Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada"

Transcripción

1 Tema 3: MATRICES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura: Matemáticas (Plan 2000) Universidad de Granada

2 1. Se consideran V 1, V 2 dos espacios vectoriales, y B 1 = {x 1,x 2,x 3 }, B 2 = {y 1,y 2 } bases de V 1 y V 2 respectivamente. Se consideran las aplicaciones lineales f y g definidas por f : V 1 V 2, g : V 2 V 1 x 1 y 1 y 2 y 1 x 1 x 2 x 2 y 2 y 2 x 1 x 3 x 3 y 1 +2y 2 Hallar las siguientes matrices: M(f,B 1,B 2 ), M(g, B 2,B 1 ), M(g f,b 1 ), M(f g, B 2 ). 2. Sean V 1,V 2 y B 1 y B 2 como en el problema precedente. Se considera la aplicación lineal h dada por h(x 1 )=y 1 y 2, h(x 2 )=y 1, h(x 3 )=2y 1 y 2. Hallar M(h, B 1,B 2 ), y bases del núcleo e imagen de h. 3. Lo mismo que el problema anterior para f : V 1 V 2 y B 1 = {x 1,x 2,x 3 }, B 2 = {y 1,y 2,y 3,y 4 }, donde f viene definida por f(x 1 ) = y 1 + y 2, f(x 1 x 3 ) = y 2, f(x 2 x 3 ) = 2y 1 + y 2 + y 3 +2y Hallar la matriz en la base usual de R 3 de un endomorfismo f definido por la condición de que f, restringida al plano de ecuación x + y + z = 0, es una homotecia de razón 3; y que f(0, 0, 1) = (10, 5, 3). 5. Se considera la aplicación lineal f : R 3 R 2 definida por f(1, 0, 1) = (0, 1), f(0, 0, 1) = (1, 1), f(2, 1, 1) = (1, 0). a) Hallar la matriz de f respecto de las bases usuales de R 3 y R 2. b) Hallar la matriz de f respecto de las bases B = {(1, 0, 1), (0, 0, 1), (2, 1, 1)}, B = {(0, 1), (1, 0)}. 2 Se prohibe cualquier reproducción sin permiso del autor

3 c) Lo mismo del apartado anterior respecto de las bases : B = {(1, 0, 1), (0, 0, 1), (2, 1, 0)} B = {(2, 0), (0, 2)} 6. Supongamos que f : R 3 R 2 es una aplicación lineal cuya matriz en las bases B 1 = {x 1,x 2,x 3 }, B 2 = {y 1,y 2 } es ( ) Calcular la matriz de f respecto de las bases B 1 = {x 2 + x 3,x 1 + x 3,x 1 + x 2 }, B 2 = { 1 2 (y 1 + y 2 ), 1 2 (y 1 y 2 )}. 7. En R 3 se consideran los subespacios U = L({(1, 1, 1)}) yw = {(a, b, c) R 3 ; a + b + c =0}. a) Encontrar un endomorfismo f de R 3 cuyo núcleo sea U y cuya imagen sea W y hallar la matriz de f respecto de la base usual de R 3. c) Elegir una base B en R 3 /Ker(f), y calcular la matriz de la aplicación lineal R 3 /Ker(f) R 3 x + Ker(f) f(x) con respecto a ésta y a la base B de R Considerando matrices cuadradas reales de orden 2, probar mediante contraejemplos que, en general, no son ciertas las igualdades siguientes: (A + B) 2 = A 2 +2 A B + B 2, (A B) (A + B) =A 2 B Supongamos que A es una matriz cuadrada de orden n, que verifica la ecuación Probar que A es regular. A 2 + A + I n =0. Se prohibe cualquier reproducción sin permiso del autor 3

4 10. Dada una matriz cuadrada A, se define su traza, traza(a), como la suma de los elementos de su diagonal, es decir, n traza(a) = a ii, siendo A =(a ij ) i,j M n (R). i=1 Demostrar que si A y B son matrices cuadradas de orden n y a R, entonces se tiene: traza(a + B) = traza(a) + traza(b), traza(a A) = a traza(a), traza(a B) = traza(b A). Demostrar que dos matrices semejantes tienen la misma traza, pero que el recíproco es falso; más aún, que si dos matrices tienen el mismo rango y la misma traza no tienen porqué ser semejantes. A partir de esto, definir la traza de un endomorfismo. Calcular la traza del endomorfismo f de R 2 (R) dado por f(a, b) =(a + b, a b), (a, b) R Para cada matriz regular P de orden n, se considera la aplicación M n (R) M n (R) A P 1 A P. Probar que es un automorfismo del espacio vectorial M n (R). 12. Sea A una matriz cuadrada de orden n tal que B M n (R), A B = B A. Probar que existe a R tal que A = a I n. 13. Se considera f End(V ), dim(v )=n, tal que existe un vector x 0 V con la propiedad f n k (x 0 ) 0, k =1,...,n 1, f n (x 0 )=0. Probar que {x 0,f(x 0 ),f 2 (x 0 ),...,f n 1 (x 0 )} es una base de V, y calcular la matriz de f respecto esta base. 4 Se prohibe cualquier reproducción sin permiso del autor

5 14. Para cada matriz A M n (R) fija, se considera la aplicación F : M n (R) M n (R) X A X. Probar que F es lineal, y encontrar una base B de M n (R) talque A M(F, B) =... n... A Probar también que traza(f )=n traza(a). n 2 n Sea f End R V, dim(v )=2,talquef f = 0. Demostrar que f =0,oes posible encontrar una base B de V tal que M(f,B) = ( Indicación: Probar que si f(x) 0, entonces {f(x),x} es linealmente independiente. Generalizar a mayores dimensiones. A partir de esto, encontrar todas las matrices cuadradas reales X de orden 2, tales que X 2 = Sean A y B matrices semejantes. Probar que si A es regular, entonces B también lo es, y que si A verifica la ecuación ). a X 2 + b X + c I n =0, donde a, b, c R, entonces B también es solución de la misma. 17. Sea A una matriz cuadrada de orden n. Probar que A 2 = I n si y sólo si (A I n ) (A + I n )=0. Si tomamos B M n (R) talqueb 2 = B, probar que A =2 B I n satisface A 2 = I n. Se prohibe cualquier reproducción sin permiso del autor 5.

6 18. Sea A una matriz cuadrada de orden n. DiremosqueA es triangular superior si todos los escalares a ij de A con i<json nulos; A es triangular inferior si todos los a ij de A con i>json nulos; y A es diagonal si todos los a ij de A con i j son nulos. Llamemos T 0, T 0 y D a los subconjuntos de M n (R) de matrices triangulares superiores, triangulares inferiores y diagonales. Demostrar que los tres son subespacios vectoriales de M n (R), y que M n (R) =T 0 + T 0 + D. Estudiar el comportamiento de estos tres conjuntos de matrices frente al producto. 19. Demostrar que el determinante de una matriz triangular superior (o inferior) se obtiene como el producto de los elementos de su diagonal. Encontrar una condición necesaria y suficiente para que una matriz regular superior (o inferior) sea regular, en términos de los elementos de su diagonal. Dar una expresión explícita para la matriz inversa de una matriz diagonal que sea regular. 20. Sea f End(V ). Supongamos que existen subespacios vectoriales U, W de V tales que V = U W y f(u) U, f(w ) W. Llamaremos f 1 : U U, f 2 : W W a las restricciones de f a U yaw, respectivamente, esto es, f 1 (x) =f(x), x U, f 2 (y) =f(y), y W. Demostrar que det f =(detf 1 )(det f 2 ). Aplicar esto para demostrar que dadas A M n (R), C M m (R), se tiene que ( ) A 0 det =(deta)(det C). 0 C 21. Sean V y V dos espacios vectoriales. Dados f End(V ), f End(V ), demostrar que la aplicación de V V en sí mismo dada por (x, x ) (f(x),f (x )), es un endomorfismo del espacio vectorial V V. Aplicar el problema anterior para demostrar que su determinante es (det f)(det f ). 6 Se prohibe cualquier reproducción sin permiso del autor

7 22. Se considera un espacio vectorial V de dimensión n y f End(V ). Supongamos que existe un subespacio vectorial U de V tal que f(u) U. Sea f : V/U V/U x + U f(x)+u i) Demostrar que f es una aplicación lineal. ii) Probar que det f =(detf 1 )(det f), donde f 1 : U U es la restricción de f a U, esto es, f 1 (x) =f(x),x U. iii) Aplicar lo anterior para probar que dadas A M n (R), B M n m (R) y C M m (R), se tiene que ( ) A B det =(deta)(det C). 0 C 23. Calcular los determinantes de las siguientes matrices reales: ( ) a b c d, a b c, a b a 2 b 2 c 2 a 2 b 2 c 2 d 2, a 3 b 3 c 3 d 3 y generalizar a matrices de orden n N. 24. Demostrar que si A =(a ij ) i,j es una matriz antisimétrica de orden 4, se tiene que det A =(a 12 a 34 a 13 a 24 + a 14 a 23 ) Calcular el rango de las siguientes matrices: , Usar determinantes para calcular rangos y con ello ver si los siguientes subconjuntos de R 4 son o no linealmente independientes:. Se prohibe cualquier reproducción sin permiso del autor 7

8 i) {(1, 1, 2, 0), (1, 0, 1, 2), (1, 0, 2, 1), (0, 1, 1, 2)}, ii) {(1, 1, 1, 1), (1, 1, 1, 1), ( 1, 1, 1, 1), (1, 1, 1, 1)}. 27. Discutir y resolver los siguientes sistemas sobre R: 3x 1 2x 2 + x 3 = 1 x 1 +4x 2 5x 3 = 3 x 1 +3x 2 +2x 3 = 4 x 1 3x 2 + x 3 = 1 2x 1 3x 3 = 4 x 1 + x 2 +2x 3 = Discutir según los distintos valores del parámetro real a el sistema de ecuaciones ax 1 + x 2 + x 3 + x 4 = 1 x 1 + ax 2 + x 3 + x 4 = a x 1 + x 2 + ax 3 + x 4 = a 2 x 1 + x 2 + x 3 + ax 4 = a 3 Resolver para algún valor de a en el que el sistema sea compatible. 29. Se consideran los subespacios vectoriales de R 5 U = L ({(1, 0, 1, 2, 1), (0, 1, 1, 2, 0), (1, 1, 0, 4, 1)}), W = L ({(2, 1, 1, 6, 2), (1, 1, 2, 1, 3), (1, 1, 1, 1, 1), (1, 0, 0, 0, 1)}). Hallar las ecuaciones cartesianas U W ydeu + W. 30. En un espacio vectorial V se consideran una base B = {u 1,u 2,u 3,u 4 } ydos subespacios vectoriales U, W, el primero dado por. U = L ({u 1 u 2 +3u 4,u 1 +2u 2 +3u 3 +4u 4,u 1 7u 2 6u 3 + u 4 }), mientras que W viene definido por las ecuaciones cartesianas b 1 + b 2 + b 3 = } 0 3b 2 + b 3 + b 4 = 0 Calcular las ecuaciones cartesianas de U W ydeu + W. 31. Encontrar, si es posible, un endomorfismo f de R 3 que cumpla f(1, 0, 0) = (1, 0, 0), det f = 1, traza(f) =1. 8 Se prohibe cualquier reproducción sin permiso del autor

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

5. Aplicaciones lineales

5. Aplicaciones lineales 5. Aplicaciones lineales Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2010 Contents 5 Aplicaciones lineales 7 5.1 Definición y propiedades..............................

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5 Matemáticas II Prácticas: Matrices y Determinantes. Sean las matrices cuadradas siguientes: 4 5 6 B = 9 8 7 6 5 4 C = 5 7 9 0 7 8 9 Se pide calcular: a A B + C. b A AB + AC. c A B AB + ACB.. Sean las matrices:

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES EJERCICIOS DE TEMA APLICACIONES LINEALES APLICACIONES LINEALES ) Estudiar cuáles de las siguientes aplicaciones son lineales entre los espacios vectoriales dados: x y a) f: f(x, y) = x y x b) f: x f(x)

Más detalles

Problemas de exámenes de Aplicaciones Lineales y Matrices

Problemas de exámenes de Aplicaciones Lineales y Matrices 1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector

Más detalles

TEMA 4. APLICACIONES LINEALES

TEMA 4. APLICACIONES LINEALES TEMA 4. APLICACIONES LINEALES 1.- Definición y propiedades. 2.- Aplicaciones lineales inyectivas y Suprayectivas. 3.- Núcleo, imagen, matriz asociada y rango de una aplicación lineal. 4.- Operaciones con

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Cuestiones de Álgebra Lineal

Cuestiones de Álgebra Lineal Cuestiones de Álgebra Lineal Algunas de las cuestiones que aparecen en esta relación están pensadas para ser introducidas en un plataforma interactiva de aprendizaje de modo que los parámetros a, b que

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =

Más detalles

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización.

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización. utovalores y autovectores asociados a un endomor smo f Diagonalización Dado un endomor smo f de un espacio vectorial real V y jada una base B de V obtenemos una única matriz asociada a f respecto de la

Más detalles

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Espacios vectoriales 1. Sea V un espacio vectorial

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

MATEMÁTICAS I 13 de junio de 2007

MATEMÁTICAS I 13 de junio de 2007 MATEMÁTICAS I 13 de junio de 2007 2º EXAMEN PARCIAL Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Si

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Tema 7: ESPACIOS VECTORIALES AFINES

Tema 7: ESPACIOS VECTORIALES AFINES Tema 7: ESPACIOS VECTORIALES AFINES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4. 1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma: TEMA Sistemas de ecuaciones SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades de la forma: a a an n b a

Más detalles

Tema 2: Diagonalización

Tema 2: Diagonalización TEORÍA DE ÁLGEBRA II: Tema 2. DIPLOMATURA DE ESTADÍSTICA 1 Tema 2: Diagonalización 1 Introducción Sea f : R n R n lineal. Dada una base B de R n podemos asociar a f la matriz A 1 = [f, B] M n. Si C es

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN BANCO DE PREGUNTAS CURSO: ALGEBRA LINEAL LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Mendoza Otoño

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Prueba de Evaluación Continua Grupo A 9-04-14 ESPACIOS VECTORIALES-DIAGONALIZACIÓN (parte sin DERIVE) 1. a) Definir sistema ligado de vectores de un espacio vectorial V. b) Demostrar que si un sistema

Más detalles

Espacios vectoriales y Aplicaciones lineales

Espacios vectoriales y Aplicaciones lineales Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea

Más detalles

COMPLEMENTOS DE MATEMATICA 3 - Segundo cuatrimestre de 2007 Práctica 3 - Transformaciones lineales

COMPLEMENTOS DE MATEMATICA 3 - Segundo cuatrimestre de 2007 Práctica 3 - Transformaciones lineales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 COMPLEMENTOS DE MATEMATICA 3 - Segundo cuatrimestre de 27 Práctica 3 - Transformaciones lineales Ejercicio 1. Determinar cuáles

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES - Considere el sistema 3 5 7 0 3 3 6 0 3 4 6 0 a) Estudie para qué valores del número real a, la única solución del sistema es la nula. b) Resuélvalo, si

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES MATEMÁTICA I - - Capítulo 8 ------------------------------------------------------------------------------------ ESPACIOS VECTORIALES.. Espacios Vectoriales y Subespacios... Definición. Un espacio vectorial

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1: 6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo.

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2.1 Formas cuadráticas. Expresión matricial y analítica. Expresiones diagonales. Definición 2.1 (Expresión matricial) Una

Más detalles

Álgebra Lineal, Ejercicios

Álgebra Lineal, Ejercicios Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

1. Matrices. Operaciones con matrices

1. Matrices. Operaciones con matrices REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se

Más detalles

PAIEP. Complemento Ortogonal

PAIEP. Complemento Ortogonal Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Complemento Ortogonal Veamos ahora una aplicación de los vectores ortogonales a la caracterización de subespacios

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

1. APLICACIONES LINEALES

1. APLICACIONES LINEALES 1 1 APLICACIONES LINEALES El objetivo de este capítulo es el estudio de las aplicaciones lineales u homomorfismos entre espacios vectoriales Este tipo de aplicaciones respeta la estructura de espacio vectorial

Más detalles

Clase 15 Espacios vectoriales Álgebra Lineal

Clase 15 Espacios vectoriales Álgebra Lineal Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

EJERCICIOS DE DETERMINANTES

EJERCICIOS DE DETERMINANTES EJERCICIOS DE 1) Si m n = 5, cuál es el valor de cada uno de estos determinantes? Justifica las p q respuestas: 2) Resuelve las siguientes ecuaciones: 3) Calcula el valor de estos determinantes: 4) Halla

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2015 2016) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

Diagonalización de matrices

Diagonalización de matrices Capítulo 6 Diagonalización de matrices 6.. Introducción 6... Un ejemplo preliminar Antes de plantearlo de manera general, estudiaremos un ejemplo que servirá para situar el problema. Supongamos que, en

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010.

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010. Algebra Lineal * José de Jesús Ángel Ángel jjaa@mathcommx Working draft: México, DF, a 17 de noviembre de 2010 Un resumen de los principales temas tratados en un curso de Álgebra Lineal Contenido 1 Sistemas

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

1 Isometrías vectoriales.

1 Isometrías vectoriales. Eugenia Rosado ETSM Curso 9-. Isometrías vectoriales. Sea E un espacio vectorial euclídeo. De nición Una aplicación f : E! E se dice transformación ortogonal o isometría vectorial si conserva el producto

Más detalles

1 Aplicaciones lineales

1 Aplicaciones lineales UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Francisco Cabo García Bonifacio Llamazares Rodríguez

Francisco Cabo García Bonifacio Llamazares Rodríguez ÁLGEBRA LINEAL CON DERIVE 5 Francisco Cabo García Bonifacio Llamazares Rodríguez María Teresa Peña García Dpto. de Economía Aplicada (Matemáticas) Universidad de Valladolid Página 1 de 34 Ventana de Álgebra

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución

Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución Respuestas a la versión 1: (La versión 1 es aquélla cuyo primer ejercicio dice Un sistema lineal de m ecuaciones

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo:

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo: Mapa conceptual Determinante de segundo orden Dada una matriz cuadrada de segundo orden: a a 11 12 A = a a 21 22 se llama determinante de A al número real: det (A)= A = a11 a 12 = a a a a a21 a22 11 22

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Grado en Física. Ejercicios de autoevaluación. Temas 1 4. Departamento de Álgebra, Universidad de Sevilla

Grado en Física. Ejercicios de autoevaluación. Temas 1 4. Departamento de Álgebra, Universidad de Sevilla Álgebra Lineal y Geometría Grado en Física Ejercicios de autoevaluación. Temas 1 4 Departamento de Álgebra, Universidad de Sevilla El contenido de estas notas ha sido diseñado y redactado por el profesorado

Más detalles

DETERMINANTES Profesor: Fernando Ureña Portero

DETERMINANTES Profesor: Fernando Ureña Portero : CONCEPTO, CÁLCULO DE. Definición: A cada matriz cuadrada A=a ij, de orden n, se le asigna un número real, denominado determinante de A, denotado por A o por det (A). A =det (A)= 1.-Determinante de orden

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Problemas teóricos Muchos de estos problemas me los han enseñado mis colegas: profesores Flor de María Correa Romero, Carlos Domínguez Albino, Sergio González Govea, Myriam Rosalía

Más detalles

2-2 1., y la matriz S -1, que es la matriz inversa de la matriz S. Indicar la

2-2 1., y la matriz S -1, que es la matriz inversa de la matriz S. Indicar la . [04] [EXT-A] Obtener razonadamente: a) El valor del determinante de la matriz S = - - 5, y la matriz S -, que es la matriz inversa de la matriz S. Indicar la relación entre que el determinante de una

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles