FUNDAMENTOS DE CLASE 3: DIODOS
|
|
|
- Gabriel Ortiz Fuentes
- hace 8 años
- Vistas:
Transcripción
1 FUNDAMENTOS DE ELECTRÓNICA CLASE 3: DIODOS
2 RECORTADORES Permiten eliminar parte de la señal de una onda En serie:
3 RECORTADORES: EJERCICIO Ejercicio: Calcular la característica de trasferencia
4 RECORTADORES: EJERCICIO Considerando diodos ideales, respuesta:
5 RECORTADOR En paralelo:
6 RECORTADOR DE DOBLE NIVEL Recortador de doble nivel
7 SUJETADOR Cambia la señal a un nivel de DC diferente τ = RC lo suficientemente grande para que C se descargue muy poco cuando D no esté conduciendo
8 SUJETADOR 0 T/2 T/2 T v o = 0 v v o = -2V
9 SUJETADOR
10 SUJETADOR
11 DIODOS COMO CIRCUITOS DE DISPARO Compuerta AND Aplicación: Detección de señales condicionales
12 DIODOS COMO CIRCUITOS DE DISPARO Compuerta OR Aplicación: Fuente de respaldo
13 DIODOS ESPECIALES: DIODO ZENER Símbolo: Se usa en polarización inversa, donde funciona como regulador. En región operativa la corriente puede variar en un amplio margen, pero el voltaje varía muy poco En polarización directa funciona como un diodo rectificador común
14 DIODO ZENER Curva característica ensión zener Vz Te Corriente limitada por máxima disipación de potencia P=Iz(max ) x Vz Región de regulación
15 DIODO ZENER Ejemplo: Diodo zener con un Voltaje zener Vz=12.6
16 DIODO ZENER Cambiando la resistencia
17 DIODO: HOJA DE CARACTERÍSTICAS Importante en aplicaciones AC
18 DIODOS ESPECIALES: DIODO LED Libera la energía en forma de luz. El color de la luz depende del material semiconductor del cuál está construido, puede emitir desde luz ultravioleta pasando por el espectro visible hasta el infrarrojo.
19 DIODO LED Para que un LED se encienda con una luminosidad razonable, por él debe circular una corriente de unos 15 ó 20mA, mientras que la tensión en directo del dispositivo es de aproximadamente 2V (depende del color del diodo).
20 DISPLAY 7 SEGMENTOS
21 DISPLAY 7SEGMENTOS
22 MATRIZ DE LEDS
23 DIODOS ESPECIALES: FOTODIODO Diseñado para producir una corriente eléctrica en respuesta a la radiación ultravioleta, visible o infrarroja. Se controla la corriente de saturación inversa
24 FUNDAMENTOS DE ELECTRÓNICA CLASE 3: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR
25 TRANSISTOR
26 TRANSISTOR Tipos npn pnp E n p n C E p n p C sección interna B C sección interna B C B B Símbolo Símbolo E E
27 TRANSISTOR Las uniones Base-Emisor y base colector se comportan como diodos C C B B E E
28 TRANSISTOR No polarizado
29 MODO DE OPERACIÓN Región de operación Unión Base-Emisor Unión Base-Colector Conmutación Región de corte Polarización Inversa Polarización inversa Región activa inversa Polarización Inversa Polarización directa Amplificación Región activa Polarización directa Polarización Inversa Región saturación Polarización directa Polarización directa
30 MODO DE OPERACIÓN Los cuatro modos de operación del transistor BJT son definidos por V BE y V BC, La región inversa rara vez es usada. Activa: Modo de mayor importancia, funcionamiento como amplificador En esta región las corrientes tienen curvas planas Saturación: Las barreras de potencial son canceladas causando un corto circuito virtual El transistor se comporta como interruptor cerrado Corte: Corriente reducida a cero. Idealmente, el transistor se comporta como un interruptor abierto
31 CURVA CARACTERÍSTICA I C ma I B = 100 µa R.A.N. I B = 80 µa I B = 60 µa 6 I B = 40 µa 4 2 I B = 20 µa 0 Corte V CE V Satura ación
32 TRANSISTOR POLARIZADO Polarización en la región activa
33 TRANSISTOR POLARIZADO Polarización en la región activa
34 TRANSISTOR POLARIZADO Polarización en la región activa
35 ECUACIONES DEL TRANSISTOR DC Algunas veces los parámetros α y β son llamados α dc y β dc
36 ECUACIONES DEL TRANSISTOR DC E Ecuaciones - I E V BE I C - V CE + + V C E EC - C I V B BC V EB I V CB B B B I E I C npn I E = I B + I C V CE = -V BC + V BE pnp I E = I B + I C V EC = V EB - V CB
37 EJEMPLO BJT C Dado: I B = 50 µ A, I C = 1 ma Encontrar: I E, β, and α V CB + _ I C Solución: B I B I E = I B + I C = 0.05 ma + 1 ma = 1.05 ma V BE + _ I E β = I C / I B = 1 ma / 0.05 ma = 20 α = I C / I E = 1 ma / 1.05 ma = E α también puede ser calculada con β con la formula anterior. α = β = 20 = β
38 TRANSISTOR ACTIVO 1. El colector debe ser más positivo que el emisor 2. El diodo de base emisor debe estar polarizado en directa y el diodo base colector en inversa 3. Cualquier transistor tiene unos valores máximos y mínimos de Ic, Ir y Vce que no deben ser excedidos así como una temperatura y potencia máximos. 4. Cuando estas reglas son cumplidas se tiene que: I C = hfe Ib= β I B
39 TRANSISTOR ACTIVO Relaciones importantes I C = β I B I E = I C + I B I E = β I B + I B = (β + 1) I B Si β >> 1 entonces I E β I B I E I C I C = α I E β = α / 1- α α = β / β+1 Si la unión base-emisor está polarizada en directa entonces: V BE = 0.7V (NPN) V EB = 0.7V (PNP)
40 TRANSISTOR COMO INTERRUPTOR
41 TRANSISTOR COMO INTERRUPTOR Estado de Corte: El transistor se comporta como un circuito abierto y no circula ninguna corriente por sus terminales. Ic=Ie=Ib=0 Estado de saturación: Se observa un voltaje de casi cero voltios entre colector y emisor, de manera que se tiene un cortocircuito entre dichos terminales.
42 ANÁLISIS DE TRANSISTOR Para analizar circuitos en corriente continua que contengan transistores es conveniente realizar los siguientes paso: 1. Hacer una suposición razonable del estado del transistor (activo,corte o saturación) 2. Analizar el circuito buscando contradicciones para el estado supuesto. 3. Si hay contradicción, hacer una nueva suposición basada en la información calculada y volver al paso Si no hay contradicciones las corrientes y voltajes calculados para el circuito se aproximaran mucho a su comportamiento real. Tener en cuenta que para el estado activo: IB>0 VCE>VCEsat (transistores npn) VEC>VECsat (transistores pnp) VBE=0.7V (transistores npn) VEB=0.7V (transistores pnp)
43 ANÁLISIS DE TRANSISTOR En donde VCEsat (VECsat) es el voltaje entre colector y emisor especificado por el fabricante para el transistor saturado (0.2V típico). Para el estado de corte: Para el estado de saturación: IB=IC=IE=0 VBE<0.7V (transistores npn) VEB<0.7V (transistores pnp) IB>0 VCE<VCEsat (transistores npn) VEC<VECsat (transistores pnp) VBE=0.7V (transistores npn) VEB=0.7V (transistores pnp) ICsat=Ic para VCE=0.
44 EJERCICIO 1 Verificar el estado de operación del transistor ( β =10) en el circuito de la figura.
45 EJERCICIO 2 Determinar el voltaje Colector-Emisor, la corriente de base y la corriente de colector del transistor ( β =50) en el circuito mostrado en la figura.
46 EJERCICIO 3 Determinar el voltaje Colector-Emisor, la corriente de base, y la corriente de colector del transistor ( b=55) en el circuito mostrado en la figura. Respuesta: IB=196uA, IC=10.78mA,VCE=4.52V.
47 EJERCICIO 4 Calcular RC y RB para que en el circuito de la figura se cumpla: IB = 83 ua y V CE = 6.27V, utilizando V BE =0.7V y β=100. Respuesta: R B =100KΩ, R C =328.92Ω.
FUNDAMENTOS DE CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR
FUNDAMENTOS DE ELECTRÓNICA CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR TRANSISTOR Es un tipo de semiconductor compuesto de tres regiones dopadas. Las uniones Base-Emisor y base colector se comportan
INSTRUMENTAL Y DISPOSITIVOS ELECTRÓNICOS
INSTRUMENTAL Y DISPOSITIVOS ELECTRÓNICOS TP7 - GUÍA PARA EL TRABAJO PRÁCTICO N O 7 TRANSISTOR BIPOLAR DE UNIÓN (BJT) TEMARIO: Transistores PNP y NPN Circuitos de polarización en cc El transistor como conmutador
CONTENIDO PRESENTACIÓN. Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1
CONTENIDO PRESENTACIÓN Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1 1.1 INTRODUCCIÓN...1 1.2 EL DIODO...2 1.2.1 Polarización del diodo...2 1.3 CARACTERÍSTICAS DEL DIODO...4 1.3.1 Curva característica
UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA
UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA Qué es un semiconductor? Es un material con una resistividad menor que un aislante y mayor que un conductor.
1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE
Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB
Transistor BJT: Fundamentos
Transistor BJT: Fundamentos Lección 05.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT 1 / 48 Contenido
El transistor es un dispositivo no lineal que puede ser modelado utilizando
Modelo de Ebers-Moll para transistores de unión bipolar El transistor es un dispositivo no lineal que puede ser modelado utilizando las características no lineales de los diodos. El modelo de Ebers-Moll
BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2
J 1. n este ejercicio se trata de estudiar el funcionamiento del transistor de la figura 1 para distintos valores de la tensión V I. Para simplificar el análisis se supondrá que la característica de entrada
Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica CARACTERISTICAS DEL BJT. Electrónica I.
Electrónica I. Guía 6 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CARACTERISTICAS DEL BJT
Transistor BJT como Amplificador
Transistor BJT como Amplificador Lección 05.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT como Amplificador
El transistor sin polarizar
EL TRANSISTOR DE UNIÓN BIPOLAR BJT El transistor sin polarizar El transistor esta compuesto por tres zonas de dopado, como se ve en la figura: La zona superior es el "Colector", la zona central es la "Base"
5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta
Tema 4. El Transistor de Unión Bipolar (BJT). 1.- En un circuito en emisor común la distorsión por saturación recorta a) la tensión colector-emisor por la parte inferior b) la corriente de colector por
Contenido. Capítulo 2 Semiconductores 26
ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión
El Transistor BJT 1/11
l Transistor JT 1/11 1. ntroducción Un transistor es un dispositivo semiconductor de tres terminales donde la señal en uno de los terminales controla la señal en los otros dos. Se construyen principalmente
Laboratorio Nº3. Procesamiento de señales con transistores
Laboratorio Nº3 Procesamiento de señales con transistores Objetivos iseñar redes de polarización para operar transistores JT y JFT en modo activo, y evaluar la estabilidad térmica de puntos de operación,
ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS 2. OBJETIVOS
ELECTRÓNICA I UNIDAD ACADÉMICA: CARRERA: ESPECIALIZACIÓN: ÁREA: TIPO DE MATERIA: EJE DE FORMACIÓN: Facultad de Ingeniería en Electricidad y Computación Ingeniería en Electricidad. Ingeniería en Telemática,
Analógicos. Digitales. Tratan señales digitales, que son aquellas que solo pueden tener dos valores, uno máximo y otro mínimo.
Electrónica Los circuitos electrónicos se clasifican en: Analógicos: La electrónica estudia el diseño de circuitos que permiten generar, modificar o tratar una señal eléctrica. Analógicos Digitales Tratan
Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.
Electrónica Tema 2 Diodos Contenido Ideas básicas Aproximaciones Resistencia interna y Resistencia en continua Rectas de carga Diodo zener Dispositivos optoelectrónicos Diodo Schottky 2 Diodo Es un dispositivo
INTRODUCCIÓN: OBJETIVOS:
INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores
MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades
MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO T Se eliminan las fuentes
LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO
EXP204 REGULADOR DE VOLTAJE SERIE
EXP204 REGULADOR DE VOLTAJE SERIE I.- OBJETIVOS. Diseñar un regulador de voltaje serie ajustable Comprobar el funcionamiento del regulador. Medir la resistencia de salida del regulador Medir el por ciento
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO DISPOSITIVOS Y CIRCUITOS ELECTRÓNICOS 1654 6º 11 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería Electrónica
Polarización del Transistor de Unión Bipolar (BJT)
Polarización del Transistor de Unión Bipolar (BJT) J. I. Huircan Universidad de La Frontera November 21, 2011 Abstract Se tienen tres formas básicas para la polarización de un BJT: Polarización ja, autopolarización
Electrónica. Transistores BIPOLARES. Tipos, Zonas de trabajo, Aplicaciones
Transistores BIPOLARES Tipos, Zonas de trabajo, Aplicaciones 4 B ELECTRÓNICA 2012 1- Principio de Funcionamiento de los Transistores Bipolares: Tanto en un transistor NPN o PNP su principio de funcionamiento
PRÁCTICA 3 TRANSISTORES BIPOLARES: POLARIZACIÓN Y GENERADORES DE CORRIENTE
PÁCTCA 3 TANSSTOES BPOLAES: POLAZACÓN Y GENEADOES DE COENTE 1. OBJETVO. Se pretende que el alumno tome contacto, por primera vez en la mayor parte de los casos, con transistores bipolares, y que realice
TECNOLOGÍA ELECTRÓNICA
Universidad de Burgos Departamento de Ingeniería Electromecánica TECNOLOGÍA ELECTRÓNICA Ingeniería Técnica en Informática de Gestión Curso 1º - Obligatoria - 2º Cuatrimestre Área de Tecnología Electrónica
Electronica. Estudia los circuitos y componente que permiten modificar la corriente eléctrica: determinada velocidad (filtra)
Electronica Estudia los circuitos y componente que permiten modificar la corriente eléctrica: 1. Aumentar o disminuir la intensidad 2. Obliga a los electrones a circular en un sentido (rectifica) 3. Deja
EL TRANSISTOR BIPOLAR
L TRASISTOR IOLAR La gráfica esquemática muestra el transistor como interruptor. La resistencia de carga está colocada en serie con el colector. l voltaje Vin determina cuando el transistor está abierto
2.4 Transistores. Dispositivo semiconductor que permite el control y regulación. Los símbolos que corresponden al bipolar son los siguientes:
TEMA II Electrónica Analógica Electrónica II 2010 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4
BJT como amplificador en configuración de emisor común con resistencia de emisor
Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................
TEMA: ELECTRÓNICA ANALÓGICA.
TEMA: ELECTRÓNICA ANALÓGICA. INTRODUCCIÓN: La electrónica es una de las herramientas más importantes de nuestro entorno. Se encuentra en muchos aparatos y sistemas como por ejemplo: radio, televisión,
Módulo 2: Medición y Análisis de Componentes y Circuitos Electrónicos.
Liceo Industrial de Electrotecnia Ramón Barros Luco- La Cisterna 1 Prof: Claudio Pinto Celis. Módulo 2: Medición y Análisis de Componentes y Circuitos Electrónicos. Conceptos de Transistores. Los transistores
Electromagnetismo Estado Solido II 1 de 7
Facultad de Tecnología Informática Electromagnetismo Estado Solido II 1 de 7 Guia de Lectura / Problemas. Transistores bipolares y de efecto campo. Contenidos: Tipos de transistores:bjt y FET; p-n-p y
UD7.- EL TRANSISTOR. Centro CFP/ES. EL TRANSISTOR Introducción
UD7. Centro CFP/ES Introducción 1 Introducción Introducción 2 Introducción Principio de funcionamiento P N N P Concentración de huecos 3 Principio de funcionamiento P N N N P Si la zona central es muy
EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones
EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones Patricio Parada [email protected] Departamento de Ingeniería Eléctrica Universidad de Chile 13 de Agosto de 2009
INDICE Funcionamiento básico del transistor bipolar. Análisis de la línea de carga de un transistor. Modelos y análisis del transistor en gran señal
INDICE Funcionamiento básico del transistor bipolar Análisis de la línea de carga de un transistor Estados del transistor El transistor PNP Modelos y análisis del transistor en gran señal Circuitos de
PROGRAMA INSTRUCCIONAL ELECTRONICA I
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA
PROBLEMAS SOBRE FUENTES REGULADAS
UNIVERSIDAD NACIONAL DE ROSARIO FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA III PROBLEMAS SOBRE FUENTES REGULADAS Autores: Francisco S. López, Federico
CAPITULO 1 SINOPSIS. La Figura muestra el circuito que usaremos como base para construir varios ejemplos.
1 CAPITULO 1 SINOPSIS El propósito de este capítulo no es el de disminuir el entusiasmo del lector por leer el libro, delatando su contenido. En vez de eso se pretende que, mediante el uso de un circuito
IES GUSTAVO ADOLFO BÉCQUER DEPARTAMENTO DE TECNOLOGÍA TECNOLOGÍAS 4ºESO PLAN DE RECUPERACIÓN SEPTIEMBRE Nombre:... Curso:...
DEPARTAMENTO DE TECNOLOGÍA TECNOLOGÍAS 4ºESO PLAN DE RECUPERACIÓN SEPTIEMBRE 2010 Nombre:... Curso:... Se recomienda realizar los ejercicios propuesto y un resumen por cada tema. Presentación de los trabajos:
3.1. Conceptos básicos sobre semiconductores
1 3.1. Conceptos básicos sobre semiconductores Estructura interna de los dispositivos electrónicos La mayoría de los sistemas electrónicos se basan en dispositivos semiconductores Resistencia: R=ρL/S Materiales
Más de medio siglo después de su invención, el transistor sigue siendo, sin ninguna duda, la piedra fundamental de la electrónica moderna.
Capítulo 3 Componentes Transistor Un poco de historia La construcción de los primeros transistores respondía a una necesidad técnica: hacer llamadas telefónicas a larga distancia. En 1906 el inventor Lee
Controladores de Potencia Dispositivos Electrónicos de Potencia
Dispositivos Electrónicos de Potencia Prof. Alexander Bueno M. 17 de septiembre de 2011 USB Funciones Básicas de los Convertidores Electrónicos de Potencia USB 1 Diodos Es el dispositivo más básico de
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones
ELECTRÓNICA ANALÓGICA PLAN 2008
GUÍA DE APRENDIZAJE ELECTRÓNICA ANALÓGICA COMPETENCIA GENERAL Comprueba los principios y fundamentos de los dispositivos semiconductores activos, en función de los circuitos electrónicos analógicos COMPETENCIAS
Accionamientos eléctricos Tema VI
Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización
Boletín de problemas de BJT
Boletín de problemas de BJT Nota: Todos los circuitos siguientes han sido simulados en el entorno Micro-cap 10.0.9.1 Evaluation Version. a. Polarización con 1 transistor npn 1.- Hallar las tensiones (V
Diapositiva 1. El transistor como resistencia controlada por tensión. llave de control. transistor bipolar NPN colector. base de salida.
Diapositiva 1 El transistor como resistencia controlada por tensión transistor bipolar NPN colector llave de control base corriente de salida emisor e b c 2N2222 corriente de entrada 6.071 Transistores
SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA
ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como
Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II
Planificaciones 6666 - Seminario de Electrónica II Docente responsable: VENTURINO GABRIEL FRANCISCO CARLOS 1 de 6 OBJETIVOS Estudiar la física de los semiconductores a partir de un enfoque electrostático.
PRÁCTICA 4 TRANSISTOR BJT.
PRÁCTICA 4 TRANSISTOR BJT. PPrrááccttiiccaa 44: :: TTrr aanssiisstto rr bbj jtt 1 TRANSISTOR BJT MATERIAL: Transistores BC547 y BC557. Resistencias de 1 K Ω, 2.2 K Ω, 4.7 K Ω y 10 K Ω. OBJETIOS Comprobación
TECNOLOGÍA DE LOS SISTEMAS DIGITALES
TECNOLOGÍA DE LOS SISTEMAS DIGITALES ESCALAS DE INTEGRACIÓN TECNOLOGÍAS SOPORTES FAMILIAS LÓGICAS FAMILIAS LÓGICAS BIPOLAR MOS BICMOS GaAs TTL ECL CMOS NMOS TRANSMISIÓN DINÁMICOS PARÁMETROS CARACTERÍSTICOS
TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV CIRCUITOS AMPLIFICADORES
TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV EB 21 TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV EB 22 CIRCUITOS AMPLIFICADORES MOD. MCM5/EV EB 23 CIRCUITOS OSCILADORES
Experimento 5: Transistores BJT como interruptores: Multivibradores
Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento
Ejercicios de ELECTRÓNICA ANALÓGICA
1. Calcula el valor de las siguientes resistencias y su tolerancia: Código de colores Valor en Ω Tolerancia Rojo, rojo, rojo, plata Verde, amarillo, verde, oro Violeta, naranja, gris, plata Marrón, azul,
A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal
A.1.1. Introducción A.1. El diodo - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.2. Caracterización del diodo - al unirse la zona n
TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS
UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 2 : DISPOSITIVOS Y COMPONENTES ELECTRÓNICOS Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo EL DIODO
PROTECCION DE LOS CONTACTOS
RELES PROTECCION DE LOS CONTACTOS Aparte del cuidado de la corriente y la tensión que se verán sometido los contactos. Existen algunos cuidados adicionales que ayudan a prolongar la vida útil de los contactos
ELECTRÓNICA ANALÓGICA FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO
FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO PORTADA Nombre de la universidad Facultad de Ingeniería Ensenada Carrera Materia Alumno Nombre y número de Práctica Nombre del maestro Lugar y fecha CONTENIDO
CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE
CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE Rectificación, es el proceso de convertir los voltajes o tensiones y corrientes alternas
SEMICONDUCTORES. Silicio intrínseco
Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.
PRÁCTICAS CON CRODILE CLIPS ELECTRÓNICA. COMPONENTES BÁSICOS. Monta cada uno de los siguientes circuitos, y contesta a las preguntas planteadas.
ELECTRÓNICA. COMPONENTES BÁSICOS Monta cada uno de los siguientes circuitos, y contesta a las preguntas planteadas. 1. Construye, estudia y explica el comportamiento del siguiente circuito. En este circuito,
Transistor BJT; Respuesta en Baja y Alta Frecuencia
Transistor BJT; Respuesta en Baja y Alta Frecuencia Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 2, Segundo Semestre 206, Aux.
INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N
INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y
Figura 8.1. Autómata programable S7 314 de Siemens con módulos de entrada/salida concentrada
Figura 8.1. Autómata programable S7 314 de Siemens con módulos de entrada/salida concentrada o local. Figura 8.2. Autómata programable de la familia S7-400 conectado a una unidad de entrada/salida remota.
Electrónica I EMM - 0515. Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.
1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Electrónica I Ingeniería Electromecánica EMM - 0515 3 2 8 2.- HISTORIA DEL PROGRAMA
TEMA 7. FAMILIAS LOGICAS INTEGRADAS
TEMA 7. FAMILIAS LOGICAS INTEGRADAS http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 25 Aniversary: http://www.flickr.com/photos/ieee25/with/289342254/ TEMA 7 FAMILIAS
AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL
AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL Tensión de red baja (V1) Tensión de red alta (V1) Cable de red en circuito abierto Fusible de entrada o c.a. en circuito abierto Interruptor en circuito abierto
PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA. Objetivo:
PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA Objetivo: Comprender el comportamiento de un transistor en un amplificador. Diseñando y comprobando las diferentes configuraciones
Electrónica I. Carrera EMM-0515 3-2-8. a) Relación con otras asignaturas del plan de estudios.
1. DATOS DE LA ASIGNATURA Nombre de la asignatura Carrera Clave de la asignatura Horas teoría-horas práctica-créditos Electrónica I Ingeniería Electromecánica EMM-0515 3-2-8 2. HISTORIA DEL PROGRAMA Lugar
APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS
APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS GRUPO 3 Rubén n Gutiérrez González María a Urdiales García María a Vizuete Medrano Índice Introducción Tipos de dispositivos Unión n tipo
Electrónica 2. Práctico 3 Alta Frecuencia
Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic
Práctica 5 Diseño de circuitos con componentes básicos.
Práctica 5 Diseño de circuitos con componentes básicos. Descripción de la práctica: -Con esta práctica, se pretende realizar circuitos visualmente útiles con componentes más simples. Se afianzarán conocimientos
CAPITULO XIII RECTIFICADORES CON FILTROS
CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:
Lógica TTL. Electrónica Digital 1 er Curso de Ingeniería Técnica Industrial (Electrónica Industrial) 2.2. Familias lógicas: Lógica TTL. El BJT.
Electrónica Digital 1 er Curso de Ingeniería Técnica Industrial (Electrónica Industrial) 2.2. Familias lógicas: Lógica TTL Dr. Jose Luis Rosselló Grupo Tecnología Electrónica Universidad de las Islas Baleares
Polarización Análisis de circuitos Aplicaciones. Introducción a la Electrónica
TRANSISTOR BIPOLAR Funcionamiento general Estructura, dopados, bandas de energía y potenciales Curvas, parámetros relevantes Niveles de concentración de portadores Ecuaciones de DC Modelo de Ebers-Moll
Práctica # 5 Transistores práctica # 6
Práctica # 5 Transistores práctica # 6 Objetivos Identificar los terminales de un transistor:( emisor, base, colector). Afianzar los conocimientos para polarizar adecuadamente un transistor. Determinar
Componentes Electrónicos. Prácticas - PSPICE. Práctica 3: Transistores
"#$%&'()*&+,-#.+#'(/$%1+*1(2%(%( 4*5*.%.,%"(&%#,16.+#*"( 71%'(2%(8%#.*&*9:'(&%#,16.+#'(( Prácticas - PSPICE Práctica 3: Transistores PRÁCTICA COMPLETA "#$%&'()*+,-.-*-##( Práctica 3: Transistores (Simulación
UNIVERSIDAD ABIERTA INTERAMERICANA Facultad de Tecnología Informática
PORTAFOLIO PERSONAL Resolución de Problemas: se seleccionarán un conjunto de ejercicios particulares, algunos de ellos incluidos en las guías de problemas de la cursada, con el fin de representar, analizar
Transistor bipolar de unión: Polarización.
lectrónica Analógica 4 Polarización del transistor bipolar 4.1 lección del punto de operación Q Transistor bipolar de unión: Polarización. l término polarización se refiere a la aplicación de tensiones
Anexo V: Amplificadores operacionales
Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas
TRANSISTORES BIPOLARES DE UNION BJT SANCHEZ MORONTA, M. - UGALDE OLEA, U.
Escuela Universitaria de Ingeniería Técnica Industrial de Bilbao Universidad del País Vasco / Euskal Herriko Unibertsitatea ELECTRONICA INDUSTRIAL TRANSISTORES BIPOLARES DE UNION BJT SANCHEZ MORONTA, M.
TRABAJO PRÁCTICO NÚMERO 4: Transistores. Estudio del funcionamiento del transistor bipolar como elemento digital
TRABAJO PRÁCTICO NÚMERO 4: Transistores Estudio del funcionamiento del transistor bipolar como elemento digital Objetivos Efectuar el estudio del funcionamiento de un transistor bipolar como elemento digital,
Electrónica Analógica 1
Trabajo Práctico 4: El transistor bipolar como amplificador. Modelo equivalente de pequeña señal. Parámetros híbridos. Configuraciones multietapa. Análisis en pequeña señal: método de trabajo La figura
Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO
FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de
PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER
elab, Laboratorio Remoto de Electrónica ITEM, Depto. de Ingeniería Eléctrica PRÁCTICA PD4 REGULACIÓN DE OLTAJE CON DIODO ENER OBJETIO Analizar teóricamente y de forma experimental la aplicación de diodos
Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:
Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 15-12-2010 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta
Piezo electrico K
Piezo electrico Efecto piezoeléctrico, fenómeno físico por el cual aparece una diferencia de potencial eléctrico (voltaje) entre las caras de un cristal cuando éste se somete a una presión mecánica. El
TEMA 6: Amplificadores con Transistores
TEMA 6: Amplificadores con Transistores Contenidos del tema: El transistor como amplificador. Característica de gran señal Polarización. Parámetros de pequeña señal Configuraciones de amplificadores con
Circuitos resistivos activos. Primera parte
Circuitos resistivos activos. Primera parte Objetivos 1. Analizar circuitos equivalentes de transistores constituidos por resistores y fuentes dependientes. 2. Explicar las características del amplificador
Permite manejar grandes intensidades de corriente por medio de otras pequeñas. Basado en materiales semiconductores (germanio, silicio, ).
Permite manejar grandes intensidades de corriente por medio de otras pequeñas. Basado en materiales semiconductores (germanio, silicio, ). Tienen 3 terminales o patas (base B, colector C y emisor E). Usos:
LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica 1. TEMA
Electrónica REPASO DE CONTENIDOS
Tema 1 Electrónica Conocerás las principales componentes de los circuitos eléctricos. Resistencias, condensadores, diodos y transistores. Sabrás cómo montar circuitos eléctricos simples. REPASO DE CONTENIDOS
Tema 2 El Amplificador Operacional
CICUITOS ANALÓGICOS (SEGUNDO CUSO) Tema El Amplificador Operacional Sebastián López y José Fco. López Instituto de Microelectrónica Aplicada (IUMA) Universidad de Las Palmas de Gran Canaria 3507 - Las
UNIVERSIDAD SIMÓN BOLÍVAR DPTO. DE TECNOLOGÍA INDUSTRIAL GUÍA DE CIRCUITOS ELECTRÓNICOS I TI-2225. Prof. Alexander Hoyo http://prof.usb.
UNIVESIDAD SIMÓN BOLÍVA DPTO. DE TECNOLOGÍA INDUSTIAL GUÍA DE CICUITOS ELECTÓNICOS I TI-2225 Prof. Alexander Hoyo http://prof.usb.ve/ahoyo Guía de Circuitos Electrónicos I Prof. Alexander Hoyo 2 ÍNDICE
CAPITULO IV FAMILIAS LÓGICAS
FAMILIAS LÓGICAS CAPITULO IV FAMILIAS LÓGICAS FAMILIAS LÓGICAS Una familia lógica es un grupo de dispositivos digitales que comparten una tecnología común de fabricación y tienen estandarizadas sus características
Familias lógicas. Introducción. Contenido. Objetivos. Capítulo. Familias lógicas
Capítulo Familias lógicas Familias lógicas Introducción Como respuesta a la pregunta dónde están las puertas? te diremos que integradas en unos dispositivos fabricados con semiconductores que seguramente
