SOLUCION DE SISTEMAS DE ECUACIONES. Representación matricial de un sistema de ecuaciones lineales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SOLUCION DE SISTEMAS DE ECUACIONES. Representación matricial de un sistema de ecuaciones lineales"

Transcripción

1 SOUCION DE SISTEMAS DE ECUACIONES Representción mtricil de un sistem de ecuciones lineles os determinntes son herrmients mu podeross pr resolver con reltiv fcilidd sistems de ecuciones lineles. Eemplo: Consideremos el sistem: 6 9 Este sistem de ecuciones es equivlente l siguiente ecución mtricil: 6 9 En el que ls mtrices que l componen se llmn, de iquierd derech, mtri de coeficientes, vector de incógnits vector de términos independientes. En generl, culquier sistem de ecuciones lineles de l form:.... m m n n mn n n n... n Se puede escriir de mner más compct: A X B Siendo ls mtrices A, X B según quedó indicdo nteriormente, l mtri de coeficientes, el vector de incógnits el vector de términos independientes, respectivmente. Importnte...! Si A X B, entonces X A - B, (operciones entre mtrices) no como se procede en un ecución rel. - - Es decir: ;, R,

2 Solución de un sistem de ecuciones lineles (Regl de Crmer) regl de Crmer sirve pr dr solución culquier sistem de ecuciones lineles que stisfg ests dos condiciones:.) El sistem tiene el mismo número de ecuciones que de incógnits. O lo que es equivlente: l mtri que se form con los coeficientes de dicho sistem, es un mtri cudrd..) El determinnte de l mtri de coeficientes es distinto de cero. O se A. Si ls dos condiciones se cumplen, entonces l solución del sistem se puede otener plicndo l regl de Crmer. Eemplo: Resolver el sistem indicdo (Aplicndo l regl de Crmer). 9 6 Según lo visto nteriormente, l mtri de coeficientes el vector de términos independientes son, respectivmente: A, 9 B 6 El determinnte de l mtri de coeficientes es ( ) ( ) 7 9 A Por lo tnto tenemos:.) Un sistem de tres ecuciones con tres incógnits.) A

3 En consecuenci, es posile plicr l regl de Crmer, l cul nos proporcion l solución del sistem: A A A 9 uego, l solución del sistem es: Eemplo: (Aplicción de l Regl de Crmer) compñí ASANCA requiere de los servicios de tres especilists en diseños gráficos. El personl ingresr se le signrá un sueldo se en función de l eperienci que pose el tro relir. Si el sueldo se de los tres especilists es de.. Bs; el sueldo se del especilist A más el dole del de cd uno de los restntes especilists es de.. Bs el sueldo se del especilist C más el dole del de cd uno de los restntes especilists es de.. Bs. Encontrr el sueldo se de cd uno de los especilists?. 6

4 Solución: Sen,,, los slrios en olívres de los especilists listdos A, B C, respectivmente. Construimos el siguiente sistem prtir de ls condiciones dds: Aplicndo l regl de Crmer: M det M M ( ) - ( ) uego: A B C El slrio en olívres de los especilists listdos son: A B C 6... Verific estos vlores sustituendo los mismos en el sistem originl. 7

5 Solución de sistems de ecuciones lineles (Método de Guss). Usulmente l resolver prolems que conducen sistems de ecuciones lineles hemos utilido métodos lgericos (igulción, reducción sustitución) los cules nos udn encontrr l solución dicho sistems. Sin emrgo, dichos procedimientos pueden ser tediosos complicdos cundo se plicn sistems de ecuciones más grndes. A continución desrrollremos el método de eliminción de Guss como recurso pr resolver sistems mores. Este procedimiento, consiste en trnsformr, por medio de operciones ásics l mtri originl en un mtri equivlente, pero más sencill. Es decir: un mtri A m m n n mn n se puede trnsformr en otr mtri equivlente de l form: B n... En donde l mtri B, tomd hst l líne interrumpid, es un mtri tringulr superior que se otiene por columns, hllndo en cd column, en primer lugr el uno de l digonl principl luego los demás elementos. Importnte...! Pr desrrollr el método de eliminción de Guss, es necesrio empler un vriedd de operciones sore ls línes de l mtri. Por tnto, los psos que conllevn l solución no son únicos, pero l solución del sistem si lo es. d d d n 8

6 Teorem : Dd un mtri de un sistem de ecuciones lineles, se puede otener un mtri de un sistem equivlente si: Se intercmin dos renglones de un mtri. Se multiplicn un renglón por un constnte diferente de cero. Se sum u renglón un múltiplo constnte de otro renglón. 8 Eemplo: Resolver el sistem. 7 6 Ecuciones Mtrices Pso : Escriir el sistem Pso : Intercmir ls primers ecuciones Pso : Sumr l primer ecución multiplicd por l segund, l primer multiplicd por l tercer Pso : Multiplicr l segund ecución por /. Pso : Escriir l mtri umentd Pso : Intercmir los primeros renglones Pso : Sumr el primer renglón multiplicdo por l segundo, el primero multiplicd por l tercer renglón Pso : Multiplicr el segundo renglón por /

7 Pso : sumr l segund ecución multiplicd por 6 l tercer. Pso : sumr el segundo renglón multiplicd por 6 l tercer renglón. 7 7 A continución se present un lgoritmo se como guí pr plicr l eliminción de Guss en l resolución de sistems de ecuciones lineles: Pso : Relir operciones entre renglones con el fin de otener en l primer column un elemento superior igul uno. Pso : Sumr o restr los múltiplos decudos del primer renglón los otros renglones, de mner tl que los elementos restntes de l primer column se hgn cero. Pso : Sin lterr l primer column, relir operciones entre renglones con el propósito de hcer el segundo elemento de l segund column igul uno. Después se sumn o se restn múltiplos decudos del segundo renglón los otros renglones, con el fin de otener ceros en los elementos restntes de l segund column. Pso : Sin lterr ls dos primers columns, se relin operciones pr que el tercer elemento de l tercer column se igul uno. Después se sumn o se restn múltiplos decudos del tercer renglón los otros renglones, con el fin de otener ceros en los elementos restntes de l tercer column. Pso : Se continu el proceso column por column hst otener l mtri reducid. Es decir, hst que l mtri mplid dopte l form de un mtri tringulr compñd de un column de elementos trnsformdos de l column de vlores independientes del sistem en estudio. solución de ls vriles se otiene emplendo l sustitución hci trás o de retroceso.

8 Importnte...! El método de Guss plicdo l resolución de sistems de ecuciones lineles present opertivmente un vrinte, l cul consiste en cmir l operción de sustitución hci trás o de retroceso empled hst hor, por ls operciones sore renglones de l mtri umentd pr trnsformrl en un mtri identidd. Este proceso sé denomin eliminción de Guss-Jordn. s operciones sore ls ecuciones de l column de l iquierd produeron sistems equivlentes de ecuciones. Por tnto, tiene idéntics soluciones. En lo referente l eliminción de Guss, tmién llegmos un mtri equivlente cuo sistem linel correspondiente está en su form tringulr. A prtir de est form se despen ls vriles emplendo l sustitución hci trás o de retroceso. Es decir, se encuentr el vlor de l vrile con l últim ecución (l tercer) se sustitue en l nterior (l segund) pr determinr ÿ. Por último, se sustituen los vlores en l ecución nterior (l primer) pr determinr. Tmién se puede relir operciones sore l mtri resultnte en el pso, con el fin de trnsformrl en l mtri identidd (eliminción de Guss-Jordn). 7 () () 7 () - solución es l tern ordend (-,,). Importnte...! os símolos que continución se indicn, se utilin frecuentemente pr desrrollr ls operciones o trnsformciones que se relin entre los renglones de un mtri l plicr el método de eliminción de Guss.

9 Símolo Significdo Reempl Em: κ i : i κ rempl κ i i Multiplicr por κ l renglón i i Intercmir los renglones i κ i Sumr k i l renglón Eemplo: Resolver el sistem 9 7 Trnsformemos el sistem en un mtri umentd (inclue los coeficientes ls constntes del sistem en estudio en el orden ddo). 9 7 Iniciemos un serie de operciones con los renglones pr trnsformr el sistem mtricil en otro equivlente (-)

10 Hemos otenido l mtri trnsformd que const de l mtri identidd de orden l mtri solución: (método de eliminción de Guss-Jordn). Por tnto, l solución del sistem en estudio es: TRABAJO PROPUESTO (III).) Hllr los determinntes de ls siguientes mtrices: A B C.) Utilindo menores complementrios..) Usndo l regl de Srrus.

11 .) Resolver ls siguientes ecuciones mtriciles: 6.) Fctorir los determinntes: ; 7.) Resolver los siguientes sistems: ) Resolver los siguientes eercicios utilindo mtrices..) A B trndo untos pueden hcer un or en 9 dís. A C untos hcen l mism or en 8 dís, mientrs que B C untos pueden relirl en dís. Cuánto tiempo le tomrá cd uno por seprdo relir l or?..) Hllr dos números enteros positivos cu diferenci se cu sum se 7. c.) Un triángulo tiene 6 m de perímetro. sum del primer ldo con el segundo es de 6 m, mientrs que l diferenci entre el tercer ldo el segundo es de m Cuál es l longitud de cd ldo?. d.) Hllr tres números tles que el primero más el segundo sumen ; el primero más el tercero sumen 9 el segundo más el tercero sumen.

12 9.) Resolver: (método de eliminción de Guss) 7 ; w w -w ) Durnte un cierto período de tiempo, un función de costo totl está definid por l ecución: C T mc C f, donde: CT costo totl de mner un crro. M número totl de kilómetros recorridos. C costo de mneo por kilómetro. C f costo fio totl costo por kilómetro. Si el costo totl es de 8. Bs l mner 6. kilómetros. Bs l mner 9. kilómetros. Cuál es el costo totl el costo por kilómetro?. B I B I O G R A F I A - Ar Jgdish Roin nder. (99). Mtemátics Aplicds l Administrción l Economí. Editoril Prentice Hll. S,A. Méico. - Fleming Wlter Dle Vrerg. (99). Alger Trigonometrí con Geometrí Anlític. Editoril Prentice Hll. S,A. Méico. - Goodmn Arthur ewis Hirsch. (996). Alger Trigonometrí con Geometrí Anlític. Editoril Prentice Hll. S,A. Méico. - Heussler Ernest Richrd Pul. (997). Mtemátics pr Administrción, Economí, Ciencis Sociles de l Vid. Octv edición.. Editoril Prentice Hll. S,A. Méico. - Kovcic Michel. (977). Mtemátic. Aplicciones ls Ciencis Economico- Administrtivs. Ediciones fondo Eductivo Intermericno. Boston (EE.UU)

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1. DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)

Más detalles

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n Tem Álgebr Linel (Sistem de ecuciones lineles y álgebr mtricil) Mtrices Un mtriz de m n con elementos en C es un rreglo de l form M m KKK KKK m KKK n n mn donde,,..., mn Є y m, n Є Z. L mtriz es de orden

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

AX = B. X es la matriz columna de las variables:

AX = B. X es la matriz columna de las variables: ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1 el de mte de id: Mtemátics Aplicds ls Ciencis Sociles I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

MATE3012 Lección 2.2. Solución de Sistemas Lineales por Matrices. 18/02/2013 Prof. José G. Rodríguez Ahumada 1 de 26

MATE3012 Lección 2.2. Solución de Sistemas Lineales por Matrices. 18/02/2013 Prof. José G. Rodríguez Ahumada 1 de 26 MATE Lección. Solución de Sistems Lineles por Mtrices 8// Prof. José G. odrígue Ahumd de 6 Actividdes. Teto: Cpítulo 8 - Sección 8. Solución de Sistems Lineles por educción de englones. Ejercicios de Práctic:

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

Matemática DETERMINANTES. Introducción:

Matemática DETERMINANTES. Introducción: Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES. Introducción Ls mtrices y los determinntes son herrmients del álgebr que fcilitn el ordenmiento de dtos, sí como su mnejo. Los conceptos de mtriz y todos los relciondos fueron

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero

Más detalles

DETERMINANTES. det : M nxn

DETERMINANTES. det : M nxn DETERMINNTES L utilidd de los determinntes como representción de reliddes, h sido de grn importnci en ls ciencis sociles, trvés de los modelos mtemáticos, especilmente los formuldos en términos mtriciles.

Más detalles

Toda ecuación lineal con dos incógnitas tiene un número ilimitado de soluciones de la forma (, y) gráfica determina una recta.

Toda ecuación lineal con dos incógnitas tiene un número ilimitado de soluciones de la forma (, y) gráfica determina una recta. Fcultd de Contdurí y Administrción. UNAM Sistems de ecuciones Autor: Dr. José Mnuel Becerr Espinos MATEMÁTICAS BÁSICAS SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES Un ecución linel con dos incógnits x

Más detalles

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 Mtemátics Determntes Resumen DETERMINANTES (Resumen) Defición El determnte de un mtriz cudrd n x n es un número. Se otiene sumndo todos los posiles productos que se pueden formr tomndo n elementos de l

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn TE trices TRICES. DEFINICIÓN. Un mtriz de m fils n columns es un serie ordend de m n números ij, i,,...m; j,,...n, dispuestos en fils columns, tl como se indic continución:... n... n............ m m m...

Más detalles

EL EXPERIMENTO FACTORIAL

EL EXPERIMENTO FACTORIAL DISEÑO DE EXPERIMENTOS NOTAS DE CLASE: SEPTIEMBRE 2 DE 2008 EL EXPERIMENTO FACTORIAL Se utiliz cundo se quiere nlizr el efecto de dos o más fuentes de interés (fctores). Permite nlizr los efectos de ls

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 147

INSTITUTO VALLADOLID PREPARATORIA página 147 INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina MTRICES Mtrices de números reles. Definimos mtriz rel de elementos pertenecientes R y de dimensión n fils por m columns, quel conjunto de números reles escritos de l form siguiente: n n mtriz nxm m m nm

Más detalles

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros.

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros. 4. Espcios vectoriles, definición propieddes Viguers En l Físic, con frecuenci se us el término vector pr descriir mgnitudes como l fuer, l velocidd, l celerción, otros fenómenos de l nturle, sin emrgo

Más detalles

Matrices ... Columna 2

Matrices ... Columna 2 Mtrices Mtrices de números reles Definiciones Def Consideremos el cuerpo cuerpo es un conjunto de números donde se puede sumr, restr, multiplicr dividir) de los números reles R Un mtri de números reles

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn TEMA ÁLGEBRA DE MATRICES Mtemátics II º Bchillerto TEMA ÁLGEBRA DE MATRICES. NOMENCLATURA Y DEINICIONES.. - DEINICIÓN Ls mtrices son tbls numérics rectngulres ª column ª fil n n n.......... m m m mn (

Más detalles

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Estabilidad de los sistemas en tiempo discreto

Estabilidad de los sistemas en tiempo discreto Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos

Más detalles

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida»

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida» 73 ESO dí. «El que pregunt lo que no se es ignornte un El que no lo pregunt será ignornte tod l vid» E = m c ÍNDICE: MENSAJES OCULTOS 1. EXPRESIONES ALGEBRAICAS. VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ NVES E UN TZ l igul que pr hllr determinntes, restringiremos nuestro estudio mtrices cudrds utiliremos l mtri identidd de orden n ( n ). Podemos demostrr que si es culquier mtri cudrd de orden n, entonces

Más detalles

Algoritmos matemáticos sobre matrices:

Algoritmos matemáticos sobre matrices: Algoritmos mtemáticos sobre mtrices: Representciones especiles de mtrices, Algoritmo de Strssen, multiplicción y tringulción de mtrices Jose Aguilr Mtriz Mtriz Un mtriz es un rreglo rectngulr de elementos

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

Aplicando las propiedades conocidas de las operaciones entre número reales, obtenemos:

Aplicando las propiedades conocidas de las operaciones entre número reales, obtenemos: Curso de Nivelción en Mtemátic Ecuciones Un prolem de ingenio frecuente es: Pensr un número. Sumrle 5. Multiplicr por el resultdo. A lo que se otiene, restrle 9. Dividirlo por. Restrle 8. ECUACIONES Si

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

APÉNDICE A INTERPRETACIONES GEOMÉTRICAS DE ALGUNOS PRODUCTOS NOTABLES

APÉNDICE A INTERPRETACIONES GEOMÉTRICAS DE ALGUNOS PRODUCTOS NOTABLES Universidd Autónom de Bj Cliforni Fcultd de Ingenierí Meicli APÉNDICE A INTERPRETACIONES GEOMÉTRICAS DE ALGUNOS PRODUCTOS NOTABLES Un inomio l cudrdo de l form (+), donde,, puede interpretrse de mner geométric

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

1 Sistemas de ecuaciones lineales Tema 2 SISTEMAS DE ECUACIONES LINEALES

1 Sistemas de ecuaciones lineales Tema 2 SISTEMAS DE ECUACIONES LINEALES Sistems de ecuciones lineles Tem 2 SISTEMAS DE ECUACIONES LINEALES Los sistems de ecuciones lineles tienen muchs plicciones en todos los cmpos y ciencis y y desde. C. se tenín métodos pr resolver los sistems.

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma: SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistem de m ecuciones lineles con n incógnits,,,, n es un conjunto de m igulddes de l form: n n n n m m mn n m ij son los coeficientes i los

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

EXPRESIONES ALGEBRAICAS: MONOMIOS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS: MONOMIOS Y POLINOMIOS EXPRESIONES LGERIS: MONOMIOS Y POLINOMIOS EXPRESIÓN LGERI.- Un epresión lgeric es culquier cominción de números letrs unidos por ls operciones ritmétics (sum, rest, multiplicción, división, potenci, (o)

Más detalles

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I CURSO DE NIVELACIÓN 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I. Con relción l potencición, se firm que es un operción: ) Conmuttiv. ) Distriutiv respecto l sum. 3) Distriutiv

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1 TEMA DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente modo:

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL (LP)

PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) Plntemiento del prolem de progrmción Linel Un prolem de progrmción linel es cundo l función ojetivo es un función linel y ls restricciones son ecuciones lineles; l

Más detalles

Polinomios 3º Año Cód P r of. M a r í a d el L u já n Matemática M a r t í n ez P r of. M ir t a R o s i t o Dpto.

Polinomios 3º Año Cód P r of. M a r í a d el L u já n Matemática M a r t í n ez P r of. M ir t a R o s i t o Dpto. Polinomios Mtemátic º Año Cód. 0- P r o f. M r í d e l L u j á n M r t í n e z P r o f. M i r t R o s i t o Dpto. de Mtemátic POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrile,

Más detalles

Cambio de Variables en las Integrales Dobles

Cambio de Variables en las Integrales Dobles E.E.I. CÁLCULO II Y ECUACIONES DIFEENCIALES Curso 20-2 Clse 3 (7 fe. 202) Cmio de Vriles en ls Integrles Doles. Ejemplo: Áre de l elipse. 2. Cmio de Vriles I. Punto de ist de l trnsformción. 3. Cmio de

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

ECUACIONES LINEALES Y MATRICES

ECUACIONES LINEALES Y MATRICES ECUACIONES LINEALES Y ATICES SOLUCIÓN DE ECUACIONES LINEALES Dd un ecución, el álger se ocup de encontrr sus soluciones, siguiendo el concepto generl de identidd. Siempre que se pliquen ls misms operciones

Más detalles

1 Álgebra Lineal Taller N o 1 con matlab

1 Álgebra Lineal Taller N o 1 con matlab Álger Linel Tller N o con mtl Tem: Vectores en R n : Sistems de m ecuciones con n incógnits. Suespcio generdo. Operciones con mtrices, independenci linel en R n : Suespcios fundmentles socidos con un mtri.

Más detalles

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1 el log de mte de id: Mtemátics I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores de l incógnit (o

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3 . DEFINICIÓN. http://mtemticsconsole.wikispces.com/ TE trices TRICES Un mtriz de m fils n columns es un serie ordend de m n números ij, i=,,...m; j=,,...n, dispuestos en fils columns, tl como se indic

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor:

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor: CAPÍULO - 8 Problem El estdo de tensiones de un punto de un sólido viene definido por el siguiente tensor: 7 6 ( ) 6 8 N / m XYZ 76 Hllr: ) ensiones direcciones principles sí como l mtri de pso entre el

Más detalles

Ejemplo. Con el Método de Gauss resuelva el sistema de ecuaciones lineales del problema planteado al inicio de este capítulo

Ejemplo. Con el Método de Gauss resuelva el sistema de ecuaciones lineales del problema planteado al inicio de este capítulo 65 4.3 Método de Guss El método de Guss es similr l método de Guss-Jordn. Aquí se trt de trnsformr l mtriz del sistem un form tringulr superior. Si esto es posible entonces l solución se puede obtener

Más detalles

UNIDAD DIDÁCTICA 3: Matrices y determinantes

UNIDAD DIDÁCTICA 3: Matrices y determinantes Unitt d ccés ccés l universitt dels mjors de 5 nys Unidd de cceso cceso l universidd de los myores de 5 ños UNIDAD DIDÁCTICA : trices y determinntes ÍNDICE ) Introducción ) Definición de mtriz ) Algunos

Más detalles

UNIDAD 10. SISTEMAS DE ECUACIONES LINEALES

UNIDAD 10. SISTEMAS DE ECUACIONES LINEALES Tem. Sistems de Ecuciones UNIDD. SISTEMS DE ECUCIONES LINELES. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

ÁLGEBRA: NIVEL MEDIO SUPERIOR ECUACIONES

ÁLGEBRA: NIVEL MEDIO SUPERIOR ECUACIONES . LINEALES. Concepto de iguldd. º. Si l seleccionr dos conjuntos se encuentr que tienen los mismos elementos, estos conjuntos son igules. c c A B Pr presentr l iguldd se utiliz el símolo por lo que A B

Más detalles

POLINOMIOS. se denominan coeficientes.

POLINOMIOS. se denominan coeficientes. POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrile, tod epresión de l form: tl que: 0... n n 0 R; R; R;... ; n R n 0 siendo n N0 En tl epresión, l letr represent un número rel

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

1. Definición de Determinante para matrices cuadradas de orden 2 y de orden 3. Un determinante es un número que se le asocia a toda matriz cuadrada.

1. Definición de Determinante para matrices cuadradas de orden 2 y de orden 3. Un determinante es un número que se le asocia a toda matriz cuadrada. Unidd : DETERMINNTES.. Deinición de Determinnte pr mtrices cudrds de orden y de orden. Un determinnte es un número que se le soci tod mtriz cudrd. Determinnte de un mtriz cudrd de orden : El es producto

Más detalles

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012.

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012. Artículo de sección Revist digitl Mtemátic, Educción e Internet www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES ) Resolver el siguiente sistem de ecuciones lineles t t z emplendo el método de Guss utilizndo trnsformciones elementles de fils En qué csos es comptible? b) Relcionr ls mtrices

Más detalles

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

TEMA 1. CÁLCULO VECTORIAL.

TEMA 1. CÁLCULO VECTORIAL. TEMA 1. CÁLCUL VECTRIAL. MAGNITUDES FÍSICAS ESCALARES Son quells que quedn determinds por su vlor numérico y l unidd de medid. Ejemplos: ms, energí, tiempo, tempertur, etc. MAGNITUDES FÍSICAS VECTRIALES

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

Además de las operaciones tradicionales, es posible expresar otras operaciones binarias. Tabla 1.1. Operación AND.

Además de las operaciones tradicionales, es posible expresar otras operaciones binarias. Tabla 1.1. Operación AND. Grupos y Cmpos Definición de operción inri Operciones como l sum, rest, multiplicción o división de números son considerds operciones inris, y que socin un pr de números con un resultdo. En generl, un

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles