( ) RESOLUCIÓN M x m = P. RESOLUCIÓN Sea N uno de dichos números: N= 31q + 3q N= 34q Además, sabemos: resto < divisor RESOLUCIÓN RESOLUCIÓN.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "( ) RESOLUCIÓN M x m = P. RESOLUCIÓN Sea N uno de dichos números: N= 31q + 3q N= 34q Además, sabemos: resto < divisor RESOLUCIÓN RESOLUCIÓN."

Transcripción

1 SEMANA 6 MULTIPLICACIÓN-DIVISIÓN 1. Si al multiplican y multiplicar s l isminuy n y 4 rspctivamnt, l pruct isminuy n 198. Hall la suma ls factrs icha multiplicación si su ifrncia s 8. A) 6 B) 65 C) 67 D) 66 E) 69 M x m = P (M-)(m-4) =P-198 M m-4m-m+8= P =4M + m x 10=M + m + + 8= M-m 111 = M; M = 7 m = 9 M + m = 66. Si abc7 7 = Hall l númr ivisins ivin ca b y rsiu ab A) 1 B) C) 4 D) 5 E) 6 abc 7.7 = Multiplican pr. abc. =...15 ; Exprsan: 6666 = ( 7) 1 abc = abc0000 abc = ntncs a=4 b= c=5 =6 lug ca b ab 54 = ivisr. ccint + 4 1= ivisr. Ccint amás ivisr >4 ivisr =5,104,78,156,1 hay 5 ivisins (tabla ivisrs). Calcular la cantia ttal númrs ntrs ls cuals al sr iviis ntr 1, prucn un rst tripl qu l ccint crrspn. A) 1 B) 4 C) 10 D) 11 E) 1 Sa N un ichs númrs: N= 1q + q N= 4q Amás, sabms: rst < ivisr q < 1 q < 1/ q = { 1,,, 4,5,6,7,8,9,10 } Cantia valrs =10 RPTA.: C 4. Si multiplicams al númr abc pr n0n (0 = cr) bsrvams qu l pruct ttal s **45 (caa astrisc rprsnta una cifra). Dar cm rspusta a + b + c; si amás; a<9. A) 17 B) 16 C) 15 D) 14 E) 1 abc nn a + b + c = 16 n = 5 c = 7 b = 8 a = 1

2 5. Si n una ivisión, l rsiu pr xcs, rsiu pr fct, ivisr y ccint sn númrs pars cnscutivs. Cuál s l valr l ivin? 6. Si: A) 5 B) 5 C) 48 D) 60 E) 56 Al sr pars cnscutivs, ntncs caa un s igual al antrir incrmnta n unias. RE = N ; RD = N + : = N + 4 N; q = N + 6 Sabms qu: R + R = E D ( N + ) + N = ( N + 4) N= R E = ; R D = 4; = 6 ; q=8 D = = 5 abcx47 = y CA ( aa) x CA ( ab) = CA ( xyzw). Calcul l qu l falta a xyz para qu sa un númr cuara (l mnr psibl). A) 6 B) 14 C) 4 D) 68 E) = 160 = 1 + x = 9 x = 8 + x = 9 y = z = 10 z = 4 ω = 0 xyz = 864 Falta = = 6 CA ( xyzw) CA ( xyzw) RPTA.: A 7. Calcul l pruct ttal la siguint multiplicación: a a + 1 a + a + ( ) 6 Si la ifrncia sus pructs parcials s 9. A) D) 10 B) 00 E) x ( a + ) ( a + ) C) a < ( 1 ) ( 6 ) a a + Pructs parcials: ( a + 1) ( a + ) ( a + ) i a i a + a + ( 6 ) abc c = c = 8 7 b + 5 = b = 0 7 a = 10+ a = 6 CA ( aa) CA ( ab) = CA ( xyzw) CA ( 66) CA ( 60 ) = CA ( xyzw) ( a + ) ( a + ) ( 6 ) = 9 = 45 a = Rmplazan: (6) Pruct: 00 (6)

3 8. Si: (n) ( n 1) ( n 1 )...( n 1) ( n) 8 cifras =...abc5n Calcul l pruct cifras l numral abcn ( n+1 ) xprsa n bas 1. A) 7 B) 148 C) 1 D) 54 E) 9 Cm tin 8 cifras trmina n n 1 n (n) ( n) =...abc5 ( n) ; n > 5 n 1 = n+ 5 n = n+5 n = 7 Rmplazan: (7) (7) (7) (7) abc5 = º ( 7) ( 7) abcn = 547 = 89 ( 8) ( 8) 89 = = 9 ( 1) RPTA.: E abc 4c rpqz ab = 4 r + 4;r = 1 a=8 ab = 85 b=5 4c = 4(p) + 4;p = 9 4c = 49 c = 9 4 = 4 ( q) + 4, q = 9 4 = 49 = 9 4 = 4 ( z) + 4 z = 9 4 = 49; = 9 a + b + c + + =40 RPTA.: C 10. Es una ivisión l rsiu pr xcs s 1 l ivisr. El mnr númr qu s b sumar al ivin para aumntar n al ccint s 5. Al triplicar al ivin, l ccint aumnta n 6. Hall la suma las cifras l ivin. A) 15 B) 17 C) 0 D) E) 4 1 r = r = Lug: 9. S btinn 4 rsius máxims al iviir abc pr 4. (a+b+c++) A) 51 B) 45 C) 40 D) 9 E) 4 Hall: D q = +

4 * * D + 5 = q q + = q = = 9 r = 6 A) 608 B) 6 C) 618 D) 68 E) 6 D + + q + r = (I) D 49 = (q 1) + ( 1) D + 67 = (q + 1) + ( 1) q + q = 6 q = 17 D= 9 x = 689 cifras D = ( ) 11. En una ivisión inxacta pr fct, l ivisr y l rsiu sn 4 y 14 rspctivamnt, si al ivisr s l agrga 5 unias ntncs l ccint isminuy n unias. Hall l nuv rsiu sabin qu s l mnr psibl. A) 1 B) C) D) 4 E) 5 D 4 14 q D = 4q = = 58 En (1) 58q + r q + r = q + r = D=58 x = Sa N un númr qu tin ntr 49 y 57 cifras qu multiplican pr 91 s btin un númr frma pr un 1, un, tc. Hall la suma cifras ich númr A) 168 B) 156 C) 96 D) 108 E) 86 N.91 = 11 D = 9(q ) + r 4q + 14 = 9q 78 + r 9 =5q + r q=18 r=; Rsiu = 1. En una ivisión ntra inxacta la suma ls 4 términs s 744, l mínim valr qu s b quitar al ivin para qu l ccint isminuy n 1 s 49, y l máxim valr qu s b agrgar al ivin para l ccint aumnt n 1 s 67. Hall l ivin. Lug bn sr: =5 cifras. cifras = 9x1 =108

5 14. Hall la suma cifras l mnr númr qu multiplican cn 14 un númr frma pr puras cifras y n las unias un 0. A) 17 B) 19 C) 6 D) 7 E) 1 N. 14 = S tin 94 númr cnscutivs, si s ivi l mnr lls ntr 78 s btin 9 rsiu qu rsiu s btin al iviir l mayr ntr st ivisr? A) 49 B) 5 C) 8 D) 9 E) 5 94 númrs cnscutivs: n+1, n+, n+94 n + 1 = 78k n + 94 = 78h + R = Si s ivi m( a )n ntr ( a ) ( a 1) ; tant pr fct cm pr xcs s btin; qu la suma l rsiu pr fct más l rsiu pr xcs y más l ccint pr xcs s 4. Hall (m + n + a), si l rsiu pr fct xc al rsiu pr xcs n 16. A) 16 B) 8 C) 10 D) 1 E) 0 a = a a 1 = = 18 ivisr: ( ) Dat: r + r + q + 1 = q +1 =4; q=15 r + r = 18 r r = 16 r=17 r=1 m8n = 18( 15) + 17 m8n = 87 m = n = 7 m + n + a =1 17. Al iviir un númr trs cifras ifrnts ntr su cmplmnt aritmétic s btuv ccint y cm rsiu la última cifra ich cmplmnt aritmétic. Dtrmin la suma cifras l numral primitiv. A) 1 B) 14 C) 15 D) 16 E) = n ( k ) Cmparan y 4 ; h=k+1 R =5 RPTA.: E

6 abc r = ( 10 c) abc = CA abc + 10 c abc = abc c 4 abc = c 4 c = 10 c 5 c = 10 0 cumpl sól para c = 4 c = 6 8 abc c = ; b = 5; a = 7 a+b+c+=14 RPTA.:B 18. En una ivisión l ivin s par, 1, l l ivisr s ( n ) ( n + ) ccint s ( a ) ( a) ( b ) ( b 4 ) 1 y l rsiu 9. Calcul la suma ls términs la ivisión si s raliza pr xcs. A) 870 B) 900 C) 000 D) 07 E) 09 N 4 ( 9) r = b b CA ( abc) a < 10 a <, 1 < a < 4 a = ; b = ( n 1) ( n + ) ( a 1) ( a) Pr algritm la ivisión N = n 1 n + a 1 a + 87 rsiu < ivisr ( n ) ( n ) < 1 + α n 1 < 10 n < 5, 5. Impar n= 1; ;5 n α : sól cumpl si n=5 ivisr =97 ccint =9 rsiu=87 ivin =900 r = 10 q = 0 Pin: Pin: Calcular la cantia ttal númrs ntrs ls cuals al sr iviis ntr 1, prucn un rst tripl qu l ccint crrspnint. A) 1 B) 4 C) 10 D) 11 E) 1 Sa N un ichs númrs: N = 1 q + q N = 4 q Amás, sabms: rst < ivisr q < 1 q < 1/ q = {1,,, 4, 5, 6, 7, 8, 9, 10} Cantia valrs: 10 RPTA.: C 0. En una ivisión l faltan 15 unias al rsiu para sr máxim y sría mínim al rstarl 18 unias. Dtrminar l ivin, si l ccint s l bl l rsiu pr xcs. A) 119 B) 11 C) 1107 D) 119 E) 117 D =. q + R R MÍNIMO = R 18 = 1 R= 19 R MÁXIMO = R + 15 = 1 = 5 Par impar impar a =

7 Amás: R D + R E = 19 + R E = 5 R E = 16 q = R E q = D = D = 119 RPTA.: A 1. Sabin: n E = A B 7 ; E tin (9n+1) cifras cm mínim y qu A y B tin 8 y 5 cifras rspctivamnt. Hall n. A) 1 B) 14 C) 8 D) 10 E) A < B < 10 n n n 10 7 A < B < A B < 10 7n+ 8 n 7 n Cifras mínimas: 7n = 9n + 1 n = 14. Si M,M,M 1,...,Mn sn númrs 1,,5,., 45 cifras rspctivamnt Cuántas cifras pu tnr cm mínim l pruct ichs númrs? A) 59 B) 56 C) 57 D) 507 E) 506 Obsrvams qu la cantia cifras ls numrals rspctivs frman una sri aritmética razón, ntncs: 45 1 #términs = = ; n = La cantia cifras : M 1, M, M. Si: E E = Máx. = = (1 + 45) 59 = Min.= = 507 E = A.B Tin 6 x cifras ntras; C amás: A tin x8 cifras; B tin x4cifras y C tin x0cifras. Hall x A) 4 B) 5 C) 6 D) 7 E) 8 A.B C Pr at: E tin 6 x cifras 10x x 10x + 18 x = 5 4. Hall l valr n si E tin 15 cifras, A tin 18 cifras y B tin 1 cifras, sin: E = n A i B A) 4 B) 5 C) 7 D) 1 E) 15 E n = A². B³ # cifras E n = Min = 15n n + 1 Máx = 15n Max = x 8 +.x4 Min = x 8 +.x4 + 1 Max =.x0 Min =.x0 + 1 Max = x 8 + x 4 x = x Min = x 8 +.x4 x0 = 10x + 14 # cifras A². B³ = Min= (18) +(1) 5+1 Máx= (18) + (1) = 15n n = 5

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012 Carrra: Tcnicatura Suprir n Análisis y Prgramación d Sistmas Asignatura: Arquitctura d cmputadras Prfsr: Ing. Gabril Duprut Trabaj práctic Nr. : Sistmas d numración y códigs A l larg d st práctic cnstruirá

Más detalles

Negocio desde la Visión del Cliente

Negocio desde la Visión del Cliente El MAPACnstruynd DE EMPATIA Nustr Mdl d En la antrir prsntación hablábams d mpatía y afirmábams u un prfund CONOCIMIENTO DEL CLIENTE rprsnta una vntaja cmptitiva difrncial n las rganizacins. Asimism, prsntábams

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

Preguntas Propuestas

Preguntas Propuestas Preguntas Prpuestas ... Operacines fundamentales III y Tería de divisibilidad I 1. En una división, el residu es 7 y el cciente 1. Halle el dividend si se sabe que es menr que 560 y termina en 4. A) 514

Más detalles

Multiplicación División

Multiplicación División Aritmética CAPÍTULO V Multiplicación División 01. Calcule m + n + p + r, si mnpr 27 tiene como suma de sus productos parciales 3946. A) 13 B) 15 C) 16 D) 12 E) 11 02. En una multiplicación al multiplicando

Más detalles

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN MCD (A; B) = C SEMANA 10 MCD - MCM. q = MCM( A;B) MCD ( A,B) = 7 1 MCD A,B = 7 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN MCD (A; B) = C SEMANA 10 MCD - MCM. q = MCM( A;B) MCD ( A,B) = 7 1 MCD A,B = 7 1 SEMANA MCD - MCM. La suma de dos números A y B es 65, el cociente entre su MCM y su MCD es 8. Halle (A - B). A) 8 B) 6 C) 7 D) 48 E) 48 MCD (A; B) C A dq B dq Donde q y q son números primos entre sí. Luego:

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

PROGRESIONES ARITMÉTICAS

PROGRESIONES ARITMÉTICAS PROGRESIONES ARITMÉTICAS 1. La suma de los tres primeros términos de una progresión aritmética es 12 y la razón 16. Calcula el primer término. : a 1 + a 2 + a 3 = 12 d = 16 a1 =? a2 = a1 + d a3 = a2 +

Más detalles

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque. Aritmética y Álgebra 6. Los números reales: radicales. Definición de radical Un radical es una epresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Obsérvese

Más detalles

La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de dos números 4 (x + y)

La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de dos números 4 (x + y) TEMA 5 : ÁLGEBRA 1. Un número cualquiera x Un número más tres x + 3 El doble de un número La quinta parte de un número 2 x x 5 La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de

Más detalles

en los siguientes polígonos regulares:

en los siguientes polígonos regulares: 1) Halla el valr de Xˆ, Yˆ, Zˆ en ls siguientes plígns regulares: a. El ángul Xˆ es el ángul central del pentágn regular, pr l que 360º mide la quinta parte de 360º: ˆX 7º Para calcular Yˆ pdems hacer

Más detalles

CAPÍTULO 6. A- Ejercicios. Ejercicio 1. $/u D 1 D 2 D 3 D Total O 1 O 2 O Total. b) Demanda: Q d = a + b P. 200 = a + 10 b.

CAPÍTULO 6. A- Ejercicios. Ejercicio 1. $/u D 1 D 2 D 3 D Total O 1 O 2 O Total. b) Demanda: Q d = a + b P. 200 = a + 10 b. Intrucción a la Ecnmía I Cátera a istancia CAPÍTUL 6 A- Ejercicis Ejercici 1 a) $/u 1 2 3 Ttal 1 2 Ttal 10 100 50 50 200 30 30 60 20 80 40 40 160 55 55 110 30 60 30 30 120 80 80 160 40 40 20 20 80 105

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones

Más detalles

ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 NESTOR A. ARIAS HERNANDEZ - UNIPAMPLONA

ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 NESTOR A. ARIAS HERNANDEZ - UNIPAMPLONA ELECTIVA I PROGRAMA DE FISICA Departament de Física y Gelgía Universidad de Pamplna Marz de 2010 En esta sección ns enfcarems en una clase muy limitada, per imprtante que invlucra mdificacines sencillas

Más detalles

Título: mar 6-1:39 PM (Página 1 de 20)

Título: mar 6-1:39 PM (Página 1 de 20) TEMA 5. ÁLGEBRA El lenguaje algebraico es un lenguaje matemático que combina números y letras unidos mediante operaciones aritméticas (+, -,, :) para expresar la realidad de forma concisa, inequívoca y

Más detalles

ELIMINATORIA, 28 de marzo de 2009 PROBLEMAS

ELIMINATORIA, 28 de marzo de 2009 PROBLEMAS ELIMINATORIA, 28 de marz de 2009 PROBLEMAS 1. Ana y Pedr viven en la m ism a calle (sbre la m ism a banquet a). De un lad de la casa de Ana hay 2 casas y del tr hay 13 casas. Pedr vive en la casa que está

Más detalles

Taller de Talento Matemático 4º E.S.O. ARITMÉTICA SIMÉTRICA. José María Muñoz Escolano. Antonio M. Oller Marcén. Zaragoza, 16 de diciembre de 2011

Taller de Talento Matemático 4º E.S.O. ARITMÉTICA SIMÉTRICA. José María Muñoz Escolano. Antonio M. Oller Marcén. Zaragoza, 16 de diciembre de 2011 Taller de Talento Matemático 4º E.S.O. ARITMÉTICA SIMÉTRICA José María Muñoz Escolano Antonio M. Oller Marcén Zaragoza, 16 de diciembre de 2011 SIMETRÍAS EN LA NATURALEZA, EN LOS OBJETOS, EN LA CIUDAD,

Más detalles

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

5 EXPRESIONES ALGEBRAICAS

5 EXPRESIONES ALGEBRAICAS 5 EXPRESIONES ALGEBRAICAS EJERCICIOS Si en una librería, el precio de un libro es x euros y el de cada bolígrafo es 7 menos, expresa algebraicamente lo que cuestan: a) Cuatro libros. b) Diez bolígrafos.

Más detalles

Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman:

Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman: 1 Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por letras y sus exponentes. Coeficiente Parte literal Coeficiente

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

Aceleración del algoritmo K-NN

Aceleración del algoritmo K-NN Aceleración del algritm K-NN Günther Rland Universidad Carls III Av. de la Universidad, 30 28911 Leganés (Madrid) g.rland(at)student.tugraz.at RESUMEN En el siguiente trabaj presentaré un algritm K-NN

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO NOVENO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO NOVENO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO NOVENO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Nven. PERIODO: Segund UNIDAD: Sistemas de ecuacines lineales

Más detalles

UNIDAD 4. POLINOMIOS. (PÁGINA 263)

UNIDAD 4. POLINOMIOS. (PÁGINA 263) UNIDAD 4. POLINOMIOS. (PÁGINA 263) LENGUAJE ALGEBRAICO Una expresión algebraica es aquella que combina: números, operaciones y letras. Ejemplos de expresiones algebraicas: 3 + x x 2 y x + y x 2 y LENGUAJE

Más detalles

ARITMÉTICA. Un número será (k 2 ) si los exponentes en su D.C. son impares

ARITMÉTICA. Un número será (k 2 ) si los exponentes en su D.C. son impares TEMA: POTENCIACION Y RADICACIÓN POTENCIACIÓN Es una operación matemática que consiste en multiplicar un numero por si mismo varias veces En general Donde: * * Además: * es la base * es el exponente * es

Más detalles

Tema 3: Multiplicación y división.

Tema 3: Multiplicación y división. Tema 3: Multiplicación y división. SELECCIÓN DE EJERCICIOS RESUELTOS 2. Determina el menor número natural que multiplicado por 7 nos da un número natural que se escribe usando únicamente la cifra 1. Y

Más detalles

Guía del usuario: Perfil País Proveedor

Guía del usuario: Perfil País Proveedor Guía del usuari: Perfil País Prveedr Qué es? El Perfil del País Prveedr es una herramienta que permite a ls usuaris cntar cn una primera aprximación a la situación pr la que atraviesa un país miembr de

Más detalles

Numeración. Número Es la idea que tenemos sobre la cantidad de los elementos de la naturaleza.

Numeración. Número Es la idea que tenemos sobre la cantidad de los elementos de la naturaleza. Numeración Denominamos Numeración al capítulo de la Aritmética que estudia la correcta formación, lectura y escritura de los números. Número Es la idea que tenemos sobre la cantidad de los elementos de

Más detalles

TEMA 3: LAS FRACCIONES

TEMA 3: LAS FRACCIONES . Fracciones equivalentes TEMA : LAS FRACCIONES Determina si los siguientes pares de fracciones son equivalentes:. y 0 Calculamos como los productos son iguales, si son fracciones equivalentes. 0. 0 y

Más detalles

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS.

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS. SEMAA 9 TEORÍA DE LOS ÚMEROS ÚMEROS PRIMOS. Sea A = 3...( 6) cifras Calcule si A tiee 444 divisores compuestos. A) 3 B) C) D) E) 6 A = 3 6 6 = 6 ( ) A = 3 + A = 3 CD( A) = 444 + 4 CD( A) = 448 ( A) ( )

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

Masa y composición isotópica de los elementos

Masa y composición isotópica de los elementos Masa y composición isotópica de los elementos www.vaxasoftware.com Z Sím A isótopo Abndancia natral Vida Prodcto 1 H 1 1,00782503207(10) 99,9885(70) 1,00794(7) estable D 2 2,0141017780(4) 0,0115(70) estable

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Ejercicios... Julio Yarasca

Ejercicios... Julio Yarasca Ejercicios... Julio Yarasca 4 de junio de 2015 Capítulo 1 Productos Notables 1.1. Teoría Tenemos los siguientes productos notables 1. Binomio al cuadrado 2. Identidades de Lagrange 3. Diferencia de Cuadrados

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es:

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es: ENCUENTRO # 10 TEMA:Operaciones con polinomios CONTENIDOS: 1. Multiplicación de polinomios. 2. Productos notables. DESARROLLO Ejercicio Reto x 2 1. Al racionalizar el denominador de la fracción 3 + se

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

Potencias. Potencias con exponente entero. Con exponente racional o fraccionario

Potencias. Potencias con exponente entero. Con exponente racional o fraccionario Potencias con exponente entero Potencias Con exponente racional o fraccionario Propiedades 1.a 0 = 1 2.a 1 = a 3.Producto de potencias con la misma base: Es otra potencia con la misma base y cuyo exponente

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

SOLUCIONES DE LOS EJERCICIOS DEL TEMA 5

SOLUCIONES DE LOS EJERCICIOS DEL TEMA 5 SOLUCIONS D LOS JRCICIOS DL TMA 5 JRCICIO a) Fals. Si la elasticia es (en valr abslut), significa que cuan el preci se incrementa el % la cantia emanaa isminuye el % (, l que es l mism, que cuan el preci

Más detalles

MATEMÁTICAS ÁLGEBRA (TIC)

MATEMÁTICAS ÁLGEBRA (TIC) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:

Más detalles

ARITMÉTICA. José María Muñoz Escolano Departamento de Matemáticas Facultad de Ciencias Humanas y de la Educación de Huesca Teruel, 6 de mayo de 2011

ARITMÉTICA. José María Muñoz Escolano Departamento de Matemáticas Facultad de Ciencias Humanas y de la Educación de Huesca Teruel, 6 de mayo de 2011 Taller de Talento Matemático Profundización ió de conocimientos i ARITMÉTICA SIMÉTRICA José María Muñoz Escolano Departamento de Matemáticas Facultad de Ciencias Humanas y de la Educación de Huesca Teruel,

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si

Más detalles

LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES

LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES LEY DE LOS SIGNOS SUMA Si los números tienen el mismo signo se suman se deja el mismo signo. 3 + 5 = 8 ( 3) + ( 5) = 8 Si números tienen

Más detalles

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A.

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A. º ITIS Mtmáti isrt Rlión 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. S A = {,2,3,4,6,8,9,2,8,24} orno por ivisiili. Diujr l irm orn A. 2. S X {,, } =. Diujr l irm orn (inlusión) ( X ). 3. S S = { 2,4,6,2,2} orno

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Matrices y operaciones con Matrices.

Matrices y operaciones con Matrices. Matrices y operaciones con Matrices En clases anteriores hemos usado arreglos rectangulares de números, denominados matrices aumentadas, para resolver sistemas de ecuaciones lineales Denición Una matriz

Más detalles

Comunidad de Madrid CÁLCULO MENTAL 2º EP

Comunidad de Madrid CÁLCULO MENTAL 2º EP CÁLCULO MENTAL 2º EP 1 er TRIMESTRE Sumar dos números de una cifra. 8 + 2 (10) 6 + 4 (10) 7 + 3 (10) 5 + 5 (10) 9 + 1 (10) 7 + 5 (12) 9 + 3 (12) 6 + 5 (11) 7 + 6 (13) 8 + 7 (15) Sumar un número de dos

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Fundación Uno. 1. Propiedades de las potencias de exponente racional. DESARROLLO

Fundación Uno. 1. Propiedades de las potencias de exponente racional. DESARROLLO ENCUENTRO # 8 TEMA:Radicales. Propiedades. CONTENIDOS:. Propiedades de las potencias de exponente racional.. Radicales. Propiedades.. Simplificación de radicales.. Operaciones con radicales. EJERCICIO

Más detalles

CADENAS AGRICOLAS PTROL

CADENAS AGRICOLAS PTROL CADENAS AGRICOLAS PTROL 2011 MÉTODO DE CÁLCULO DE CADENAS AGRÍCOLAS Pass para ua crrcta slcció las caas agríclas Ptrl qu cumpla c sus rqurimits. Rcrams qu utilizar la caa crrspit sigificará u mr matimit,

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

ECUACIONES DE PRIMER GRADO. 3º ) Pasa todos los términos que contenga la incógnita a un lado de la igualdad y los demás al otro lado.

ECUACIONES DE PRIMER GRADO. 3º ) Pasa todos los términos que contenga la incógnita a un lado de la igualdad y los demás al otro lado. ECUACIONES DE PRIMER GRADO Para resolver las ecuaciones: 1º ) Quitar denominadores, si los tiene. Para ello se multiplica ambos lados de la igualdad por el mínimo común múltiplo de los denominadores. º

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares. 1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,

Más detalles

Ejemplo: En este ejemplo veremos cómo podemos utilizar un coaxial slotted line para calcular la impedancia de carga Z L.

Ejemplo: En este ejemplo veremos cómo podemos utilizar un coaxial slotted line para calcular la impedancia de carga Z L. 91 Ejempl: En este ejempl verems cóm pdems utilizar un caxial sltted line para calcular la impedancia de carga. Un caxial sltted line tiene una pequeña abertura lngitudinal (i.e. slit) en su cnductr exterir.

Más detalles

ANEXO IX PROVISIÓN DEL SERVICIO DE FACTURACIÓN Y RECAUDACIÓN

ANEXO IX PROVISIÓN DEL SERVICIO DE FACTURACIÓN Y RECAUDACIÓN ANEXO IX PROVISIÓN DEL SERVICIO DE FACTURACIÓN Y RECAUDACIÓN 1. CONDICIONES GENERALES. 1.1 Listad d Abnads. CLARO nviará ls númrs tlfónics crrspndints a cada cicl d facturación (Listad d Abnads). Esta

Más detalles

LICEO MARTA DONOSO ESPEJO

LICEO MARTA DONOSO ESPEJO LICEO MARTA DONOSO ESPEJO PRODUCTOS NOTABLES Se llaman productos notables aquellos resultados de la multiplicación que tienen características especiales, como veremos a continuación: PRODUCTOS NOTABLES:

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

Borre totalmente para cambiar. Nombres: Materia: - ""3ef~ Exc..J'\e.f\ ~ Paralelo: _. Profesor:

Borre totalmente para cambiar. Nombres: Materia: - 3ef~ Exc..J'\e.f\ ~ Paralelo: _. Profesor: -- - - - -- - - ---------------------------- CFUULA DF IDENTIDAD 1 r.j r()"l ()J t)" HO 1 ()J m cp '1=- cp 1= q: 111=1 q:: L'J:l cp L' :J C2J C2J C2J C2J ::z, C2J C2J C2J C2J C2J C31 3J cy1 3 cy 113J [J

Más detalles

Pseudocódigo y Diagramas de Flujo Pseudocódigo

Pseudocódigo y Diagramas de Flujo Pseudocódigo Pseudcódig y Diagramas de Fluj Pseudcódig El pseudcódig es la descripción en Inglés Españl de ls pass de un algritm prcedimient El pseudcódig es un mixt entre Inglés Españl y un lenguaje de prgramación

Más detalles

Una sucesión es una función cuyo dominio es el conjunto de los números naturales: {1, 2, 3, }.

Una sucesión es una función cuyo dominio es el conjunto de los números naturales: {1, 2, 3, }. SUCESIONES SUCESIONES ARITMÉTICAS Una sucesión es un conjunto de elementos ordenados, de tal manera, que no exista duda de cuál es el primero de ellos, cuál es el segundo, o cualquier otro. Una sucesión

Más detalles

FICHAS DE TRABAJO REFUERZO

FICHAS DE TRABAJO REFUERZO FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

Sucesiones y Suma Finita

Sucesiones y Suma Finita Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión

Más detalles

MEDIDAS DE ÁNGULOS. Los ángulos se miden en Grados (º), Minutos (') y Segundos (") se lee 24 grados 23 minutos y 18 segundos

MEDIDAS DE ÁNGULOS. Los ángulos se miden en Grados (º), Minutos (') y Segundos () se lee 24 grados 23 minutos y 18 segundos MEDIDAS DE ÁNGULOS La unidad de medida de un ángulo es el Grado Sexagesimal, el cual se denota del valor seguido del símbolo º, siendo su unidadd de medida internacional. Por ejemplo 45 grados se escriben

Más detalles

TABLA DE CONTENIDOS 3 PRIMARIA ESPAÑOL

TABLA DE CONTENIDOS 3 PRIMARIA ESPAÑOL N. 1 B I 2 C I 3 C I 4 A I 5 D I 6 A I 7 B I 8 C I TABLA DE CONTENIDOS 3 PRIMARIA ESPAÑOL tema de reflexión Cnce las características y la función de ls reglaments y las emplea en la redacción del reglament

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Aterirmete se ha ich que la itegral efiia equivale a ectrar el valr el área cmpreia etre la gráfica e ua fució y el eje, la cual puee ser calculaa pr mei el

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

Introducción al Álgebra

Introducción al Álgebra Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El

Más detalles

Índice de Desarrollo Humano de Hogares e Individuos 2010

Índice de Desarrollo Humano de Hogares e Individuos 2010 Oficina de Investigación en Desarrll Human (OIDH) PNUD Méxic Índice de Desarrll Human de Hgares e Individus 2010 Cristina Rdríguez Ciudad de Méxic Marz de 2013 CONTENIDO Cncept y medición del IDH Cntext

Más detalles

PRODUCTOS NOTABLES 9º

PRODUCTOS NOTABLES 9º PRODUCTOS NOTABLES INDICADOR DE LOGRO 1. Acepta los productos notables como fórmulas para obtener el producto de expresiones algebraicas. 2. Aplica las reglas al resolver los diferentes tipos de productos

Más detalles

SEGMENTO Y PUNTO MEDIO.

SEGMENTO Y PUNTO MEDIO. SEGMENTO Y PUNTO MEDIO. Generalmente necesitas encontrar la mitad de una hoja, la mitad de una línea recta, la mitad de una figura, por lo que necesitas de algunos métodos que te faciliten determinar el

Más detalles

TEMA 5.- SISTEMAS TRIFÁSICOS

TEMA 5.- SISTEMAS TRIFÁSICOS DPTO. INGENIERIA EECTRICA ESCUEA DE INGENIERÍAS INDUSTRIAES EECTROTECNIA TEMA 5.- SISTEMAS TRIFÁSICOS 5.1.- En la red trifásica de la figura 5.1, la tensión cmpuesta al final de la línea es de 380V. a

Más detalles

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA NOMENCLATURA ALGEBRAICA Definición (Término). Es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Por ejemplo a, 3b, xy, son términos.

Más detalles

NORMAS 13.2 kv MONTAJE DE BANCO DE TRANSFORMADORES CONEXIÓN Y ABIERTA DELTA ABIERTA

NORMAS 13.2 kv MONTAJE DE BANCO DE TRANSFORMADORES CONEXIÓN Y ABIERTA DELTA ABIERTA CONEXIÓN Y ABIERTA DELTA ABIERTA RA2 027 1. Objetiv Indicar las generalidades, ls materiales para el mntaje y las principales recmendacines para la instalación de un Banc de transfrmadres en cnexión Y

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

d e l a L e y 1 8. 3 8 4.

d e l a L e y 1 8. 3 8 4. D I A G N Ó S T I C O D E L A S I T U A C I Ó N E N E L S I S T E M A T E A T R A L E n e l c a m i n o d e p r o f u n d i z al r a c o n s o l i d a c i ó n d e l s e c t o r t e a t rsae l, r e s u

Más detalles

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles