sobre el Diseño del Impuesto a la Renta de Personas Naturales

Apuntes sobre el Diseño del Impuesto a la Renta de Personas Naturales Apuntes sobre el Dseño del Impuesto a la Renta de Personas Naturales Fernando Vásquez S. Encuentro de Economstas del BCRP Contendo 1. Elementos de Teoría Económca 2. Tendencas Internaconales 3. Evolucón

Más detalles

APUNTES DE TEORÍA DE JUEGOS II Natalia González Julieth Solano. No. 5

APUNTES DE TEORÍA DE JUEGOS II Natalia González Julieth Solano. No. 5 APUNTES DE TEORÍA DE JUEGOS II Natala González Juleth Solano No. 5 Marzo 005 APUNTES DE ECONOMÍA ISSN 794-09X No. 5, Febrero de 005 Edtor Julo César Alonso C. jcalonso@ces.edu.co Asstente de Edcón Stephane

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

La elasticidad como una aplicación de análisis de oferta y demanda

La elasticidad como una aplicación de análisis de oferta y demanda La elastcdad como una aplcacón de análss de oerta y demanda por Aracel Ramírez Zamora La elastcdad mde la sensbldad de una varable a otra, nos ndca la varacón porcentual que expermentará la cantdad demandada

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Competencia Imperfecta

Competencia Imperfecta Competenca Imperfecta ISBN: 978-84-69-4353-4 Iñak Agurre 06-09 Notas sobre COMPETENCIA IMPERFECTA Iñak Agurre Departamento de Fundamentos del Análss Económco I Unversdad del País Vasco ÍNDICE Tema. El

Más detalles

Propiedades Asintóticas

Propiedades Asintóticas Capítulo 3 Propedades Asntótcas 3.. Dstrbucones Estaconaras Defncón 3. Sea X n, n, una cadena de Markov con espaco de estados E y matrz de transcón P. Sea π(), E, una dstrbucón de probabldad, es decr,

Más detalles

Captura de objetos móviles sobre una recta *

Captura de objetos móviles sobre una recta * Morfsmos, Vol. 18, No. 1, 2014, pp. 45 55 Captura de objetos móvles sobre una recta * Lus E. Urbán Rvero Rafael López Bracho Francsco J. Zaragoza Martínez Resumen En el problema del agente vajero eucldano

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

INGENIERÍA ENZIMÁTICA

INGENIERÍA ENZIMÁTICA Dvsón de Cencas Bológcas y de la Salud Ingenería Boquímca Industral INGENIERÍA ENZIÁTICA PROBLEARIO Dr. Sergo Huerta Ochoa NOTA: Los ejerccos presentados en este problemaro, son una recoplacón de problemas:

Más detalles

Equilibrios competitivos y de Bertrand, con y sin diferenciacion de productos

Equilibrios competitivos y de Bertrand, con y sin diferenciacion de productos Revsta equlbros de Análss compettvos Económco, Vol. y 24, de Nº bertrand, 1, pp. 43-53 (Juno con 2009) y sn dferencacon 43 Equlbros compettvos y de Bertrand, con y sn dferencacon de productos Compettve

Más detalles

1 EY ( ) o de E( Y u ) que hace que g E ( Y ) sea lineal. Por ejemplo,

1 EY ( ) o de E( Y u ) que hace que g E ( Y ) sea lineal. Por ejemplo, Modelos lneales generalzados En los modelos no lneales (tanto en su formulacón con coefcentes fjos o coefcentes aleatoros) que hemos vsto hasta ahora, exsten algunos que se denomnan lnealzables : son modelos

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

Optimización multicriterio. Andrés Ramos Universidad Pontificia Comillas

Optimización multicriterio. Andrés Ramos Universidad Pontificia Comillas Optmzacón multcrtero Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ Andres.Ramos@comllas.edu Contendo 1. Conceptos báscos 2. Métodos contnuos 3. Métodos dscretos Escuela Técnca

Más detalles

INGENIERÍA ENERGÉTICA

INGENIERÍA ENERGÉTICA INGENIERÍA ENERGÉTICA PROGRAMACIÓN DE LA GENERACIÓN DE ENERGÍA ELÉCTRICA Programacón de la generacón MERCADO DIARIO Es el mercado en el que tenen lugar las transaccones de compra y venta de energía para

Más detalles

Los Beneficios. Microeconomía Douglas C. Ramírez V. La producción y la oferta

Los Beneficios. Microeconomía Douglas C. Ramírez V. La producción y la oferta Los Benefcos Mcroeconomía Douglas C. Ramírez V. La produccón la oferta La esenca de la actvdad productva es obtener benes servcos (mercancías) con destno fnal al consumo por medo de los recursos de la

Más detalles

La Relación existente entre Gasto y Déficit Público en Latinoamérica ( )

La Relación existente entre Gasto y Déficit Público en Latinoamérica ( ) La Relacón exstente entre Gasto y Défct Públco en Latnoamérca (1960-2004) XXV Encuentro de Economstas Banco Central de Reserva del Perú Rodolfo Baca Gómez- Sánchez Lma, Dcembre 2007 1 Resumen Estudar cómo

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

Los vectores y sus operaciones

Los vectores y sus operaciones lasmatematcase Pedro Castro rtega Los ectores y ss operacones Un ector qeda determnado por dos pntos, el orgen, y el extremo Un ector qeda completamente defndo a traés de tres elementos: módlo, dreccón

Más detalles

Parte I: Mercados de Bienes

Parte I: Mercados de Bienes José L. Zofío Grupos 14/15 MICROECONOMÍA II Lcencatura: Admnstracón y Dreccón de Empresas Curso 2007-08 (2º semestre) Códgo 14474 Curso 2007/2008 1 Parte I: Mercados de Benes Tema 1. Mercados perfectamente

Más detalles

Cámara Chilena de la Construcción

Cámara Chilena de la Construcción Cámara Chlena de la Construccón Gerenca de Estudos Arrendar o comprar? Un análss empírco de los factores que determnan la decsón de compra o arrendo de la vvenda Danela Desormeaux Emanuel Vespa ~ Agosto

Más detalles

Uno de los determinantes distributivos más importantes es la política redistributiva del gobierno.

Uno de los determinantes distributivos más importantes es la política redistributiva del gobierno. REDISTRIBUCION Uno de los determnantes dstrbutvos más mportantes es la polítca redstrbutva del goberno. o polítca trbutara o gasto socal o seguros socales o regulacones con fnes redstrbutvos Países dferen

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

B3 A2 B3 B2 C1 A2 B3 B2 C1 C2 B1 A2 B1 B2 A2 A2 B3 A2 B3 B2 A2 B3 B2 A2 B1 B2 B3 B4 C1 C2 B3 B2 C3

B3 A2 B3 B2 C1 A2 B3 B2 C1 C2 B1 A2 B1 B2 A2 A2 B3 A2 B3 B2 A2 B3 B2 A2 B1 B2 B3 B4 C1 C2 B3 B2 C3 Ejercco ) Un sstema realza una gestón de memora rtual medante pagnacón por demanda, con la memora ddda en cnco marcos de poscones cada uno. En un momento determnado, se encuentran en el sstema tres procesos,

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado.

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado. Termodnámca del equlbro Equlbro fásco Profesor: lí Lara En el área de Ingenería Químca exsten muchos procesos ndustrales en los cuales está nvolucrado el equlbro entre fases. Una de estas operacones es

Más detalles

Consumo y Bienestar: la Función de Utilidad. Augusto Rufasto.

Consumo y Bienestar: la Función de Utilidad. Augusto Rufasto. Consumo y Benestar: la Funcón de Utldad arufast@yahoo.com-rufasto@lycos.com www.geoctes.com/arufast-http://rufasto.trpod.com El benestar depende del nvel de consumo Las famlas buscan ncrementar su consumo

Más detalles

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme Una hpótess estadístca es una afrmacón con respecto a una característca que se desconoce de una poblacón de nterés. En la seccón anteror tratamos los casos dscretos, es decr, en forma exclusva el valor

Más detalles

Integración por el método de los residuos

Integración por el método de los residuos Semana 13 - lase 38 Tema 6: Varable ompleja 1. Introduccón Integracón por el método de los resduos Las expansones de funcones en seres de potencas dejan resduos al detener la expansón a para una determnada

Más detalles

Tema 6 El mercado de bienes y la función IS

Tema 6 El mercado de bienes y la función IS Tema 6 El mercado de benes y la funcón IS Macroeconomía I Prof. Anhoa Herrarte Sánchez Curso 2007-08 Bblografía para preparar este tema Apuntes de clase Capítulo 3, Macroeconomía, O. Blanchard Prof. Anhoa

Más detalles

Capítulo 4 Probabilidades Estadística Computacional II Semestre 2006

Capítulo 4 Probabilidades Estadística Computacional II Semestre 2006 Unversdad Técnca Federco Santa María Departamento de Informátca ILI-80 Capítulo 4 Probabldades Estadístca Computaconal II Semestre 006 Profesores: Héctor llende (hallende@nf.utfsm.cl) Carlos Valle (cvalle@nf.utfsm.cl)

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente en el análss y dseño de sstemas de control. Otro procedmento alternatvo

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Tema 3: Procedimientos de Constrastación y Selección de Modelos

Tema 3: Procedimientos de Constrastación y Selección de Modelos Tema 3: Procedmentos de Constrastacón y Seleccón de Modelos TEMA 3: PROCEDIMIENTOS DE CONTRASTACIÓN Y SELECCIÓN DE MODELOS 3) Introduccón a los Modelos con Restrccones Estmacón Restrngda 3) Contrastes

Más detalles

TEMA 1: ECONOMÍAS DE INTERCAMBIO October 6, 2015

TEMA 1: ECONOMÍAS DE INTERCAMBIO October 6, 2015 TEMA 1: ECONOMÍAS DE INTERCAMBIO October 6, 2015 1. Asignaciones Eficientes, equilibrios de Walras Una economía de intercambio está constituida por un conjunto de agentes {1, 2,..., I}, con sus relaciones

Más detalles

Capítulo V. Teoremas de Fermat, Euler y Wilson

Capítulo V. Teoremas de Fermat, Euler y Wilson Capítulo V Teoremas de Fermat, Euler y Wlson En este capítulo utlzamos los conceptos desarrollados en dvsbldad y conteo para deducr tres teoremas báscos de la teoría de números. En el próxmo capítulo,

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:

Más detalles

Objetivo. Contenido. Teoría Microeconómica I 1. Teoría Microeconómica I Tema 7. Bienestar y Conducta del Consumidor

Objetivo. Contenido. Teoría Microeconómica I 1. Teoría Microeconómica I Tema 7. Bienestar y Conducta del Consumidor Teoría croeconómca I Tema 7. Benestar Conducta del Consumdor Dr. Jorge Ibarra Salazar rofesor Asocado Deartamento de Economía ITES Camus onterre Se rohbe la reroduccón total o arcal de este materal sn

Más detalles

OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD

OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD OPIMIZACIÓN CON RESRICCIONES DE IGUALDAD Localzacón de óptos de funcones sujetas a restrccones en fora de gualdad écnca de los ultplcadores de Lagrange Forulacón estándar del problea f =,,..., Se consderarán

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

Ejercicios Resueltos de Vectores

Ejercicios Resueltos de Vectores Departamento de Matemátca y C C Coordnacón: Calculo II para Ingenería Semestre Eerccos Resueltos de Vectores Sean los vectores en IR : v,,, u,, 4, a,, y b,, 4 : a) Determne los vectores: UV y AB UV AB

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin.

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin. Capítulo II: MECÁNICA DEL SÓLIDO RÍGIDO 5ª Leccón: Sstema de fuerzas gravtatoras. Cálculo de centros de gravedad de fguras planas: teoremas de Guldn. Sstemas de fuerzas gravtatoras La deduccón parte de

Más detalles

Diseño de la Muestra. Introducción. Tipo de muestreo y estratificación

Diseño de la Muestra. Introducción. Tipo de muestreo y estratificación Dseño de la Muestra A Introduccón Sguendo las orentacones dadas por la Ofcna Estadístca de la Unón Europea (EUROSTAT) se a selecconado una muestra probablístca representatva de la poblacón de los ogares

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO

TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO Págna de 4 TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO INTRODUCCIÓN... 2 2 CLASIFICACIÓN DE LAS ACTIVIDADES PRODUCTIVAS... 4 3 FUNCIÓN DE PRODUCCIÓN... 3 4 CLASIFICACIÓN DE LOS PROCESOS

Más detalles

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun Práctca 1 - Programacón en C++ Pág. 1 Práctcas de C++ Practca Nº 1 Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Práctca 1 - Programacón en C++ Pág. 1 INDICE ÍNDICE... 1 1.1 Ejercco

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

FORMULARIO PARA LA PRESENTACIÓN DE RESUMEN DE PONENCIA

FORMULARIO PARA LA PRESENTACIÓN DE RESUMEN DE PONENCIA FORMULARIO PARA LA PRESENTACIÓN DE RESUMEN DE PONENCIA TÍTULO DE LA PONENCIA: Heterogenedad en los perfles de ngreso y retornos a la educacón superor en el Perú AUTOR: Gustavo Yamada, Juan F. Castro y

Más detalles

PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x

PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x Dstrbucones de Probabldad dscretas-bn1b DISTRIBUIONES DISRETAS DE PROBABILIDAD Dstrbucones dscretas son aquellas en las que la varable sólo puede tomar valores aslados. Ejemplo: lanzar una moneda ( valores:

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

Oligopolio. Un mercado oligopólico se define como una estructura de mercado en donde

Oligopolio. Un mercado oligopólico se define como una estructura de mercado en donde Olgopolo Defncón y característcas Un mercado olgopólco se defne como una estructura de mercado en donde exste un número reducdo de frmas y que se caracterza por una sgnfcatva nterdependenca entre las frmas

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1 odelos de secuencacón de tareas en máqunas Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ Andres.Ramos@comllas.edu ODELOS DE SECUENCIACIÓN EN ÁQUINAS odelos de secuencacón de tareas

Más detalles

Apuntes de organización industrial

Apuntes de organización industrial UNIVERSIDAD DEL CEMA Apuntes de organzacón ndustral (parte ) Germán Coloma Julo 00 . Introduccón El objetvo del presente capítulo es brndar un marco conceptual e hstórco dentro del cual puedan ntegrarse

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles