Resolución de sistemas dependientes de parámetros RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES DEPENDIEN- TES DE PARÁMETROS ESTUDIANDO RANGOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resolución de sistemas dependientes de parámetros RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES DEPENDIEN- TES DE PARÁMETROS ESTUDIANDO RANGOS"

Transcripción

1 Meáics Resolución de sises dependienes de práeros RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES DEPENDIEN- TES DE PARÁMETROS ESTUDIANDO RANGOS ) Discu resuelv el siguiene sise en función del práero : 7 Ese prole esá resuelo por el éodo de Guss en el docueno "Proles resuelos por el éodo de Guss". Aquí vos resolverlo plicndo el Teore de Rouché-Froenius, l ojeo de que puedn coprrse os éodos. no es un incógni, sino un práero: pr cd vlor del iso, eneos un sise de ecuciones diferene. En relidd, esos resolviendo infinios sises de ecuciones que son u precidos enre sí, diferenciándose en el vlor de. Lo que vereos es cuáles de esos sises son copiles, sen deerindos o indeerindos, o incopiles, según los vlores del práero. L ri plid es: 7 H que esudir el rngo de l ri de los coeficienes, eso es, l nerior sin l úli colun. Al esudir el rngo de es ri, en l que inervienen práeros, es conveniene hcerlo l revés que en el procediieno esándr, en el que uscos un enor de orden pequeño, no nulo, lo vos orlndo con el reso de fils, pliándolo, hs conseguir el or enor no nulo. Con práeros, coo heos dicho, conviene proceder l invers: uscos el enor de or diensión posile, en el que inerveng el ínio de práeros que se pued, veos qué vlores de los práeros hcen que dicho enor se no nulo. Pr el reso de vlores de los práeros, que serán pocos por lo generl, se esudin los sises resulnes. De ese odo, eneos: Disinguios, enonces, los siguienes csos: 4: ra), pues el enor hlldo es no nulo su orden es. Por no, ra'), pueso que el rngo, que es el núero de fils linelene independienes, no puede ser or, que sólo h fils. Coo os rngos coinciden, por el Teore de Rouché-Froenius eneos que el sise es copile deerindo endrí solución únic. Nos piden resolverlo. Aquí sí que puede ser ás úil epler Guss. Pero vos hcerlo por Crer: IES Fernndo de Herrer Prof. R. Mohigefer Págin de hp://

2 Meáics Resolución de sises dependienes de práeros ) 4 Así que l solución únic no depende de es,, ). 4: Seos que el rngo de l ri de los coeficienes es enor que el enor de orden er nulo). L ri plid es l siguiene: 4 7 Coo el enor de orden fordo con ls dos priers fils coluns es no nulo, ra) : Pr uscr el ra'), lo orlos con l ercer fil con l cur colun l ercer colun esá esudid el enor correspondiene es nulo): Con lo que concluios que ra'). L ercer fil ecución) es coinción linel de ls dos priers l eliinos. El rngo coincidene de ls rices de los coeficienes plid es, inferior l núero de incógnis, que es, por lo que el sise es copile indeerindo, con infinis soluciones. L incógni, que no esá en el enor no nulo que eneos, l consideros práero l llos, donde o un vlor rirrio elegido por nosoros) l psos l segundo iero: Podeos resolver ese sise coo queros: Por Crer, por Guss, por reducción, o por susiución. Vos hcerlo por Crer: IES Fernndo de Herrer Prof. R. Mohigefer Págin de hp://

3 Meáics Resolución de sises dependienes de práeros IES Fernndo de Herrer Prof. R. Mohigefer Págin de hp:// Luego el conjuno de infinis soluciones, un pr cd vlor de, es:,, ) ) Discu el siguiene sise según los vlores de : Ese prole ién esá resuelo por Guss en el docueno cido. L ri plid es: El or enor posile l esudir l ri de los coeficienes es: Si ra) ra') El sise es copile deerindo independieneene de lo que vlg. No nos piden l resolución, pero l oendríos por Crer: ) ) ) ) ) ) ) ) ) ) )

4 Meáics Resolución de sises dependienes de práeros L solución únic es:,,. Ls descoposiciones en fcores de los nuerdores que heos hecho h sido edine Ruffini. Por ejeplo, vos descoponer +. Pr ello, consideros que es un polinoio en que l indeerind es, siendo un práero un vlor conocido o desconocido que for pre de los coeficienes, pero no es l ler principl del polinoio). Así, el polinoio serí: + ) +. Por no, por Ruffini: Por no recordr que hlos de polinoios en l indeerind ), se iene: + ) + ) ) Si l ri plid es: Ls dos priers fils son igules, por lo que eliinos un de ells l prier, por ejeplo). El rngo de l ri de los coeficienes es, porque no es posile enconrr un enor de orden no nulo, pueso que siepre coinciden ls fils ls coluns). Veos qué ocurre con l ri plid, orlndo el enor de orden que quedrí rri l iquierd: o Si : ra) ra') Sise incopile. o Si : ra) ra') Sise copile indeerindo. Tendríos sólo un ecución: + +. Llndo s, s. Ls infinis soluciones dopn l esrucur: s, s, ). ) Discu el siguiene sise según los vlores de : Ese prole ién esá resuelo por Guss en el docueno cido. L ri plid es: Coo: IES Fernndo de Herrer Prof. R. Mohigefer Págin 4 de hp://

5 Meáics Resolución de sises dependienes de práeros Se iene: Si : ra) ra') Sise copile deerindo. L solución, por Crer que no nos piden): L solución únic, dependiendo de, es:,,. 4 Si : ra). Orlndo con l ercer fil cur colun de l ri plid, endreos: 4 8 / o Si /: ra) ra') Sise incopile. o Si /: ra) ra') Sise copile indeerindo. Eliinríos l ercer fil ecución) que no for pre del enor no nulo enconrdo. Pr ls dos ecuciones resnes, el sise serí, un ve psd l segundo iero porque no esá en el enor): Por Crer, l solución que no piden) serí: IES Fernndo de Herrer Prof. R. Mohigefer Págin de hp://

6 Meáics Resolución de sises dependienes de práeros IES Fernndo de Herrer Prof. R. Mohigefer Págin 6 de hp:// L ern de infinis soluciones es:, 6 7, 6. 4) Sor ) Consider el sise de ecuciones: ) Deerin los vlores de pr los que el sise iene un únic solución. Clcul dich solución pr. L ri plid es A'. Coo ra). Orlndo ese enor con l colun l fil de A, nos qued el deerinne de A, cuo vlor es por Srrus): A ). Igulndo : ó. Esos son los dos vlores de que nuln A. Por no, si, se iene que ra), por lo que ra') el sise será copile deerindo, con solución únic. Nos piden resolverlo pr uno de esos vlores:. Pr dicho vlor: A'. Vos resolverlo por Guss que, cundo el sise no depende de un práero, suele ser ás cóodo que por Crer. Coenos con F F : F F F F El sise esá ringulrido. Muliplicndo por / l úli fil, l ercer ecución es:. Susiuendo en l segund: Y susiuendo en l prier: + +. Por no, l solución únic es:,, ). ) Deerin los vlores de pr los que el sise iene infinis soluciones. Clcul dichs soluciones. Del prdo nerior, nos quedó pendiene verigur qué ocurre cundo ó. Veáoslo.

7 Meáics Resolución de sises dependienes de práeros Si, A' con l C 4 con l F :, del que eníos un enor no nulo. Orlándolo, porque F F. Por no, ién ra'), con lo que el sise iene infinis soluciones, l ser copile indeerindo. L ercer fil de l ri plid no for pre del enor no nulo que heos enconrdo, por lo que l eliinos. Tpoco l prier colun esá en dicho enor, por lo que l incógni l psos l segundo iero l oos coo si fuer un práero conocido. El sise resulne es: De donde, de for inedi, ;. Por no, llndo, ls infinis soluciones ienen l for h un pr cd vlor de ):,, ),,. Nos seguros de que el vlor de que qued por esudir no hce que el sise eng, ién, infinis soluciones. Si, l ri plid es: A'. Un enor no nulo es. Seos que es el or que podeos enconrr en A, pueso que ra). Orlándolo con l C 4 : +) ra') ra) Por no, el sise es incopile pr ese vlor. c) H lgún vlor de pr el que el sise no iene solución? Se c de clculr l finlir el prdo nerior: Si, el sise es incopile, por lo que no iene solución. ) ) Sor ) Consider el sise de ecuciones: ). ) 4 ) Clsific el sise según los vlores del práero. A' 4 ra), pero no es posile enconrr un enor de orden en el que no prec. Enonces, lo que hreos es ver cuándo ra). Es decir, en lugr de proceder, IES Fernndo de Herrer Prof. R. Mohigefer Págin 7 de hp://

8 Meáics Resolución de sises dependienes de práeros coo es hiul l hor de clculr rngos, orlr enores no nulos cd ve de or ño, lo hceos l invers, o se, uscndo el enor no nulo de or ño posile. Adeás, el deerinne de l ri de los coeficienes A iene l peculiridd de que ods ls fils sun lo iso, por lo que eise un procediieno esándr de cálculo del iso: A F F F ) CC CC ) IES Fernndo de Herrer Prof. R. Mohigefer Págin 8 de hp:// +) +) Coo consecuenci, A ó. Así que: Si se iene que ra), por lo que ién lo será ra') no puede vler ás de ), el sise será copile deerindo. Si A'. Seos que, pr ese vlor, A 4. Y cóo ra). Orlos ese enor con l F C 4 de A' que es l únic ner de orlrlo en A'): por lo que, ién, ra') El sise es copile indeerindo, pueso que dicho vlor es enor que el núero de incógnis. Si A'. Coo A iene sus res fils igules disins 4 de, eneos que ra) sólo iene un fil linelene independiene). El único enor no nulo que podeos oener es el fordo por un único eleeno, por ejeplo,. Al orlrlo con l C 4 l F de A', qued: 4 por lo que ra') ra) El sise es incopile. ) Resuelve el sise cundo se copile indeerindo. Según lo nerior, es pr. L ecución que no for pre del enor no nulo enconrdo nes es l prier, por lo que es coinción linel de ls ors dos, con lo que l eliinos. Igulene, l incógni no esá en dicho enor, por lo que l consideros coo un núero conocido,, l psos l segundo iero. Con ello, que el sise es: 4

9 Meáics Resolución de sises dependienes de práeros Por reducción, que pr dos ecuciones es siilr Guss, resndo l prier ecución enos l segund, se oiene: 6 + Susiuendo en l prier: +) +4 Luego ls infinis soluciones del sise quedn en función de, quien podeos drle vlores lireene. Y ienen l for:,, ),, ) 6) Sor 7) Consider el sise de ecuciones ) Clsific el sise según los vlores de. L ri plid es: A Podeos enconrr en A un enor de orden no nulo:, por lo que ra). Adeás: A + A + ). En conclusión: Si ra) ra ) Sise copile deerindo. Si ra). Si orlos el enor no nulo de orden que eníos con l fil colun 4 de A : Por lo que ra ) el sise es copile indeerindo. ) Resuelve el sise cundo se copile indeerindo. Coo heos viso, es el cso de. L ecución que no for pre del enor no nulo que eneos es l prier, por lo que prescindios de ell. Asiiso, l incógni no esá en el enor, por lo que l consideros coo práero vos llr ) l psos l segundo iero. El sise es, enonces: Y eneos ls incógnis despejds en función de, por lo que ls infinis soluciones dependiendo de los vlores rirrios que deos ) ienen l for: IES Fernndo de Herrer Prof. R. Mohigefer Págin 9 de hp://

10 Meáics Resolución de sises dependienes de práeros,, + ) 7) Sor 7) Consider el sise de ecuciones ) Deerin el vlor de pr que el sise se incopile. L ri plid es: A ' Se iene que el deerinne de l ri de los coeficienes vle: A Con lo que A + ó. Esudieos los disinos csos que pueden presenrse. Si A ra) ra ') Sise copile deerindo. Si A '. ra), porque es un enor, A ése er uno de los dos vlores que nuln el deerinne). Orlndo dicho enor con l fil l colun 4 de A ': iene dos fils igules) Con lo que ra '). El sise es, enonces, copile indeerindo. Si A '. Seos que A. El siguiene enor de A es no nulo: inersecciones de ls fils con ls coluns ). Por no, ra). Al orlr ese enor con l fil colun 4 de A ': Por no, el sise es incopile. + 4 ra ') ) Resuelve el sise pr. Heos verigudo que en ese cso el sise es copile indeerindo. Teníos un enor no nulo fordo por ls inersecciones de ls fils con ls co- IES Fernndo de Herrer Prof. R. Mohigefer Págin de hp://

11 Meáics Resolución de sises dependienes de práeros IES Fernndo de Herrer Prof. R. Mohigefer Págin de hp:// luns. Eliinos l ecución que no esá en ese enor, que es l ercer, llos, porque es l incógni que no for pre del enor, l psos l segundo iero. El sise resulne es: El sise resul u cóodo de resolver por reducción, porque l resrle l segund ecución l prier, resul: Y susiuendo en l prier ecución: +. Por no, ls infinis soluciones dependiendo de vlores rirrios pr ) ienen l for:,, ),, ) 8) Sor 7) Clsific resuelve el siguiene sise según los vlores de : ) ) Poneos, pr eper, ods ls incógnis en el prier iero, los érinos independienes en el segundo, de ner que engos el sise en l for hiul: Nos resul un sise hoogéneo, cu ri de coeficienes es: A En el cso de sises hoogéneos, l ri plid A' ñde un colun de ceros, por lo que su rngo coincidirá con el de l ri de los coeficienes. Clculos su deerinne: A Por no: Si A ra) ra') Sise copile deerindo lo que en el cso de sises hoogéneos signific que l únic solución es l rivil:,, ),, ). Si l ri de coeficienes se rnsfor en: A

12 Meáics Resolución de sises dependienes de práeros Seos que, en ese cso, A. Coo ra) ra') sise copile indeerindo, con infinis soluciones. Psndo l segundo iero es l incógni que no perenece l enor no nulo hlldo) eliinndo l ercer ecución no esá en dicho enor), el sise es: ª ec.) Sus. en l ª ec): Luego ls infinis soluciones en función de ) son de l for:,, ),, ) Si A, con A el enor. El sise es: Susiuendo en l ª ec:. Luego ls soluciones son de l for:,, ),, ) IES Fernndo de Herrer Prof. R. Mohigefer Págin de hp://

APLICACIONES DE LAS MATRICES

APLICACIONES DE LAS MATRICES PLIIONES DE LS MTRIES Ejercicio nº.- ) Encuenr los vlores de pr los que l ri: no es inversible. Ejercicio nº.- lcul, si es posible, l invers de l ri: Pr los csos en los que. Ejercicio nº.- Hll un ri,,

Más detalles

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Te Resolución de sises edine deerinnes Meáics II º chillero TEM RESOLUIÓN DE SISTEMS MEDINTE DETERMINNTES Resolución de sises Regl de rer Teore de Rouché-Froenius EJERIIO Resuelve plicndo l regl de rer

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios resuelos de lger Ejercicios de Meáics. Se N M. ) Clcul e pr que MN = NM. ) Clcul M M ) MN ; NM = = = ) M = I M = M M = I M = M... Se ve que si el eponene es pr es igul l ri unidd si es ipr es

Más detalles

MATEMÁTICAS II Tema 3 Sistemas de ecuaciones lineales

MATEMÁTICAS II Tema 3 Sistemas de ecuaciones lineales Álger: Sises de ecuciones lineles ATÁTICAS II Te Sises de ecuciones lineles Sises de res ecuciones con res incógnis Definiciones Un sise de res ecuciones lineles de con res incógnis, en su for esándr,

Más detalles

Tema 3. Sistemas de ecuaciones lineales

Tema 3. Sistemas de ecuaciones lineales eáics II (Bchillero de Ciencis) Álger: Sises de ecuciones lineles 7 Te Sises de ecuciones lineles Sises de res ecuciones con res incógnis Definiciones Un sise de res ecuciones lineles de con res incógnis,

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales eáics II Sises lineles Sises de ecuciones lineles Observción: L orí de esos sises se hn propueso en ls pruebs de Selecividd, en los disinos disrios universirios espñoles.. L ri plid de un sise de ecuciones

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales eáics II Sises lineles Sises de ecuciones lineles CTJ. L ri plid de un sise de ecuciones lineles, en for reducid por el éodo de Guss, es: ) El sise es copible o incopible? Ron l respues. b) Resolverlo

Más detalles

SELECTIVIDAD: MATRICES. B y

SELECTIVIDAD: MATRICES. B y SELETIVIDD: MTRIES EJERIIO. ) Sen dos ries udrds del iso orden que ienen invers. Ron si su produo iene invers. ) Dds ls ries - D, Deerin si D iene invers, en ese so, hálll. EJERIIO. onsider ls ries,. )

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9

Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9 Te Sistes de Ecuciones.- Introducción..- Sistes de Ecuciones Lineles..- Método de Guss..- Discusión de Sistes Lineles..- Regl de Crer..- Mtri Invers..- Ecuciones Mtriciles..- Rngo de un Mtri..- Ejercicios

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

TEMA 3. Sistemas de ecuaciones lineales Problemas Resueltos

TEMA 3. Sistemas de ecuaciones lineales Problemas Resueltos eáics II Bchillero de Ciencis) Soluciones de los roles rouesos Te wwweicsjco José rí ríne edino T Sises de ecuciones lineles Proles Resuelos Clsificción resolución de sises or éodos eleenles Resuelve uilindo

Más detalles

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) Compible deermindo Compible indeermindo c) Incompible

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) I.E.S. CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEBRE (RESUELTOS por Anonio enguino) ATEÁTICAS II Tiempo máimo: hors Se elegirá el Ejercicio A o el B, del que sólo se hrán

Más detalles

PROBLEMAS RESUELTOS DE MATRICES Y DETERMINANTES Salvo el primero, estos problemas provienen de las pruebas de Selectividad de Andalucía

PROBLEMAS RESUELTOS DE MATRICES Y DETERMINANTES Salvo el primero, estos problemas provienen de las pruebas de Selectividad de Andalucía Mtrices Deterinntes PROBLEMAS RESUELTOS DE MATRICES Y DETERMINANTES Slvo el priero, estos proles provienen de ls prues de Selectividd de Andlucí ) Clculr el siguiente deterinnte: Un deterinnte de orden

Más detalles

TEMA 1 SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

TEMA 1 SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Te Sises de ecuciones. Méodo de Guss TEMA SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS RESOLVER E INTERPRETAR GEOMÉTRICAMENTE SISTEMAS LINEALES EJERCICIO : Resuelve los siguienes sises h un inerpreción geoéric

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()

Más detalles

Relación 3. Sistemas de ecuaciones

Relación 3. Sistemas de ecuaciones Relción. Sistes de ecuciones Ejercicio. Consider el siste de ecuciones ) Eiste un solución del iso en l que? ) Resuelve el siste hoogéneo socido l siste ddo. c) H un interpretción geoétric tnto del siste

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 Mtemátics Determntes Resumen DETERMINANTES (Resumen) Defición El determnte de un mtriz cudrd n x n es un número. Se otiene sumndo todos los posiles productos que se pueden formr tomndo n elementos de l

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

TEMA 2. Determinantes Problemas Resueltos

TEMA 2. Determinantes Problemas Resueltos Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Resumen de los errores más frecuentes en Matemáticas de 1º ESO.

Resumen de los errores más frecuentes en Matemáticas de 1º ESO. Resuen de los errores ás frecuentes en Mteátics de 1º ESO. 1º. Propiedd distributiv. L propiedd distributiv respecto l producto-división y l su-diferenci nos dice: A) b c b c B) b c b c Observ: b c b c

Más detalles

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos Álgebr: Sisems wwwmemicsjmmmcom José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo

Más detalles

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que

Más detalles

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Teorí ejercicios de teátics II. Álger Sistes de ecucioes lieles - -. SISTES DE ECUCIONES INEES. DEFINICION U ecució liel es u ecució de l for e l que, so los coeficietes de ls icógits, es el tério idepediete

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

Definición de un árbol Rojinegro

Definición de un árbol Rojinegro Definición de un árol Rojinegro Árol inrio esrico (los nodos nulos se ienen en cuen en l definición de ls operciones odo nodo oj es nulo) Cd nodo iene esdo rojo o negro Nodos oj (nulos) son negros L rí

Más detalles

SISTEMAS DE ECUACIONES LINEALES amn

SISTEMAS DE ECUACIONES LINEALES amn Apunes de A. Cbñó Memáics plicds cc.ss. SISTEMAS DE ECUACIONES LINEALES. CONTENIDOS: Plnemienos de problems lineles. Soluciones de un sisem de ecuciones lineles. Sisems lineles equivlenes. Méodo de reducción

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

el log de me de id CSII: mrices y deerminnes pág. DEFINICIONES Un cden de iends de elecrodomésicos dispone de curo lmcenes. En un deermindo momeno ls exisencis de lvdors, frigoríficos y cocins son ls siguienes:

Más detalles

Tema 4. SISTEMAS DE ECUACIONES LINEALES

Tema 4. SISTEMAS DE ECUACIONES LINEALES Te SISTS D CUCIONS LINLS Sises de res ecucioes co res icógis So de l for: Ls lers i, ij i represe, respecivee, ls icógis, los coeficiees los érios idepediees L solució del sise es el cojuo de vlores de,

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

Tema 3. Sistemas de ecuaciones lineales

Tema 3. Sistemas de ecuaciones lineales Memáics Aplicds ls Ciencis Sociles II Álger: Sisems de ecuciones lineles Tem Sisems de ecuciones lineles Sisems de dos ecuciones lineles con dos incógnis (Repso) c Su form más simple es (,, c,, c son números

Más detalles

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f)

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f) 80 Ejercicios.- Siplificr: ) f).- Clculr: ) 0 .7 Práctico: Epresiones Algebrics Ejercicio : Epresr con un onoio el áre de l prte sobred. Ejercicio : ) Verificr que el áre del trpecio de l figur es A =.

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito

Más detalles

Modelo 5 de sobrantes de Opción A

Modelo 5 de sobrantes de Opción A Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que

Más detalles

Nivelación de Cálculo

Nivelación de Cálculo Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar:

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar: Pl Mdre Mols, nº 86- MADRID Correo: nsconsolcion@plnlf.es / Telf. 9 59 95 / 69 56 698 / F 9 55 59 / www.nsconsolcion.co TEMA : SISTEMAS DE ECUACIONES LINEALES Pr eper:. Discutir resolver los siguientes

Más detalles

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis 59 Memáics I : Cálculo inegrl en IR Tem 5 Inegrles impropis 5. Inroducción En el em nerior se h definido l inegrl de Riemnn con ls siguienes hipóesis Domf = [, ] es un conjuno codo. f: [, ] IR esá cod

Más detalles

B y sus traspuestas,. c) Ninguna de las anteriores. Solución: En este caso se cumple b), pues:

B y sus traspuestas,. c) Ninguna de las anteriores. Solución: En este caso se cumple b), pues: nálisis eáio (eáis Eresriles ) José rí rínez eino ROLES DE TRCES DETERNNTES eguns e io es () Ls ries, y sus rsuess, y, ulen: ) ) ) Ningun e ls neriores Soluión: En ese so se ule ), ues: L resues es ) ()

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

Integrales impropias.

Integrales impropias. Tem Inegrles impropis.. Inroducción. En el em nerior se h definido l inegrl de Riemnn con ls siguienes hipóesis Dom(f) = [, ] es un conjuno codo. f: [, ] IR esá cod en [, ]. Si lgun de ess condiciones

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) UNIVERSIDDES PÚLICS DE L COUNIDD DE DRID PRUET DE CCESO ESTUDIOS UNIVERSITRIOS (LOGSE) Curso 8-9 (Sepiebre) TERI: TEÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El aluno conesará a los cuaro ejercicios de

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada Jun nonio González o Proesor de emáics del Colegio Jun XIII Zidín de Grnd ITEGRCIÓ ITEGRES IDEFIIDS ÉTODOS DE ITEGRCIÓ PRIITIV DE U FUCIÓ ITEGR IDEFIID Sen y F dos unciones reles deinids en un mismo dominio

Más detalles

Determinantes. Ejercicio nº 1.-

Determinantes. Ejercicio nº 1.- Deerminnes Ejeriio nº.- Hll el vlor e los siguienes eerminnes. En el pro ), lul, emás, los posiles vlores e pr que el eerminne se ero: Ejeriio nº.- ) Clul el vlor el eerminne: ) Resuelve l euión: Ejeriio

Más detalles

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE:

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE: IES Fernndo de Herrer de enero de 04 Primer trimestre Exmen de utoevlución º Bch CCSS NOMBRE: 7 ) ) Representr en l rect rel: b) Qué número es el indicdo en el gráfico? 0 ) Clculr el resultdo simplificdo

Más detalles

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z

Más detalles

FRACCIONES ALGEBRAICAS

FRACCIONES ALGEBRAICAS FRACCIONES ALGEBRAICAS CÓMO ESTAMOS EN EL TEMA?. Cuáno dee ñdirse / r oener l unidd?. De ué número h ue resr / r oener l se re del número?. Qué número sumdo con sus / con sus / es?. Un erson inviere los

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn TEMA ÁLGEBRA DE MATRICES Mtemátics II º Bchillerto TEMA ÁLGEBRA DE MATRICES. NOMENCLATURA Y DEINICIONES.. - DEINICIÓN Ls mtrices son tbls numérics rectngulres ª column ª fil n n n.......... m m m mn (

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES. Resuelva la siguiene ecuación aricial: X B C, siendo, 4 C.. Deerine la ari X de orden al que: X.. Se considera la ari. a) Calcule los valores de para los que no eise la inversa de.

Más detalles

PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS

PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS Maemáicas Problemas resuelos por el Méodo de Gauss PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS ) Resolver el siguiene sisema por Gauss Para resolver el sisema por el méodo de Gauss, hemos de riangulariarlo.

Más detalles

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES Cód. 87 Avda. de San Diego, 8 Madrid Tel: 978997 98 Fa: 9789 Email: rldireccion@planalfa.es de No se auoria el uso comercial de ese Documeno. MATEMÁTICAS I. TEMA : ECUACIONES Y SISTEMAS DE ECUACIONES..

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

MATEMÁTICAS II SISTEMAS DE ECUACIONES

MATEMÁTICAS II SISTEMAS DE ECUACIONES Mite Gonále Jurrero Proles PU. Sistes de euiones. SISTEMS DE ECUCIONES. Considérese el siguiente siste de euiones lineles (en él,, son dtos; ls inógnits son,, Si, son no nulos, el siste tiene soluión úni.

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales José Mrí Mríne Medino de ecuciones lineles Observción: L morí de esos problems provienen de ls pruebs de selecividd. Resuelve el siguiene sisem de ecuciones: 9 Aplicndo el méodo de Guss: 9 6 6 L solución

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

( ) [ ] 20 MATEMÁTICAS EJERCICIOS DE CÁLCULO BÁSICO [ ] [ ] [ ] [ ] [ ] ( ) ) [ ] ( ) 9 OPERACIONES CON POTENCIAS [ ]) 4

( ) [ ] 20 MATEMÁTICAS EJERCICIOS DE CÁLCULO BÁSICO [ ] [ ] [ ] [ ] [ ] ( ) ) [ ] ( ) 9 OPERACIONES CON POTENCIAS [ ]) 4 MATEMÁTICAS DE CÁLCULO BÁSICO OPERACIONES CON POTENCIAS. Coplet ls csills vcís. ( ) ( b) 8 8 8 ( ) ( ) ( : ) : ( ) 9 : : : (: ) ( : ) : 8 : : 0 : : ( ) ( ) ( ) ( ) : ( ) ( ) ( ) ( ) : ) ( ) 0 ( ) 0 ( :

Más detalles

Determinantes: un apunte teórico-práctico

Determinantes: un apunte teórico-práctico Deterinntes: un punte teório-prátio Definiión d triz udrd se le soi un núero denoindo deterinnte de. El deterinnte de se denot por o por det(). Cálulo de deterinntes Pr un triz de x el deterinnte es sipleente

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

INTEGRAL DE RIEMANN-STIELTJES

INTEGRAL DE RIEMANN-STIELTJES Prof. Enrique Meus Nieves Docorndo en Educción Memáic. INTEGRAL DE RIEMANN-STIELTJES L inegrl de Riemnn-Sieljes es un exensión del concepo de Inegrl de Riemnn que permie mplir el poencil de es herrmien.

Más detalles

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz. Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Tema 7: ÁLGEBRA DE MATRICES

Tema 7: ÁLGEBRA DE MATRICES ÁLGER DE MTRICES Tem : ÁLGER DE MTRICES Índice. Concepo de mriz... Definición de mriz... Clsificción de ls mrices... Tls, grfos y mrices.. Operciones con mrices... Sum de mrices... Muliplicción de un número

Más detalles

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX IES Medierráneo de Málg Solución Seiembre Jun Crlos lonso Ginoni OPCIÓN..- Dds ls mrices: Deerminr l mri invers de b Deerminr un mri X l que X X X X X dj dj IES Medierráneo de Málg Solución Seiembre Jun

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

Matemáticas 2º Bachillerato MATRICES. columnas es muy antiguo, pero fue en el siglo XIX cuando J.J. Sylverster ( )

Matemáticas 2º Bachillerato MATRICES. columnas es muy antiguo, pero fue en el siglo XIX cuando J.J. Sylverster ( ) TRICES emáics º chillero. Inroducción. Definición de mriz El concepo de mriz como un bl ordend de números escrios en fils y columns es muy niguo, pero fue en el siglo XIX cundo J.J. Sylverser (8-897) cuñó

Más detalles

1. Definición de Determinante para matrices cuadradas de orden 2 y de orden 3. Un determinante es un número que se le asocia a toda matriz cuadrada.

1. Definición de Determinante para matrices cuadradas de orden 2 y de orden 3. Un determinante es un número que se le asocia a toda matriz cuadrada. Unidd : DETERMINNTES.. Deinición de Determinnte pr mtrices cudrds de orden y de orden. Un determinnte es un número que se le soci tod mtriz cudrd. Determinnte de un mtriz cudrd de orden : El es producto

Más detalles

- 1 - PLANO INCLINADO

- 1 - PLANO INCLINADO - 1 - PLNO INCLINDO DESCOMPOSICIÓN DE L FUERZ PESO Suponé que tengo un cuerpo que está poydo en un plno que está inclindo un ángulo. L fuerz peso punt pr bjo de est ner: UN CUERPO POYDO EN UN PLNO INCLINDO.

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos.

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos. Meáis (hillero e ieis) Soluioes e los proles propuesos Te wwweisjo José Mrí Mríez Meio TEM Mries Proles Resuelos Operioes o ries Ds, y, hll os úeros y pr que se verifique que Soluió Esriieo l euió exei

Más detalles

INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo.

INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo. Inegrles INTEGRAL IMPROPIA Eensión del oneo de inegrl definid L inegrl definid d requiere que: El inervlo [, ] se finio L funión f () esé od en el inervlo [, ] L funión f () se oninu en diho inervlo Cundo:

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. Jun nonio González Mo Profesor de Memáics del Colegio Jun XIII Zidín de Grnd MTRICES Y DETERMINNTES. INTRODUCCIÓN. Ls mrices precieron por primer vez hci el ño.8 inroducids por el inglés Jmes Joseph Silveron.

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

LOS MODELOS MULTIFACTORIALES DE VALORACIÓN DE ACTIVOS: UN ANÁLISIS EMPÍRICO COMPARATIVO * WP-EC 2001-19

LOS MODELOS MULTIFACTORIALES DE VALORACIÓN DE ACTIVOS: UN ANÁLISIS EMPÍRICO COMPARATIVO * WP-EC 2001-19 LOS MODELOS MULTIFACTORIALES DE VALORACIÓN DE ACTIVOS: UN ANÁLISIS EMPÍRICO COMPARATIVO * Belén Nieo WP-EC 2001-19 Correspondenci : Belén Nieo, Universidd de Alicne. Depo. de Econoí Finncier, Conbilidd

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

= 27. 1 1, con b un parámetro real. Se pide: a) Para qué valores del parámetro b el sistema de ecuaciones lineales A

= 27. 1 1, con b un parámetro real. Se pide: a) Para qué valores del parámetro b el sistema de ecuaciones lineales A ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CCSSII: º) (Andlucí, Junio ) Un cliene de un supermercdo h pgdo un ol de 56 euros por 4 liros de leche, 6 kg de jmón serrno liros de ceie de oliv Plnee resuelv un

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

Predimensionado de losas

Predimensionado de losas Prediensionado de losas Dareos algunos crierios de carácer general para elegir enre losas acizas, nervuradas y de vigueas paralelas, en odos los casos aradas en una ó dos direcciones. a) Macizas Para losas

Más detalles

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área Núeros irrcionles Algun vez hs utilizdo núeros irrcionles? Se dese clculr l longitud de un ldo de un pist de bile de for cudrd, cuy áre es 6 u A = 6 u x x Definios los eleentos: x = ldo del cudrdo A =

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de

Más detalles

AX = B. X es la matriz columna de las variables:

AX = B. X es la matriz columna de las variables: ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:

Más detalles