Sesión 9. Razonamiento con imprecisión. Semestre de otoño Profesores: Sascha Ossowski, Alberto Fernández y Holger Billhardt

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sesión 9. Razonamiento con imprecisión. Semestre de otoño Profesores: Sascha Ossowski, Alberto Fernández y Holger Billhardt"

Transcripción

1 Sesión 9 Razonamiento con imprecisión Semestre de otoño 2013 Profesores: Sascha Ossowski, Alberto Fernández y Holger Billhardt 1

2 Índice Introducción Conjuntos borrosos Operaciones con conjuntos borrosos Lógica borrosa Inferencia Borrosa 2

3 Descripción general La Lógica Borrosa (Fuzzy Logic) es una generalización de la Lógica Clásica. Es un formalismo matemático que permite representar, manipular y realizar razonamientos con información imprecisa (lógica de la imprecisión y del razonamiento aproximado) La información imprecisa, expresada mediante predicados vagos, se representa mediante conjuntos borrosos (extensión de los conjuntos clásicos) La Lógica Borrosa aporta por lo tanto modelos de representación del conocimiento y modelos de razonamiento más flexibles que los de la Lógica Clásica 3

4 Índice Introducción Conjuntos borrosos Operaciones con conjuntos borrosos Lógica borrosa Inferencia Borrosa 4

5 Predicados nítidos / Predicados vagos Predicados nítidos: Expresan propiedades precisas acerca de los elementos de un cierto universo, dividiendo a éstos en dos clases totalmente diferenciadas: los elementos que verifican la propiedad y los que no la verifican. Estos predicados son o bien ciertos o bien falsos, y se representan mediante conjuntos clásicos. Ejemplos: x tiene menos de 20 años x es un número primo x pertenece al intervalo [5,7] 5

6 Predicados nítidos / Predicados vagos Predicados vagos (imprecisos) Expresan propiedades imprecisas acerca de los elementos de un cierto universo, de forma que éstos no se pueden clasificar de forma categórica. Estos predicados no son únicamente ciertos o falsos, sino que admiten distintos grados de verdad, y se representan mediante conjuntos borrosos Ejemplos: x es joven'' x es un número cercano al cuatro'' x está aproximadamente comprendido entre 5 y 7'' La temperatura es alta'' 6

7 Conjuntos clásicos / Conjuntos borrosos Conjuntos Clásicos Dado un universo E, un conjunto clásico A E se representa mediante su función característica, ϕ A : E {0,1}, que asigna a cada elemento del universo E o bien el valor 0, para indicar que el elemento no pertenece al conjunto A, o bien el valor 1 para indicar que sí pertenece Ejemplo: x tiene menos de 20 años 7

8 Conjuntos clásicos / Subconjuntos borrosos Conjuntos Borrosos Dado un universo E, un conjunto borroso A E se representa mediante su función de pertenencia, µ A : E [0,1], que asigna a cada elemento del universo E un valor entre 0 y 1 que indica el grado de pertenencia del elemento al conjunto Ejemplo: x es joven 8

9 Conjuntos Borrosos definidos sobre R Números borrosos ( x es aproximadamente el real r ) Intervalos borrosos ( x está, aproximadamente entre r 1 y r 2 ) 9

10 Conjuntos Borrosos definidos sobre R Números grandes ( x es, aproximadamente, mayor que r ) Números pequeños ( x es, aproximadamente, menor que r ) 10

11 Índice Introducción Conjuntos borrosos Operaciones con conjuntos borrosos Lógica borrosa Inferencia Borrosa 11

12 Operaciones con Conjuntos Borrosos Dados dos conjuntos borrosos µ A, µ B : E [0,1], cómo definir los conjuntos borrosos µ A B, µ A B, µ A : E [0,1]? Requisito básico: los conectivos borrosos deben ser una extensión de los correspondientes conectivos clásicos Solución habitual: µ A B (x) = T(µ A (x), µ B (x)), con T: [0,1] 2 [0,1] tal que T(0,0) = T(0,1) = T(1,0) = 0 y T(1,1) = 1 µ A B (x) = S(µ A (x), µ B (x)), con S: [0,1] 2 [0,1] tal que S(0,0) = 0 y S(0,1) = S(1,0) = S(1,1) = 1 µ A (x) = N(µ A (x)), con N: [0,1] [0,1] tal que N(0) = 1 y N(1) = 0 12

13 Intersección: normas triangulares Una norma triangular o t-norma es una función T: [0,1] 2 [0,1] conmutativa, asociativa, monótona no decreciente y tal que T(x,1)=x para todo x [0,1] T-normas más habituales: T(x,y) = Min(x,y) (t-norma mínimo) T(x,y) = W(x,y) = Max(0, x+y-1) (t-norma de Lukasiewicz) T(x,y) = Prod(x,y) = x y (t-norma producto) Propiedades más importantes: T(x,0) = 0 para todo x [0,1] Para toda t-norma T, T Min W Prod Min La única t-norma que cumple idempotencia es Min 13

14 Intersección: normas triangulares Intersección de subconjuntos borrosos con T = Min 14

15 Unión: conormas triangulares Una conorma triangular o t-conorma es una función S: [0,1] 2 [0,1] conmutativa, asociativa, monótona no decreciente y tal que S(x,0)=x para todo x [0,1] T-conormas más habituales: S(x,y) = Max(x,y) (t-conorma máximo) S(x,y) = W*(x,y) = Min(1, x+y) (t-conorma de Lukasiewicz) S(x,y) = Prod*(x,y) = x + y - x y (t-conorma producto) Propiedades más importantes: S(x,1) = 1 para todo x [0,1] Para toda t-conorma S, S Max Max Prod* W* La única t-conorma que cumple idempotencia es Max 15

16 Unión: conormas triangulares Unión de subconjuntos borrosos con S = Max 16

17 Complementario (Negación) Una negación estándar es una función N: [0,1] [0,1], que cumple: N(0) = 1 N(1) = 0 es no creciente ( si x y entonces N(y) N(x) ) Una negación fuerte es una función N: [0,1] [0,1], que cumple: las propiedades de la negación estándar es involutiva (N(N(x)) = x) Ejemplos N(x) = 1-x (la más usada) 2 N(x) = 1 x N(x) = (1-x)/(1+λx) λ > -1 (negación de Sugeno) 17

18 Dualidad Si T es una t-norma y N es una negación fuerte entonces T*(r,s) = N(T(N(r),N(s))) es una t-conorma que se denomina t-conorma dual de T Si S es una t-conorma y N es una negación fuerte entonces S*(r,s) = N(S(N(r),N(s))) es una t-norma que se denomina t- norma dual de S T es la t-norma dual de S si y sólo si S es la t-conorma dual de T Ejemplos (tomando N(x) = 1-x) Min ---- Max Prod ---- Prod* (suma-producto) = x + y - x y W = Max(0, x+y-1) ---- W* = Min(1, x+y) 18

19 Modificadores lingüísticos Modificadores externos Modifican los grados de verdad ([0,1]) µ MP (x)=α(µ P (x)) con α: [0,1] [0,1] Dilatan o amplían el uso del predicado: P MP (µ P µ MP ) Contraen o restringen el uso del predicado MP P (µ MP µ P ) Ejemplos: La Negación MUY : restringe el uso del predicado : µ MUY P µ P MODERADAMENTE : dilata el uso del predicado: µ P µ MOD P Suele usarse: µ MUY P (x) = (µ P (x)) 2 µ MOD P (x) = (µ P (x)) 1/2 19

20 Modificadores lingüísticos Modificadores Internos Modifican los valores en el dominio de la variable µ MP (x)=µ P (α(x)) con α: E E Ejemplo: Antónimo: alto/bajo, joven/viejo, grande/pequeño No hay que confundir el antónimo con la negación Suele expresarse: µ ap (x) = µ P (α(x)) con α: E E, α(α(x)) = x Es habitual que µ ap (x) µ NO P (x) Cuando E = [a,b] de la recta real, se suele tomar α: [a,b] [a,b] α(x) = a + b - x 20

21 Variable lingüística Una variable lingüística está definida por un nombre de variable y un conjunto de términos que son los valores que puede tomar. Cada término se representa mediante un conjunto borroso Ejemplos Altura = {bajo, mediano, alto} Edad = {joven, viejo, muy joven, muy viejo, moderadamente joven, de media edad,...} Temperatura: {fría, templada, caliente} 21

22 Índice Introducción Conjuntos borrosos Operaciones con conjuntos borrosos Lógica borrosa Inferencia Borrosa 22

23 Lógica Clásica Lógica bivaluada; estructura de álgebra de Boole Leyes de Identidad: ϕ 1 ϕ; ϕ 0 0; ϕ 1 1; ϕ 0 ϕ No contradicción: ϕ ϕ 0 Tercio excluso: ϕ ϕ 1 Idempotencia: ϕ ϕ ϕ; ϕ ϕ ϕ Absorción: ϕ 1 (ϕ 1 ϕ 2 ) ϕ 1 ; ϕ 1 (ϕ 1 ϕ 2 ) ϕ 1 Conmutatividad: ϕ 1 ϕ 2 ϕ 2 ϕ 1 ; ϕ 1 ϕ 2 ϕ 2 ϕ 1 Asociatividad: (ϕ 1 ϕ 2 ) ϕ 3 ϕ 1 (ϕ 2 ϕ 3 ) (ϕ 1 ϕ 2 ) ϕ 3 ϕ 1 (ϕ 2 ϕ 3 ) Distributividad: ϕ 1 (ϕ 2 ϕ 3 ) (ϕ 1 ϕ 2 ) (ϕ 1 ϕ 3 ) ϕ 1 (ϕ 2 ϕ 3 ) (ϕ 1 ϕ 2 ) (ϕ 1 ϕ 3 ) Doble negación: ( ϕ) ϕ Leyes de De Morgan: (ϕ 1 ϕ 2 ) ϕ 1 ϕ 2 (ϕ 1 ϕ 2 ) ϕ 1 ϕ 2 23

24 Lógicas multivaluadas Ponen en cuestión el principio de bivaluación: no todas las proposiciones son o bien ciertas o bien falsas, sino que admiten valores de verdad intermedios El número de valores de verdad contemplado puede ser una cantidad finita (lógicas n-valuadas) o infinita Son extensiones de la lógica clásica: los valores clásicos cierto y falso se conservan, y los conectivos actúan sobre estos valores igual que los conectivos clásicos Existen muchas lógicas multivaluadas: difieren en los valores de verdad admitidos y en la definición de los conectivos básicos cuando éstos afectan a valores intermedios 24

25 Lógicas multivaluadas Las propiedades de las lógicas multivaluadas dependen de cómo se definan los conectivos. En cualquier caso, siempre deja de verificarse alguna de las leyes clásicas, por lo que se pierde la estructura de álgebra de Boole Lógicas trivaluadas Introducidas por el lógico polaco Jan Lukasiewicz en 1920 Las proposiciones no son sólo falsas (0) o ciertas (1) sino que también pueden tomar un valor intermedio indeterminado ( 1 / 2 ). Existen muchas lógicas trivaluadas distintas (Lukasiewicz, Kleene, Reichenbach,...): difieren en la definición de los conectivos básicos cuando éstos afectan a valores indeterminados 25

26 Lógicas Borrosas Las Lógicas Borrosas son lógicas multivaluadas con valores de verdad pertenecientes a un conjunto parcialmente ordenado (L, ) Del mismo modo que la lógica clásica es isomorfa a la teoría de conjuntos clásicos, las lógicas borrosas son isomorfas a las teorías de conjuntos borrosos (F L (E),,, ), siendo F L (E) el conjunto de todos los subconjuntos borrosos A definidos sobre un universo E, con función de pertenencia µ A : E L Las más habituales son las denominadas lógicas borrosas estándar, en las que L = [0,1], es una t-norma continua (µ P Q (x, y) = T(µ P (x), µ Q (y)) ) es una t-conorma continua ( µ P Q (x, y) = S(µ P (x), µ Q (y)) ) es una negación fuerte (µ P (x) = N(µ P (x)) ) 26

27 Implicación en Lógica Borrosa Objetivo: representar expresiones condicionales (reglas borrosas) de la forma Si x es P, entonces y es Q, donde P y Q son predicados vagos Solución: x es P se representa mediante un conjunto borroso µ P : X [0,1] y es Q se representa mediante un conjunto borroso µ Q : Y [0,1] Si x es P, entonces y es Q se representa mediante una relación borrosa R: X Y [0,1] definida por µ P Q (x,y) = J(µ P (x),µ Q (y)) para todo (x,y) X Y, siendo J : [0,1] [0,1] [0,1] una función de implicación borrosa adecuada 27

28 Principales funciones de Implicación Borrosas Mamdani: T = Min; J(x,y) = Min(x,y) Larsen: T = Prod; J(x,y) = x y Brower-Gödel: T = Min; J(x,y) = 1 si x y; y en otro caso Lukasiewicz: T = W; J(x,y) = Min(1,1 x + y) Kleene-Dienes: S = Max; J(x,y) = Max(1 x, y) Reichenbach: S = Prod*; J(x,y) = 1 x + x y Willmot: T = Min; S = Max; J(x,y) = Max(Min(x,y),1 x) 28

29 Índice Introducción Conjuntos borrosos Operaciones con conjuntos borrosos Lógica borrosa Implicación borrosa Inferencia Borrosa 29

30 Mecanismos de Inferencia Borrosa Las dos reglas de inferencia clásicas fundamentales son la regla del Modus Ponens (MP) y la regla del Modus Tollens (MT): Modus Ponens Si p, entonces q Modus Tollens Si p, entonces q p no q q no p La inferencia en lógica borrosa se realiza generalizando las reglas anteriores al mundo de los predicados vagos: reglas del Modus Ponens Generalizado y Modus Tollens Generalizado 30

31 Mecanismos de Inferencia Borrosa Modus Ponens Generalizado Modus Tollens Generalizado Si x es P, entonces y es Q Si x es P, entonces y es Q x es P* y no es Q* y es Q* x no es P* P y Q son predicados vagos definidos sobre sendos universos X e Y P* y Q* son predicados vagos definidos sobre X e Y que representan una cierta modificación de los predicados P y Q Objetivo: describir los predicados vagos Q* y P* de forma que los hechos y es Q* y x no es P* se puedan considerar como conclusiones correctas de las premisas respectivas. 31

32 Regla Composicional de Inferencia de Zadeh Los predicados vagos P, P*, Q y Q* se representan mediante conjuntos borrosos µ P, µ P* : X [0,1] y µ Q, µ Q* : Y [0,1], y sus negaciones se modelan mediante una negación fuerte N La regla borrosa Si x es P, entonces y es Q se interpreta como una implicación borrosa (µ P Q (x,y)) La conjunción de las premisas se realiza con una t-norma T (coherente con la implicación: T(r,J(r,s)) s)) MP: µ Q* (y) = sup x X T(µ P* (x), µ P Q (x,y)) MT: N(µ P* (x)) = sup y Y T(N(µ Q* (y)), µ P Q (x,y)) 32

33 Motor de Inferencia Borroso Dado un conjunto de reglas y hechos, consiste en aplicar la RCI a las reglas Si hay varias reglas cuya conclusión se proyecta sobre la misma variable (q 1 (y), q 2 (y),..., q n (y)), se aplica una función S de agregación (S suele ser una t-conorma), obteniendo Q(y) = S(q 1 (y), q 2 (y),..., q n (y)) Una vez obtenido el conjunto borroso resultado µ Q* (x), se puede obtener un valor cualitativo algún criterio de proximidad Un valor numérico Centro de gravedad 33

Tema 3. Razonamiento Aproximado Lección 3.2. Razonamiento con imprecisión

Tema 3. Razonamiento Aproximado Lección 3.2. Razonamiento con imprecisión Tema 3. Razonamiento Aproximado Lección 3.2. Razonamiento con imprecisión Referencias Bibliográficas (diapositivas): José Cuena. Sistemas Inteligentes. Conceptos, técnicas y métodos de construcción. Facultad

Más detalles

Apéndice 1 Reglas y leyes lógicas

Apéndice 1 Reglas y leyes lógicas 1 Apéndice 1 Reglas y leyes lógicas 1. Reglas lógicas Tal como ya se ha visto, una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada en cada caso para

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Apuntes de Inteligencia artificial (II)

Apuntes de Inteligencia artificial (II) Apuntes de Inteligencia artificial (II) Tema 2 Razonamiento Aproximado Profesor: Daniel Manrique Índice 1. Introducción. 2. Razonamiento con imprecisión: lógica borrosa. 3. Razonamiento con incertidumbre.

Más detalles

Una introducción a la Lógica Borrosa Matemática

Una introducción a la Lógica Borrosa Matemática Una introducción a la Lógica Borrosa Matemática Marco Cerami Instituto de Investigación en Inteligencia Artificial (IIIA - CSIC) Bellaterra (Spain) cerami@iiia.csic.es SIMBa, 14 Febrero 2011 Marco Cerami

Más detalles

Nuevas tendencias de la Matemática: tica: Lógica borrosa e inteligencia artificial Lógica borrosa 1

Nuevas tendencias de la Matemática: tica: Lógica borrosa e inteligencia artificial Lógica borrosa 1 Nuevas tendencias de la Matemática: tica: Lógica borrosa e inteligencia artificial 01.10.08 Lógica borrosa 1 Esquema Introducción Conjuntos difusos Lógicas borrosas Aplicaciones Medidas Medida de especificidad

Más detalles

REGLAS Y LEYES LOGICAS

REGLAS Y LEYES LOGICAS LOGICA II REGLAS Y LEYES LOGICAS Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente ciertos enunciados a partir de otros.

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

LÓGICA DIFUSA. Conjuntos difusos Blanca A. Vargas Govea Noviembre 2, 2012 Inteligencia Computacional

LÓGICA DIFUSA. Conjuntos difusos Blanca A. Vargas Govea Noviembre 2, 2012 Inteligencia Computacional LÓGICA DIFUSA Conjuntos difusos Blanca A. Vargas Govea vargasgovea@itesm.mx Noviembre 2, 2012 Inteligencia Computacional Sistemas de inferencia difusa 2 Observacio nes Inferencia difusa Fusificación Definir

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1

Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1 Álgebra Booleana Álgebra Booleana Mario Medina C. mariomedina@udec.cl Postulados y axiomas Lemas y teoremas Referencias a otras álgebras Álgebra de Boole: estructura algebraica definida sobre un conjunto

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.

Más detalles

Sistemas deductivos. Lógica Computacional. Curso 2005/2006. Departamento de Matemática Aplicada Universidad de Málaga

Sistemas deductivos. Lógica Computacional. Curso 2005/2006. Departamento de Matemática Aplicada Universidad de Málaga Sistemas deductivos Lógica Computacional Departamento de Matemática plicada Universidad de Málaga Curso 2005/2006 Contenido 1 Sistema axiomático de Lukasiewicz Sistema proposicional Extensión a predicados

Más detalles

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa

Más detalles

03. Introducción a los circuitos lógicos

03. Introducción a los circuitos lógicos 03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS

Más detalles

Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.

Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0. Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes

Más detalles

Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva.

Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. RELACIONES DE ORDEN Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Un conjunto parcialmente ordenado ( A, R ) es

Más detalles

Matemáticas Discretas Lógica

Matemáticas Discretas Lógica Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Lógica Cursos Propedéuticos 2010 Ciencias Computacionales INAOE Lógica undamentos de Lógica Cálculo proposicional Cálculo de predicados

Más detalles

TEMA 3 ÁLGEBRA DE CONMUTACIÓN

TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES

Más detalles

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN LOGICA (FCE-UBA) APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente

Más detalles

RAZONAMIENTO APROXIMADO

RAZONAMIENTO APROXIMADO RAZONAMIENTO APROXIMADO Sistemas Difusos (Fuzzy Systems) Introducción a la IA - LCC REALIDAD El conocimiento que necesitamos para desarrollar un Sistema basado en Conocimiento tiene muchas veces las siguientes

Más detalles

Matemáticas Básicas para Computación

Matemáticas Básicas para Computación Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características

Más detalles

2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )]

2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )] Instituto Tecnológico de Costa Rica Escuela de Matemática I semestre 2012 Cálculo Diferencial e Integral. Prof. Juan José fallas. 1 Leyes de la lógica y reglas de inferencia 2 Ejercicios 1 Leyes de la

Más detalles

Inteligencia en Redes de Comunicaciones - 04 Razonamiento lógico

Inteligencia en Redes de Comunicaciones - 04 Razonamiento lógico El objetivo del Tema 4 es presentar una panorámica general sobre cómo se pueden realizar razonamientos lógicos en un sistema software. 1 Esta es la tabla de contenidos del tema: se estudia la programación

Más detalles

Motivaciones históricas en la construcción de lógicas multivaluadas. Susan Haack, Filosofía de las lógicas (1978), capítulo 11

Motivaciones históricas en la construcción de lógicas multivaluadas. Susan Haack, Filosofía de las lógicas (1978), capítulo 11 Motivaciones históricas en la construcción de lógicas multivaluadas Susan Haack, Filosofía de las lógicas (1978), capítulo 11 Repaso Las lógicas multivaluadas son aquellas en donde hay más de dos valores

Más detalles

UNIVERSIDAD DE ESPECIALIDADES ESPÍRITU SANTO FACULTAD DE SISTEMAS, TELECOMUNICACIONES Y ELECTRÓNICA SYLLABUS

UNIVERSIDAD DE ESPECIALIDADES ESPÍRITU SANTO FACULTAD DE SISTEMAS, TELECOMUNICACIONES Y ELECTRÓNICA SYLLABUS UNIVERSIDAD DE ESPECIALIDADES ESPÍRITU SANTO FACULTAD DE SISTEMAS, TELECOMUNICACIONES Y ELECTRÓNICA SYLLABUS MATERIA: UMAT 130 Lógica Matemática HORARIO: PROFESOR(A): Ing. Rubén Pacheco Villamar SEMESTRE:

Más detalles

Lógica de enunciados Reglas derivadas demostradas

Lógica de enunciados Reglas derivadas demostradas Reglas derivadas de la implicación ( ) Reglas derivadas demostradas - Felipe Garrido Bernabeu Lógica de enunciados Reglas derivadas demostradas Silogismo Hipotético (SH) B B C C 1) B - C 2) B C 4.- B MP

Más detalles

George Boole. Álgebra Booleana. Álgebra de Conmutación. Circuitos Digitales EC1723

George Boole. Álgebra Booleana. Álgebra de Conmutación. Circuitos Digitales EC1723 George oole Circuitos Digitales EC723 Matemático británico (85-864). utodidacta y sin título universitario, en 849 fue nombrado Profesor de Matemáticas en el Queen's College en Irlanda. En su libro Laws

Más detalles

Introducción al Control Borroso

Introducción al Control Borroso Introducción al Control Borroso Carlos Bordóns Alba Dpto. Ingeniería de Sistemas y Automática Escuela Superior de Ingenieros. Universidad de Sevilla Índice Introducción Reseña histórica Estado actual Fundamentos

Más detalles

RAZONAMIENTO MATEMÁTICO

RAZONAMIENTO MATEMÁTICO RAZONAMIENTO MATEMÁTICO I. LÓGICA PROPOSICIONAL A. Proposiciones B. Conectivos proposicionales B.. Negación B.2. Conjunción B.3. Disyunción B.4. Condicional B.5. Bicondicional B.6. Otros conectivos C.

Más detalles

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL PROPOSICIONES Una proposición es todo enunciado, u oración enunciativa, respecto del cual se tiene un criterio que permite afirmar que su contenido es verdadero o falso, pero no ambos.

Más detalles

Cálculo Proposicional

Cálculo Proposicional Universidad Técnica ederico Santa María Departamento de Informática undamentos de Informática 1 Cálculo Proposicional Dr. Gonzalo Hernández Oliva Dr. Gonzalo Hernández USM I-1 Cálculo Proposicional 1 1)

Más detalles

TEMA 1: LÓGICA. p p Operador conjunción. Se lee y y se representa por. Su tabla de verdad es: p q p q

TEMA 1: LÓGICA. p p Operador conjunción. Se lee y y se representa por. Su tabla de verdad es: p q p q TEMA 1: LÓGICA. Definición. La lógica es la ciencia que estudia el razonamiento formalmente válido. Para ello tiene un simbolismo que evita las imprecisiones del lenguaje humano y permite comprobar la

Más detalles

Probabilidad y Estadística Descripción de Datos

Probabilidad y Estadística Descripción de Datos Descripción de Datos Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 19 Contenido 1 Teoria de

Más detalles

UNIDAD 4. Álgebra Booleana

UNIDAD 4. Álgebra Booleana UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,

Más detalles

Control borroso de la fuerza del efector de un Brazo Robot

Control borroso de la fuerza del efector de un Brazo Robot Control borroso de la fuerza del efector de un Brazo Robot Bautista Blasco, Susana: subautis@fdi.ucm.es Garmendia Salvador, Luis: lgarmend@fdi.ucm.es Departamento de Ingeniería del Software e Inteligencia

Más detalles

GUIA 4: ALGEBRA DE BOOLE

GUIA 4: ALGEBRA DE BOOLE GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos

Más detalles

Introducción. El uso de los símbolos en matemáticas.

Introducción. El uso de los símbolos en matemáticas. Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre

Más detalles

Prof.Juan Cabral - UTU Maldonado. Tablas de pertenencia

Prof.Juan Cabral - UTU Maldonado. Tablas de pertenencia Tablas de pertenencia TABLAS DE PERTENENCIA Una técnica para probar igualdades entre conjuntos es la tabla de pertenencia. Se observa que para los conjuntos A y B U, un elemento x U cumple exactamente

Más detalles

Álgebra Booleana circuitos lógicos

Álgebra Booleana circuitos lógicos Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,

Más detalles

Análisis Matemático I: Numeros Reales y Complejos

Análisis Matemático I: Numeros Reales y Complejos Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.

Más detalles

( ) ( ) c. ( ) r. ( ) p. ( ) es una tautología. ( ) es una contradicción. ( ) 2 = p 2 + q 2 2 pq. $ )& a) p q r. a : 3 2 = 8

( ) ( ) c. ( ) r. ( ) p. ( ) es una tautología. ( ) es una contradicción. ( ) 2 = p 2 + q 2 2 pq. $ )& a) p q r. a : 3 2 = 8 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 05 S PRIMERA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN

Más detalles

CONJUNTOS DIFUSOS. Aspectos generales Nomenclatura Estructura algebraica Operaciones algebraicas Representación del conocimiento Razonamiento difuso

CONJUNTOS DIFUSOS. Aspectos generales Nomenclatura Estructura algebraica Operaciones algebraicas Representación del conocimiento Razonamiento difuso CONJNTOS DIFSOS spectos generales Nomenclatura Estructura algebraica Operaciones algebraicas Representación del conocimiento Razonamiento difuso CONJNTOS DIFSOS Tetos ásicos Lofti Zadeh, Fuzzy Sets, Information

Más detalles

Conjuntos. () April 4, / 32

Conjuntos. () April 4, / 32 Conjuntos En general, un conjunto A se de ne seleccionando los elementos de un cierto conjunto U de referencia (o universal) que cumplen una determinada propiedad. () April 4, 2014 1 / 32 Conjuntos En

Más detalles

Ejercicios de lógica

Ejercicios de lógica 1. Sistemas formales. Ejercicios de lógica 1. Considere el siguiente sistema formal: Símbolos: M, I, U. Expresiones: cualquier cadena en los símbolos. Axioma: UMUIUU Regla de inferencia: xmyiz xumyuizuu

Más detalles

ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]

ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6] ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.

Más detalles

Lógica Matemática. M.C. Mireya Tovar Vidal

Lógica Matemática. M.C. Mireya Tovar Vidal Lógica Matemática M.C. Mireya Tovar Vidal Contenido Proposicional Definición Sintaxis Proposición Conectivos lógicos Semántica Primer orden cuantificadores Finalidad de la unidad Traducir enunciados sencillos

Más detalles

LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 /

LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / Práctico N 1 Lenguaje de la lógica LICENCIATURA EN MATEMÁTICA proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / 2 0 1 0 PRÁCTICO N 1 1. Fundamentación: fundamentar la expresión Por lo tanto del siguiente

Más detalles

Lógica de Predicados

Lógica de Predicados Lógica de redicados Lógica de predicados Lógica de predicados Cálculo de predicados Reglas de inferencia Deducción proposicional Demostración condicional Demostración indirecta Valores de certeza y Tautología

Más detalles

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Definiciones básicas: subconjunto, conjunto vacío, complemento, conjunto de partes A lo largo de esta sección consideraremos

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN S

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN S ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 014 1S PRIMERA EVALUACIÓN DE MATEMÁTICAS PARA CIENCIAS, INGENIERÍAS

Más detalles

John Venn Matemático y filósofo británico creador de los diagramas de Venn

John Venn Matemático y filósofo británico creador de los diagramas de Venn Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,

Más detalles

ÁLGEBRAS DE BOOLE. En un álgebra de Boole (B, +,, ) se cumplen las siguientes propiedades, para todo x, y, z B: Doble Complemento

ÁLGEBRAS DE BOOLE. En un álgebra de Boole (B, +,, ) se cumplen las siguientes propiedades, para todo x, y, z B: Doble Complemento ÁLGEBRAS DE BOOLE CARACTERIZACIÓN DE UN ÁLGEBRA DE BOOLE Un álgebra de Boole (o álgebra booleana) consiste en un conjunto B = {0, 1}, operadores binarios + y en S y un operador unario en S. Estas operaciones

Más detalles

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad.

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad. nidad 3: Conjuntos 3.1 Introducción Georg Cantor [1845-1918] formuló de manera individual la teoría de conjuntos a finales del siglo XIX y principios del XX. Su objetivo era el de formalizar las matemáticas

Más detalles

Unidad Didáctica 6 Electrónica Digital 4º ESO

Unidad Didáctica 6 Electrónica Digital 4º ESO Unidad Didáctica 6 Electrónica Digital 4º ESO ELECTRÓNICA DIGITAL SEÑALES ELECTRICAS LÓGICA BINARIA CIRCUITOS INTEGRADOS DIGITALES DISEÑO DE CTOS. COMBINACIONALES Y CTOS. IMPRESOS TIPOS SISTEMAS DE NUMERACIÓN

Más detalles

p q p q p (p q) V V V V V F F F F V V F F F V F

p q p q p (p q) V V V V V F F F F V V F F F V F 3.2 Reglas de inferencia lógica Otra forma de transformación de las proposiciones lógicas son las reglas de separación, también conocidas como razonamientos válidos elementales, leyes del pensamiento,

Más detalles

Matemáticas Dicretas LÓGICA MATEMÁTICA

Matemáticas Dicretas LÓGICA MATEMÁTICA Matemáticas Dicretas LÓGICA MATEMÁTICA Esta pagina fue diseñada como un auxiliar y herramienta para aquellos que esten interesados en reforzar y tener mas conocimientos sobre las matematicas discretas.

Más detalles

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Elementos de lógica Una proposición es una oración declamativa a la cual se le puede asignar un valor verdad: verdadera (V)

Más detalles

Control con Lógica Difusa

Control con Lógica Difusa Teoría de Control con Lógica Difusa Teoría Dr. Fernando Ornelas Tellez Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Morelia, Michoacan Dr. Fernando Ornelas Tellez UMSNH-FIE

Más detalles

Fundamentos de Lógica y Teoría de Conjuntos

Fundamentos de Lógica y Teoría de Conjuntos Índice general 1. Lógica y Teoría de conjuntos 3 1.1. Introducción a la Lógica............................ 3 1.1.1. Repaso histórico (Ref. Grimaldi pág. 187).............. 3 1.1.2. Conceptos básicos (Ref.

Más detalles

Una manera de describir un conjunto es por extensión y consiste en enumerar sus elementos entre llaves

Una manera de describir un conjunto es por extensión y consiste en enumerar sus elementos entre llaves CONJUNTOS: DEFINICIÓN Y CARDINAL DE UN CONJUNTO : Un conjunto es una colección bien definida de objetos en la que el orden es irrelevante. Dichos objetos pueden ser reales o conceptuales y se llaman elementos

Más detalles

Expresiones Algebraicas en los Números Reales

Expresiones Algebraicas en los Números Reales Operaciones con en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido Operaciones con Operaciones con : Contenido Operaciones con Discutiremos: qué es una: expresión algebraica

Más detalles

1. Números reales. Análisis de Variable Real

1. Números reales. Análisis de Variable Real 1. Números reales Análisis de Variable Real 2014 2015 Índice 1. Sistemas numéricos 2 1.1. Números naturales. Principio de Inducción... 2 1.2. Números enteros... 4 1.3. Números racionales... 6 2. Los números

Más detalles

2-Funciones y representaciones booleanas

2-Funciones y representaciones booleanas 2-Funciones y representaciones booleanas 2.1 Lógica y álgebra de Boole 2.2 Funciones booleanas 2.3 Representaciones de funciones booleanas. 2.4 Funciones de varias variables. 2: Funciones booleanas 1 Lógica

Más detalles

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA SEMESTRE: Segundo a cuarto CLAVE: 0271 HORAS A LA SEMANA/SEMESTRE TEÓRICAS PRÁCTICAS CRÉDITOS 5/80

Más detalles

Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior

Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones

Más detalles

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3

Más detalles

INTRODUCCION AL ALGEBRA.

INTRODUCCION AL ALGEBRA. INTRODUCCION AL ALGEBRA. 2- TEORIA DE CONJUNTOS. Apuntes de la Cátedra. Alberto Serritella. Colaboraron: Cristian Mascetti. Vanesa Bergonzi Edición Previa CECANA CECEJS CET Junín 2010. UNNOBA Universidad

Más detalles

Taller Matemático. Lógica. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid

Taller Matemático. Lógica. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid Taller Matemático Lógica Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid 1. Lógica 14 amigos aportan la misma cantidad de dinero, sobre un fondo

Más detalles

: UN SEMESTRE ACADÉMICO : PRIMER AÑO, PRIMER SEMESTRE

: UN SEMESTRE ACADÉMICO : PRIMER AÑO, PRIMER SEMESTRE ALGEBRA A. ANTECEDENTES GENERALES CÓDIGO : IIM116A DURACIÓN : UN SEMESTRE ACADÉMICO PRE-REQUISITO : NO TIENE CO-REQUISITO : NO TIENE UBICACIÓN : PRIMER AÑO, PRIMER SEMESTRE CARÁCTER : OBLIGATORIO HRS.DIRECTAS

Más detalles

ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO

ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO Pág. 1 Lógica Proposicional La lógica proposicional es la más antigua y simple de las formas de lógica. Utilizando una representación primitiva del lenguaje, permite representar y manipular aserciones

Más detalles

Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román.

Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román. Inteligencia en Redes de Comunicaciones Razonamiento lógico Julio Villena Román jvillena@it.uc3m.es Índice La programación lógica Lógica de predicados de primer orden Sistemas inferenciales IRC 2009 -

Más detalles

Algebra de Boole: Teoremas

Algebra de Boole: Teoremas Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema

Más detalles

Lógica. Matemática discreta. Matemática discreta. Lógica

Lógica. Matemática discreta. Matemática discreta. Lógica Lógica Matemática discreta Lógica: rama de las matemáticas instrumento para representar el lenguaje natural proporciona un mecanismo de deducción 2 y de predicados Razonamientos Cálculo proposicional Cálculo

Más detalles

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición: Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas

Más detalles

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo

Más detalles

Determinar la incertidumbre al momento de desarrollar aplicativos en inteligencia artificial, haciendo uso de estructuras probabilísticas..

Determinar la incertidumbre al momento de desarrollar aplicativos en inteligencia artificial, haciendo uso de estructuras probabilísticas.. Sistemas expertos e inteligencia artificial, Guia 5 1 Facultad : Ingeniería Escuela : Computación Asignatura: Sistemas expertos e Inteligencia Artificial Tema: RAZONAMIENTO CON INCERTIDUMBRE. Objetivo

Más detalles

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt holger.billhardt@urjc.es Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre

Más detalles

Matemáticas Discretas Tc1003 Conjuntos. Conjuntos

Matemáticas Discretas Tc1003 Conjuntos. Conjuntos OJETIVOS Unidad Tema Subtema Objetivos III 3.1 efiniciones 3. Numerabilidad 3.3 Tipos de conjuntos numéricos 3.4 Operaciones con conjuntos 3.5 Propiedades con los conjuntos 3.1 Reconocer, entender y aplicar

Más detalles

Tecnologías de Sistemas Inteligentes (IA95 022) Introducción a la Lógica Difusa

Tecnologías de Sistemas Inteligentes (IA95 022) Introducción a la Lógica Difusa Introdcción a la Lógica Difsa c M. Valenzela 1996 1998, 2006 (24 de febrero de 2006) Este apnte está basado en (Driankov, Hellendoorn, y Reinfrank, 1996, secciones 2.1 y 2.2) y (Klir y Yan, 1995). 1. Teoría

Más detalles

Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1.

Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. Guía de estudio Métodos de demostración Unidad A: Clase 3 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1.. Inferencias y métodos de

Más detalles

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca 1. Hallar f(x, y) si f(x + y, x y) = xy + y. Sean u = x + y y v = x y. Resolviendo este sistema se obtiene Luego, x = u + v f(u, v) = u + v u v e y = u v. ( ) u v + = u uv. Finalmente, volviendo a las

Más detalles

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. sandraperilla@usantotomas.edu.co Carrera 9 No 51-11 Bogotá Colombia

Más detalles

Lógica Matemática. M.C. Mireya Tovar Vidal

Lógica Matemática. M.C. Mireya Tovar Vidal Lógica Matemática M.C. Mireya Tovar Vidal Contenido Proposicional Definición Sintaxis Proposición Conectivos lógicos Semántica Primer orden cuantificadores Finalidad de la unidad Traducir enunciados sencillos

Más detalles

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Álgebra Booleana y Circuitos Lógicos. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides Álgebra Booleana Circuitos Lógicos UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Krscia Daviana Ramíre Benavides Álgebra Booleana Tanto los conjuntos como las proposiciones tienen propiedades similares.

Más detalles

PROGRAMA INSTRUCCIONAL MATEMÁTICA I

PROGRAMA INSTRUCCIONAL MATEMÁTICA I UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN PROGRAMA INSTRUCCIONAL MATEMÁTICA I CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES.

MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES. MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES. Ing. HUGO HUMBERTO MORALES PEÑA MAESTRÍA EN ENSEÑANZA DE LAS MATEMÁTICAS Línea de Matemáticas Computacionales UNIVERSIDAD TECNOLÓGICA

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

Matemáticas Discretas Tc1003 Conjuntos. Conjuntos

Matemáticas Discretas Tc1003 Conjuntos. Conjuntos OJETIVOS Unidad Tema Subtema Objetivos III 3.1 Definiciones 3.2 Numerabilidad 3.3 Tipos de conjuntos numéricos 3.4 Operaciones con conjuntos 3.5 Propiedades con los conjuntos 3.1 Reconocer, entender y

Más detalles

LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA

LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA La lógica formal o simbólica, a diferencia de la lógica clásica, utiliza un lenguaje artificial, es decir, está rigurosamente construido, no admite cambios en el

Más detalles

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales.

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. Números tales como:1,3, 3 5, e,

Más detalles

Un enunciado es toda frase u oración que se emite

Un enunciado es toda frase u oración que se emite OBJETIO 2: Aplicar la lógica proposicional y la lógica de predicados en la determinación de la validez de una proposición dada. Lógica Proposicional La lógica proposicional es la más antigua y simple de

Más detalles