1 - Resolver los siguientes determinantes usando propiedades 1/10
|
|
- Natalia Álvarez del Río
- hace 5 años
- Vistas:
Transcripción
1 - Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores de C que verifiquen: ) - - ) - Resolver ls siguientes euiones: λ i ) i λ ) λ λ λ
2 - Demostrr que: ) ) ( ) ) ( d d d d d d - Qué suederí en el ejeriio si huiese en l segund fil dos números igules? - Anlir si ls siguientes mtries son singulres (no poseen invers) o no, en el so de que se se posile, hllr su invers (en lgunos sos puede ser onveniente utilir propieddes de los determinntes). A B C D / 8 E F G H - Verifir si ls mtries A B son mtries permutles, es deir A B B A. A B
3 8 - Demostrr que si A B ( AB. ) B. A nn R son regulres (poseen invers), entones: - Cuándo un mtri digonl es inversile uál es su invers? Indir Verddero o Flso, justifindo. ) A A t N A N, n n A R. ) Si A B son mtries udrds demás permutles, entones, A. B es idempotente (o se, igul su udrdo). ) Si A es idempotente B es ortogonl (l invers es igul l trnspuest), entones B t.. A. B es idempotente. d) AB I A.B N A B son idempotentes. e) A B son permutles A - α. I B -α.i son permutles. f) Demostrr que si A B son ortogonles de igul orden, entones A.B es ortogonl. g) El determinnte de tod mtri ortogonl es igul ó Dd l mtri. A ) Clulr de modo que el rngo de A se. ) Hllr Adj( A ) ( pr el vlor de enontrdo). ) A que es igul el produto AAdj. ( A?. ) -Hllr l rterísti (rngo) de ls mtries: A B i i.i C i.i i
4 - Demostrr que si dos mtries son permutles no igules, entones tmién son permutles sus inverss. - Demostrr que si un mtri es simétri ortogonl, entones es involutiv. - Demostrr que si un mtri es involutiv ortogonl, entones es simétri. - Demostrr que si un mtri es involutiv simétri, entones es ortogonl. - Demostrr que el produto entre un mtri su trnspuest d omo resultdo un mtri simétri. 8 - Demostrr que l sum entre un mtri su trnspuest d omo resultdo un mtri simétri. - Demostrr que si A es ortogonl impropi (i.e. Det( A ) ), entones A I - Ddos los vetores: V V Hllr el produto eslr. Qué nomre reien estos vetores?, Dirí lo mismo si V fuese el vetor nulo?. - Hllr l norm de los siguientes vetores normlirlos. V V V
5 - Deir si l mtri A es un mtri ortogonl (justifique su respuest usndo los oneptos vistos en el ejeriio ). En so firmtivo, es propi o impropi?. A é ù ê ú ê ú ê ú - ê ú ë û Resolver los siguientes sistems de euiones lineles. Clsifirlos. ) Por el método de Crmer. ) Por el método de l mtri invers. (Lple). ) Por el método de Guss Jordn. ) ) 8 ) d) e) / / / / / / / / / f). /. / / /. / / / / L mtri del sistem es ortogonl L mtri del sistem es ortogonl g) h) i) j)
6 Dd l tl de insumo-produto orrespondiente un determindo ño. A B DF PT A 8 88 B 8 VA PT ) Otener l mtri de oefiientes fijos l mtri de oefiientes diretos e indiretos (A-I ) -. ) Construir l del ño t en que el vetor demnd finl es: D.F. 8 ) Indir en que pso de l resoluión del prolem se sume que l dquisiión de produtos intermedios de un industri es proporionl l nivel de produto finl de l mism. - Verifir si lguns de ls siguientes uterns onstituen un espio vetoril. ) ( R,, Qi,) ) ( R,, Zi,) ) (,,,) R Ni d) { } (,, Ci,) Constitue d) un suespio vetoril de )? - Estudir l dependeni o independeni linel de los vetores: ) [ ] [ ] [ ] ) [ ] [ ] [ ] - Determinr de modo que los vetores sen dependientes: ) [ ] [ ] [ ] ) [ ] [ ] [ ] )
7 8 Epresr V omo ominión linel de V, V V. ) V [ ], V [ ], V [ ], V [ ] ) V [ 8 ], V [ - ], V [ - - ], V [ - ] - Epresr el polinomio Q. omo ominión linel de P, P P. P. P. P.. ) Verifir ul de los siguientes onjuntos de vetores genern el espio ul represent un se del mismo. ( R,, Ri,) S S S S {[, ] [ ] } {[, ] [, ] [ ] } {[, ] [, ] [ ] } {[, ] [, ] [, ] [ ] } Enontrr el vlor de δ pr que l siguiente mtri esté formd por vetores que no sen se der. A δ 8 Demostrr que ulquier se ϕ C, l siguiente mtri siempre tendrá vetores que no son se der. A / / ϕ ϕ / / /
8 8 Ddos los siguientes números en C: ) ) ) i d) i e) I f) (; ) g) (;- ) Se pide: i - Representrlos en los ejes rtesinos. ii - Epresrlos en su form eponenil. iii - Epresrlos en form trigonométri. Ddos los siguientes omplejos epresdos en form polr: ( ρ ; ϕ ) ( ρ ; ϕ ) ρ módulo ϕ ángulo Demostrr que: ) ρ ρ os ϕ ϕ isen ϕ ϕ...[ ( ). ( )] ) ρ ρ os ϕ ϕ isen ϕ ϕ / /.[ ( ). ( )] Demostrr, por el prinipio de induión omplet, l fórmul de Moivre: n n ρ.[ os( n. ϕ) isen. ( n. ϕ)] Siendo [ os º i sen º ] ( / ; / ) ] Hllr: ). ) / ) d) ( / ) Hllr tods ls ríes de ls siguientes euiones: ) ) ) d) / / e) ( -) f) / g) - - h) i)
9 j) k) - l) (Her los últimos tres hiendo visto euiones reipros). 8 Otener ls derivds priles F F de ls siguientes funiones. ) F(,) os( ) ( ) ) F(,) e ln [ sen( )] tg( ) os( ) os[ e ln( )] Otener d d (derive en form implíit). ) os( π ) ln( ) ) ( ) Diferenie totlmente ls siguientes funiones. ) ) e e Integrr utilindo el método de sustituión, por prtes o friones simples. ) tg( d ) ) ) 8 d ( ) ln( d ) d) e sen( d ) d e) f) e e d
10 Respuests del : ) ) ) ) d) e) f) - g) / h) / i) j) k) ) ) ) ½ - / i ½ - / I ) ) λ λ ) λ λ λ ) El determinnte drí ero. ) A - / / / / B - C - No eiste D - /8 / E - No eiste F - / / / / / / / G - No eiste H ) No; AB BA. ) Cundo todos los elementos de l digonl prinipl, son no nulos, su invers es otr mtri digonl on los inversos multiplitivos de d número en l digonl prinipl.
11 ) ) Verddero ) Flso ) Verddero d) Verddero e) Verddero f) Verddero g) Verddero ) ) ) ) A. I ) ρ (A) ρ (B) ρ (C) T ) V. V Son ortogonles. ) V V V V V V / / / / ) L mtri A es ortogonl que sus vetores son vetores ortonormles. (vetores ortogonles on norm igul ). Es propi. ) ) SCD ) SCD ) SI d) SCI e) SCD f) SCD g) SCD h) SI / / i) SI j) / SCI
12 ) A B DF PT A B 8 VA PT ) ) si ) no ) no d) si d es un suespio de ) ) L.I. ) L.D. ) ) -/ -/ ) / ) -, ; 8) ) V (-, ) V (, ) V V ) No se puede. ) q - p p p ) S NO S SI (Bse) S NO S SI ) δ ) ii ) ( ; ) ) ( ; π) ) ( ; π/) d) (; / π) e) ( ; π/) f) ( ; π/) g) ( ; / π) iii ) os i sen ) os π i sen π ) os π/ i sen π/ d) os / π i sen π/ e) [ os π/ i sen π/ ] f) [ os π/ i sen π/ ] g) [ os /π i sen / π ] ). [ os / π i sen / π ] ) / - / [ os π/ i sen π/ ] ) [ os / π i sen π ]
13 . -/ / i -/ - / i. - / - / i / /i. i - i - i - - i d. -i i i - i e. - - f. - g. - h. - i -i i. - - ½ / i ½ - / i j. - / -/ - k. - / / i / - / I 8) ) ) os( ) os( ) F' ( ) ln( sen ) ( ) F os( ) ' ( ) os( ) [ ]{ } tg( ) os( ) F' e ln sen( ) se ( )ln[ sen( )] ot g ( )se[ e ln( )] F ' tg( ) os( ) os( ) e ln [ sen( )] sen[ e ln( )][ e sen( )] os( ) os [ e ln( )] ) ) d ) d d ( ) d ( ) ) ) d / d ) e - (d d) d ) ) ln[os( )] ) ( ) ) [ln( ) ] d) e [ sen( ) os( )] e) [ln( ) ln( ) 8 ] f) ln( e )
Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:
ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un
ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?
ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni
MATRICES Y DETERMINANTES
Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: info@drioestudio.es www.drioestudio.es. Dds ls tries A y B, lulr: ) A B ) A t B t. Dds ls tries A, B, C y D, relizr todos los produtos que sen posiles..
5. RECTA Y PLANO EN EL ESPACIO
Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un
MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A
MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes
TEMA 9. DETERMINANTES.
Unidd.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl de determinntes. Determinnte de mtries de orden y orden... Determinnte mtries udrds de orden.. Determinnte mtries
ECUACIONES DE PRIMER Y SEGUNDO GRADO
UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.
SELECTIVIDAD: MATRICES. B y
SELETIVIDD: MTRIES EJERIIO. ) Sen dos ries udrds del iso orden que ienen invers. Ron si su produo iene invers. ) Dds ls ries - D, Deerin si D iene invers, en ese so, hálll. EJERIIO. onsider ls ries,. )
TEMA 2. Determinantes Problemas Resueltos
Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l
1.6. BREVE REPASO DE LOGARITMOS.
.. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos
α, β Escalares α u Multiplicación por un escalar Espacios Vectoriales Vector: Magnitud, dirección y sentido Combinación lineal Suma de vectores
Tem Álger Linel (Espios etoriles) Espios Vetoriles Vetor: Mgnitd direión y sentido ω ν Cominión linel ω Vetores Eslres Mltipliión por n eslr Sm de etores de Tem Álger Linel (Espios etoriles) de Se { }
se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.
Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se
3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:
PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:
MATRICES: un apunte teórico-práctico
MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o
EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log
EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes
Determinantes: un apunte teórico-práctico
Deterinntes: un punte teório-prátio Definiión d triz udrd se le soi un núero denoindo deterinnte de. El deterinnte de se denot por o por det(). Cálulo de deterinntes Pr un triz de x el deterinnte es sipleente
Figura 1. Teoría y prática de vectores
UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo
TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal
. ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los
A es de 2 2 y tiene dos valores propios distintos, por lo tanto es diagonalizable sobre IR.
Sergio Ynsen Núñez. Se A 8 3 3 Muestre que A es digonlizle sore IR. Soluión: 8 3 3 6 5 3 Los vlores propios de A sony3 A es de y tiene dos vlores propios distintos, por lo tnto es digonlizle sore IR. Otr
1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de
Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo
TEMA 9. DETERMINANTES.
Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.
SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I
Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.
m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular
Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo
Determinantes y la Regla de Cramer
Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)
ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,
X obtener las relaciones que deben
odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint
PROBLEMAS DE ÁLGEBRA DE MATRICES
Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese
Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:
ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?
RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO
Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto
3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p
IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo
TRANSFORMACIONES LINEALES
. 7 Cpítulo 5 RANSFORMACIONES LINEALES Mrtínez Hétor Jiro Snri An Mrí Semestre,.7 5.. Introduión Reordemos que un funión : A B es un regl de soiión entre los elementos de A y los elementos de B, tl que
VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010
UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su
a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn
TEMA ÁLGEBRA DE MATRICES Mtemátics II º Bchillerto TEMA ÁLGEBRA DE MATRICES. NOMENCLATURA Y DEINICIONES.. - DEINICIÓN Ls mtrices son tbls numérics rectngulres ª column ª fil n n n.......... m m m mn (
RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS
Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo
, donde a y b son números cualesquiera.
Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.
TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1
TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz
CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1
RISTIN ROND HERNÁNDEZ Mries deerminnes OLEGIO SN LERTO MGNO MTEMÁTIS II MTRIES Y DETERMINNTES. 8 MODELO OPIÓN Ejeriio. [ 5 punos] Dds ls mries lul l mriz P que verifi P = T ( T es l mriz rnspues de )..
MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn
Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m
Matrices y determinantes
Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)
En donde x representa la incógnita, y a, b y c son constantes.
FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.
MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES
Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión
Números Irracionales
Números Irrionles Los griegos ern onoedores de los números nturles: 0, 1,,,, 5, Estos números son los que se utilizn pr numerr o ontr, pero no nos sirven si queremos expresr ntiddes no exts, omo "l mitd
Examen de Admisión a la Maestría 8 de Enero de 2016
Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
Ju Atoio Goále Mot Profesor de Mtemátis del Colegio Ju XIII Zidí de Grd ESPACIOS VECTORIALES CONCEPTO DE ESPACIO VECTORIAL. Se V u ojuto ulquier R el ojuto de úmeros reles. E V defiimos dos lees de omposiió:
UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE
UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.
SenB. SenC. c SenC = 3.-
TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,
7 Semejanza. y trigonometría. 1. Teorema de Thales
7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se
1. Definición de Semejanza. Escalas
Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión
DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.
DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)
Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...
Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo
Area Académica: Licenciatura en Sistemas Computacionales. Profesor: I.E.C. Roxana Sifuentes Carrillo
Are Adémi: Lienitur en Sistems Computionles Asigntur: Álger Linel Profesor: I.E.C. Ron Sifuentes Crrillo Periodo: Julio-Diiemre 0 Tem: Determinnts Astrt A determinnt is mthemtil nottion onsists of squre
SISTEMAS DE ECUACIONES LINEALES
UNEFA C.I.N.U. Mtemátis Mteril dptdo on fines instruionles por Teres Gómez, de: Oho, A., González N., Lorenzo J. Gómez T. (008) Fundmentos de Mtemátis, Unidd 5: Euiones e Ineuiones, CIU 008, UNEFA, Crs.
MATRICES Y DETERMINANTES
MATRICES Y DETERMINANTES ) Resolver el siguiente sistem de ecuciones lineles t t z emplendo el método de Guss utilizndo trnsformciones elementles de fils En qué csos es comptible? b) Relcionr ls mtrices
Unidad 10. Sistemas de ecuaciones lineales
Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems
1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2)
Mr l opión que ontiene el vetor fijo definido por los puntos A(3,4) y B(-2,-5). AA AB = (-1,1) AA AB = (5,9) AB = (-5,-9) AB = (1,-1) Mr tods ls opiones que definen el vetor fijo AB = (-2,1). AA A(-5,-3)
MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina
MTRICES Mtries de números reles. Ddos dos suonjuntos = {,,,...i...n} = {,,,...j...m} perteneientes l onjunto de los números nturles, llmremos mtri de dimensión nm tod pliión X ---------> R / (i,j) --->
Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow
Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)
GUIA DE TRABAJO # 28. Materia: Matemáticas. Tema: Múltiplos y divisores. Fecha: Profesor: Fernando Viso. Nombre del alumno: Sección del alumno:
GUIA DE TRABAJO # 28. Mteri: Mtemátis. Tem: Múltiplos y divisores. Feh: Profesor: Fernndo Viso Nombre del lumno: Seión del lumno: CONDICIONES: Trbjo individul. Sin libros, ni udernos, ni nots. Sin elulres.
a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n
Tem Álgebr Linel (Sistem de ecuciones lineles y álgebr mtricil) Mtrices Un mtriz de m n con elementos en C es un rreglo de l form M m KKK KKK m KKK n n mn donde,,..., mn Є y m, n Є Z. L mtriz es de orden
Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.
UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN
Relación 3. Sistemas de ecuaciones
Relción. Sistes de ecuciones Ejercicio. Consider el siste de ecuciones ) Eiste un solución del iso en l que? ) Resuelve el siste hoogéneo socido l siste ddo. c) H un interpretción geoétric tnto del siste
TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS
Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].
Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada.
Hoj de Prolems Geometrí III 49. Dd l elipse, si tommos el etremo B de ordend positiv del eje menor omo entro, se desrie un irunfereni de rdio igul diho eje menor, ortr l elipse en dos punto P P. Determinr
TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS
TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO
I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.
I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,
UNIDAD 10. SISTEMAS DE ECUACIONES LINEALES
Tem. Sistems de Ecuciones UNIDD. SISTEMS DE ECUCIONES LINELES. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de
INTEGRAL INDEFINIDA. Derivación. Integración
Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES
GRAMATICAS REGULARES - EXPRESIONES REGULARES
CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl
1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.
º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems
Guía de trabajos Teórico- Práctico Nº 3
Mtemáti pr C.P.N. Unidd Nº - Espio vetoril de Mtries Guí de trjos Teório- Prátio Nº UNIDD III:.. Cuerpo de los números reles... Espio vetoril. Vetores en R n.operiones en R n. Propieddes del espio vetoril.
- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.
9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm
MATRICES Y DETERMINANTES
Jime rvo Feres Nelink TRICES Y DETERINNTES s mries preen por primer vez hi el ño 8, inroduids por J.J. Sylveser. El desrrollo iniil de l eorí se dee l memáio W.R. Hmilon en 8. En 88,. Cyley inrodue l noión
Triángulos congruentes
Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors
BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales
MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z
3.- Matrices y determinantes.
3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot
Unidad didáctica 4. Trigonometría plana
Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y
ECUACIONES DE PRIMER GRADO
IES Jun Grí Vldemor Deprtmento de Mtemátis TEMA : ECUACIONES º ESO Mtemátis B ECUACIONES DE PRIMER GRADO PASOS PARA RESOLVER UNA ECUACIÓN DE PRIMER GRADO. Eliminr préntesis si los hy). Eliminr denomindores
Matemática DETERMINANTES. Introducción:
Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.
TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ
TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes
Tema 1: ÁLGEBRA DE MATRICES
ÁLGER DE MTRIES Tem : ÁLGER DE MTRIES Índie. Mtries... Definiión de mtriz... lsifiión de ls mtries... Tls, grfos y mtries.. Operiones on mtries... Sum de mtries... Multipliión de un número por un mtriz...
DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K
DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES
de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero
Cuestionario Respuestas
Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de
DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:
Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos
MATRICES Y DETERMINANTES.
punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem
Determinantes. Ejercicio nº 1.-
Deerminnes Ejeriio nº.- Hll el vlor e los siguienes eerminnes. En el pro ), lul, emás, los posiles vlores e pr que el eerminne se ero: Ejeriio nº.- ) Clul el vlor el eerminne: ) Resuelve l euión: Ejeriio
9 Proporcionalidad geométrica
82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l
Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales
Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles
E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619
1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del
TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES
TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems
TEMA 1. CÁLCULO VECTORIAL.
TEMA 1. CÁLCUL VECTRIAL. MAGNITUDES FÍSICAS ESCALARES Son quells que quedn determinds por su vlor numérico y l unidd de medid. Ejemplos: ms, energí, tiempo, tempertur, etc. MAGNITUDES FÍSICAS VECTRIALES
Matrices ... Columna 2
Mtrices Mtrices de números reles Definiciones Def Consideremos el cuerpo cuerpo es un conjunto de números donde se puede sumr, restr, multiplicr dividir) de los números reles R Un mtri de números reles
Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero
Vectores en el espcio º Bchillerto An Mª Zptero El conjunto R Es un conjunto de terns ordends de números reles R { ( x, y, z ) / x R, y R, z R } Primer componente Segund componente Tercer componente Iguldd
SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:
SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistem de m ecuciones lineles con n incógnits,,,, n es un conjunto de m igulddes de l form: n n n n m m mn n m ij son los coeficientes i los
TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES.
TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES. º BCH(CN) TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES..-INTRODUCCIÓN. L resoluió de sistems de euioes está ligd l estudio
UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro
CARRERA: Ingenierí en Sistems de Computión PLAN DE ESTUDIOS: 00 ASIGNATURA: AÑO ACADÉMICO: DOCENTE: MATEMATICA BASICA I Año Ing. Enmnuel de Jesús Fonse Alfro UNIDAD I: ALGEBRA Al finlir est unidd el estudinte
MATRICES Y DETERMINANTES
Eucidos de proles de selectividd. Mteátics II. Mtrices y deterites MTRICES Y DETERMINNTES.(97).- Se dice que u triz cudrd es ortogol si se verific que t I. Si y B so dos trices ortogoles de igul tño, lizr
ACTIVIDADES INICIALES
Determinntes ACTIVIDADES INICIALES I. Enumer ls inversiones que precen en ls siguientes permutciones y clcul su pridd, comprándols con l permutción principl 34. ) 34 b) 34 c) 43 d) 34 e)43 f) 34 ) 3,4,