VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS."

Transcripción

1 VARIABLE ALEATORIA CONTINUA VARIABLES ALEATORIAS CONTINUAS º Bto. CC.SS. Una variable aleatoria es continua si puede tomar, al menos teóricamente, todos los valores comprendidos en un cierto intervalo de la recta real. La variable aleatoria X que indica el tiempo de vida de una pila es continua ya que puede tomar cualquier valor, al menos teóricamente, del intervalo [0,+ [ Se elige una alumno al azar de un instituto y se mide su peso, Y, en kg. La variable aleatoria Y es continua ya que puede tomar cualquier valor, al menos teóricamente, del intervalo, por ejemplo, [40,80]. FUNCIÓN DE DENSIDAD La distribución de probabilidad de una variable continua viene dada por una función, llamada función de densidad, que permite el cálculo de probabilidades relacionado con la variable. Se dice que una función f(x), definida sobre la recta real es función de densidad de una variable aleatoria X si cumple las dos condiciones siguientes: - f(x) 0, para todo x número real. - El área limitada por la gráfica y el eje de abscisas es. Ejemplo: La variable X: Tiempo de espera al tren de cercanías, medido en minutos, que pasa cada 5 minutos es una variable aleatoria en [0,5]. La función de densidad es: si 0 < x < 5 0 = 5 0 en el resto. Área = Si f(x) es la función de densidad de la variable aleatoria X, la probabilidad de que la variable tome un valor del intervalo [a, b] de la recta real es el área comprendida bajo la gráfica de f, el eje de abscisas y las rectas x = a y x = b. Ejemplo: Calcular la probabilidad P( X 3) en la variable X que tiene por función de densidad: x Primero veamos si es una función de + si x 4 = 9 8 densidad: 0 en el resto Área = 3 + = = u 6 6 P ( X 3) f ( 3) f ( 3) 5 7 = + = + = 9 9 9

2 b) P ( < X < 3) Ejemplo: Sea la variable X continua con función de densidad: x + si < x < 3 a) Comprueba que es una función de densidad. = 6 0 en el resto. b) Halla P( < X < 3) a) Comprobamos que es una función de densidad. 3 f x 0 Área u ( ) = + = + = /3 / = + = + = + = ( < 6) P X ( < X) P 9 Ejemplo: Una empresa fabrica rodillos cuyo diámetro, en mm, es una variable aleatoria cuya función de densidad es: ( x 5) si 5 < x < 0 Si los rodillos cuyo diámetro está fuera de [6,9] = 5 halla el porcentaje de rodillos defectuosos. 0 en el resto. º.- Comprobamos que es una función de densidad. 5 0'4 0 Área = = u º.- Calculamos el porcentaje: 0'08 = = 0' P( "defectuoso") = 0'04 + 0'36 = 0' = = = 0'36 5 El 40% son defectuosos. DISTRIBUCIÓN NORMAL Una variable aleatoria X, tiene una distribución normal de media µ y desviación típicaσ, escribiéndose N(µ,σ), si su función de densidad es: x µ σ = e < x < + σ π Características. Es simétrica respecto a su media µ.. µ además es la mediana y moda. En µ se alcanza el máximo. 3. f tiene puntos de inflexión en µ σyen µ +σ. 4. El eje X es asíntota horizontal de la gráfica de la función cuando x tiende a ±. DISTRIBUCIÓN NORMAL Una variable aleatoria X, tiene una distribución normal de media µ y desviación típicaσ, escribiéndose N(µ,σ), si su función de densidad es: x µ σ = e < x < + σ π La media µ y la σ determinan la localización y forma de la función de densidad:

3 DISTRIBUCIÓN NORMAL ESTÁNDAR La distribución normal de media µ = 0 y desviación típica σ = se llama distribución normal estándar, N(0, ) y la variable aleatoria se denota Z: z ϕ ( z) = e < z < + π. N(0, ) Para calcular probabilidades en una distribución N(0,) se utiliza la tabla que tiene probabilidades del tipo P(Z a) con a 0.. N(0, ). N(0, ). P(Z a) con a P(a Z b) P(Z 3) =Φ( 3) = P(Z a) con a 0. P(Z 7) = P(Z 7) = Φ( 7) = = 0 00 P(0 6 Z 6) =Φ( 6) Φ(0 6) = = = P( 0 65 Z 5) =Φ( 5) Φ( 0 65) = =Φ( 5) ( Φ(0 65)) = = = 0 67 a b a b 3. P(Z a) con a 0. P(Z 58) = P(Z 58) = P(Z 58) = = Φ( 58) = = P( 97 Z 0 34) = P(0 34 Z 97) = =Φ( 97) Φ(0 34) = = = a b

4 TIPIFICACIÓN DE LA VARIABLE NORMAL El proceso de transformar una variable aleatoria X N(µ,σ) en una variable aleatoria Z N(0,), se conoce con el nombre de tipificación, y sigue la siguiente fórmula: X µ Z = σ. N(µ,σ) Dada una variable aleatoria X N(µ,σ), la probabilidad de cualquier intervalo de la recta real se puede expresar en función de la variable con distribución N(0,) de la siguiente manera: a µ X µ b µ a µ b µ P ( a X b) = P = P Z σ σ σ σ σ Ejemplo: X N(3,) '6 3 X 3 4' 3 P ( '6 X 4') = P = P( 0' Z 0'6) = ( ) ( ) ( ) ( ( )) = P Z 0'6 P Z 0' = Φ 0'6 Φ 0' = = 0' '5793 = 0'305 APROXIMACIÓN DE BINOMIAL POR NORMAL En general una binomial B(n,p) se puede aproximar por una curva normal, tanto más, cuanto mayor sea el producto n p (o n q si q < p). Cuando n p y n q son ambos mayores que 3, la aproximación es bastante buena, y si superan a 5 es casi perfecta. CORRECIÓN POR CONTINUIDAD Al ser Y una binomial B(n,p) discreta y X una normal N(µ,σ) continua, en el proceso hay que realizar una corrección en los cálculos, porque si no, a parte del error numérico, no se podría calcular P(Y = a), porque P(X = a) = 0. P ( Y = k) = P ( k 0'5 X k + 0'5) Para el resto de situaciones, aplicamos la corrección por continuidad: P ( Y k) = P ( X k + 0'5) P ( Y k) = P ( X k 0'5) P ( Y < k) = P ( X k 0'5) P ( Y > k) = P ( X k + 0'5)

5 APROXIMACIÓN DE BINOMIAL POR NORMAL Ejemplo: El % de los tornillos fabricados por una máquina presentan defectos. En un lote de 000 tornillos, Cuál es la probabilidad de que haya menos de 50 defectuosos? Y: número de tornillos defectuosos en 000 B(000, 0 0) Como B(000, 0 0) P ( Y < 50) = P ( Y = 0) + P( Y = ) P( Y = 49) Como Normal: B(000, 0 0) µ = n p = 40 σ = n p q = 6'6 n p > 5 y n q > 5 Se puede aproximar por X : N ( 40, 6' 6) 49'5 40 P( Y < 50) = P( X 49'5) = P Z = P( Z '5) = Φ ( '5) = 0'957 6'6 La probabilidad es de 0 957

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

INFERENCIA DE LA PROPORCIÓN

INFERENCIA DE LA PROPORCIÓN ESTADISTICA INFERENCIA DE LA PROPORCIÓN DISTRIBUCIÓN MUESTRAL DE PROPORCIONES En una población la proporción de elementos (personas, animales, cosas o entes) que posee una cierta característica es p. En

Más detalles

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7. Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

PROBLEMAS DE INTEGRALES INDEFINIDAS

PROBLEMAS DE INTEGRALES INDEFINIDAS PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su

Más detalles

Tema 8. Muestreo. Indice

Tema 8. Muestreo. Indice Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2015-2016 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados.

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados. El diámetro de los tubos de cartón para un envase ha de estar entre 19 y 21mm. La maquina prepara tubos cuyos diámetros están distribuidos como una manual de media 19 5mm y desviación típica 1 2mm. Qué

Más detalles

La distribución de Probabilidad normal, dada por la ecuación:

La distribución de Probabilidad normal, dada por la ecuación: La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada

Más detalles

DISTRIBUCIÓN NORMAL. > = P (Z > 0,6) = 0, El 72,58% de las vacas pesa más de 570 kg. Puede esperarse que 73 vacas superen ese peso.

DISTRIBUCIÓN NORMAL. > = P (Z > 0,6) = 0, El 72,58% de las vacas pesa más de 570 kg. Puede esperarse que 73 vacas superen ese peso. DISTRIBUCIÓN NORMAL 1. El peso de las 100 vacas de una ganadería se distribuye según una normal de media 600 kg y una desviación típica de 50 kg. Se pide: Cuántas vacas pesan más de 570 kilos? Cuántas

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Considérese el siguiente sistema de ecuaciones dependiente del parámetro

Más detalles

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Objetivos de Lección Conocer características principales de una

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.

Más detalles

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD Distribución normal 5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su grafica, que se denomina

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

3 PROBABILIDAD Y DISTRIBUCION NORMAL

3 PROBABILIDAD Y DISTRIBUCION NORMAL 3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,... Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme

Más detalles

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD)

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) Fortino Vela Peón fvela@correo.xoc.uam.mx FVela-0 Objetivo Introducir las ideas básicas del principio de máxima verosimilitud. Problema Considere el experimento

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

Habilidades Matemáticas. Alejandro Vera

Habilidades Matemáticas. Alejandro Vera Habilidades Matemáticas Alejandro Vera La distribución normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones donde podemos

Más detalles

Práctica 4 Límites, continuidad y derivación

Práctica 4 Límites, continuidad y derivación Práctica 4 Límites, continuidad y derivación En esta práctica utilizaremos el programa Mathematica para estudiar límites, continuidad y derivabilidad de funciones reales de variable real, así como algunas

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII

Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/99 SP XII José Mª Chacón Íñigo IES Llanes, Sevilla Te explicamos como realizar la operación de distribución de probabilidad

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

ACTIVIDAD 2: La distribución Normal

ACTIVIDAD 2: La distribución Normal Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A Bloque A JUNIO 2003 1.- Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: 1 0 A = 1 0 A Cuántas matrices A existen con esa condición? Razona tu respuesta.

Más detalles

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos

Más detalles

Unidad V. Control Estadístico de la Calidad

Unidad V. Control Estadístico de la Calidad UNIVERSIDAD NACIONAL DE INGENIERÍA UNI- NORTE - SEDE REGIONAL ESTELÍ Unidad V. Control Estadístico de la Calidad Objetivos Reconocer los principios estadísticos del control de calidad. Explicar la forma

Más detalles

-7 3 A-1 = 120 F 2 -F 1 F 3 +F 1

-7 3 A-1 = 120 F 2 -F 1 F 3 +F 1 www.clasesalacarta.com Universidad de Castilla la Mancha PAU/LOGSE Junio.0 Opción A JUNIO _ 0.- a) espeja la matriz X en la siguiente ecuación matricial: 7I - X + AX = B, suponiendo que todas las matrices

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales 1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Soluciones

Matemáticas Aplicadas a las Ciencias Sociales II Soluciones Prueba etraordinaria de septiembre. Matemáticas Aplicadas a las Ciencias Sociales II Soluciones.- Un sastre dispone de 8 m de tela de lana y m de tela de algodón. Un traje de caballero requiere m de algodón

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE I POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

15 Distribuciones continuas. La distribución normal

15 Distribuciones continuas. La distribución normal Distribuciones continuas. La distribución normal ACTIVIDADES INICIALES Solucionario.I. Representa la función valor absoluto: x si x 0 y x x si x 0 Y O X.II. Representa la función: 2x 3 si x f(x) si x 4

Más detalles

Histograma del puntaje de vocabulario y la aproximación por una curva gaussiana.

Histograma del puntaje de vocabulario y la aproximación por una curva gaussiana. 35 Curvas de densidad Existe alguna manera de describir una distribución completa mediante una única expresión? un diagrama tallo-hoja no es práctico pues se trata de demasiados datos un histograma elimina

Más detalles

Tema 4 Variables Aleatorias

Tema 4 Variables Aleatorias Tema 4 Variables Aleatorias 1 Introducción En Estadística Descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y posteriormente se vimos los fundamentos de la teoría de probabilidades.

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado. 1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles

Guía del Capítulo 3. SISTEMAS DE PARTÍCULAS. A un sistema particulado se le efectúa un análisis por tamizado dando los siguientes resultados:

Guía del Capítulo 3. SISTEMAS DE PARTÍCULAS. A un sistema particulado se le efectúa un análisis por tamizado dando los siguientes resultados: Guía del Capítulo 3. SISTEMAS DE PARTÍCULAS Problema 3.1 A un sistema particulado se le efectúa un análisis por tamizado dando los siguientes resultados: Mallas Tyler Masa (g) -28 +35 5-35 +48 8-48 +65

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

BALEARES JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Contesta de manera clara y razonada una de las dos opciones propuestas.

BALEARES JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Contesta de manera clara y razonada una de las dos opciones propuestas. BALEARES JUNIO 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Contesta de manera clara y razonada una de las dos opciones propuestas. OPCIÓN A ) Tres familias van a una pizzería. La primera familia

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC SIGMA 28 Abel Martín (*) y Rosana Álvarez García (**) En dos artículos anteriores ya hemos estudiado la distribución Binomial

Más detalles

1 - TEORIA DE ERRORES : distribución de frecuencias

1 - TEORIA DE ERRORES : distribución de frecuencias - TEORIA DE ERRORES : distribución de frecuencias CONTENIDOS Distribución de Frecuencias. Histograma. Errores de Apreciación. Propagación de errores. OBJETIVOS Representar una serie de datos mediante un

Más detalles

Distribución normal estándar. Juan José Hernández Ocaña

Distribución normal estándar. Juan José Hernández Ocaña Distribución normal estándar Juan José Hernández Ocaña Tipos de variables jujo386@hotmail.com Tipos de variables Cualitativas Son las variables que expresan distintas cualidades, características o modalidades.

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

Distribuciones de probabilidad discretas

Distribuciones de probabilidad discretas Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin

Más detalles

Hoja 6: Estadística descriptiva

Hoja 6: Estadística descriptiva Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Sobrantes 00 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 00 (Modelo ) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO Sea el recinto del plano definido

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles