CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES"

Transcripción

1 CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES Fig. 2.a Cuando se estudia el fenómeno que ocasionan las fuerzas normales a la sección transversal de un elemento, se puede encontrar dos tipos de esfuerzos, una es el de tracción y otro es el de compresión Tracción simple Cuando la fuerza solicitante se aleja del elemento solicitado se considera que es una fuerza de tracción que produce esfuerzos de tracción. Por ejemplo en el brazo hidráulico mostrado en la figura, los elementos A B se encuentran en tracción por efecto del peso del motor. Ejercicio 2.1 La barra compuesta de acero A-36 mostrada consta de dos segmentos AB y BD, cuyas áreas transversales son A AB = 1 in 2 y A BD = 2 in 2. Determine el desplazamiento vertical del extremo A y el desplazamiento de B respecto de C. Docente: Ing. Miguel A. Ruiz Orellana 1

2 DATOS Fig. 2.1 A 1 := 1in 2 A 2 := 2in 2 L 1 := 2ft L 2 := 1.5ft L 3 := 1.5ft E a := 29000ksi RESOLUCION Para resolver el ejercicio, se va a realizar cortes, comenzando de la parte superior, en los cuales efectuando una sumatoria de fuerzas verticales, se encontrará la magnitud y sentido de la fuerza solicitante que afectara a ese tramo, pudiendo ser que el tramo analizado este en tracción o compresión. Tramo 1 F v 0 R 1 15kip 0 R 1 := 15kip R 1 L 1 δ 1 := δ A 1 E 1 = 0.315mm a Tramo 2 F v 0 Tramo 3 F v 0 R 2 15kip + 8kip 0 R 2 := 7kip R 2 L 2 δ 2 := δ A 2 E 2 = 0.055mm a R 3 15kip + 8kip + 16kip 0 R 3 := 9kip Docente: Ing. Miguel A. Ruiz Orellana 2

3 R 3 L 3 δ 3 := A 2 E a δ 3 = 0.071mm La deformación total del punto A, se obtiene sumando las deformaciones parciales: δ tot := δ 1 + δ 2 + δ 3 δ tot = 0.3 mm Se aprecia de la ecuación del esfuerzo de tracción que cuanto mayor sea el área de la sección menor será la tensión en el elemento. σ = F A δ = E L Además de la ecuación de la deformación se observa también que cuanto mayor sea el área de la sección menor será la deformación. δ = F L A E σ L = E Por cuanto se define que en elementos que presentan distintas secciones se encontrará la deformación sumando las deformaciones pertinentes a cada sección y a cada tramo de sección cuando este presente fuerzas solicitantes distintas. δ T = F * L A* E Docente: Ing. Miguel A. Ruiz Orellana 3

4 δ T = δ δ F1 * L1 F2 * L2 + A * E A * E 1 + δ = F * L 3 A 3 3 * E Ejercicio 2.2 Determinar el diámetro d de los pernos de acero para una prensa cuyo esfuerzo máximo es de P=50000 kgf, si el esfuerzo admisible para el acero es de σf=1000 kgf/cm 2, determinar además el alargamiento máximo de los pernos si su longitud máxima es de 1,5 m. Fig. 2.2 Ejercicio En el mástil de la figura se sabe que la tensión 1 es 25% mayor que la tensión 2 Suponiendo que en un día ventoso la t2=85n/mm^2: Que sección de un tubo circular hueco de acero st-42 se necesita, si la relación de d ext =1.1d int? Cuanto será la deformación en el masti? El cable tensor tiene un diámetro de 5mm. Docente: Ing. Miguel A. Ruiz Orellana 4

5 Diagrama de Cuerpo Libre T1 T1 T2 T2 T2y T2 T2x Docente: Ing. Miguel A. Ruiz Orellana 5

6 T 2 := 85 N mm 2 T 2y := T 2 cos ( 19deg) T 2y = 80.37MPa T 2x := T 2 sin( 19deg) T 2x = 27.67MPa T 1 := 1.25T 2 T 1 = MPa T 1y := T 1 cos ( 14.5deg) T 1y = MPa T 1x := T 1 sin( 14.5deg) T 1x = 26.6MPa El área del cable tensor es: A c d c 2 La fuerza vertical en el punto 2 será: F v2 := T 2y A c F v2 = N := 4 π A c = 19.63mm 2 La fuerza vertical en el punto 1 será: F v1 := T 1y A c F v1 = N En este caso la reacción será la fuerza máxima sobre el mastil: R mas := F v1 + F v2 R mas = N La sección del mastil: given σ st42 find( d ext ) σ st42 π 4 d 2 ext R mas R mas A tubo ( ) d ext d ext := d ext = 16.37mm d ext := 18mm d int := 0.9 d ext d int = 16.2mm π A mas := 4 d ext 2 ( d int ) 2 A mas = 48.35mm 2 La deformación del mastil a compresión será: δ mastil δ 1 + δ 2 Docente: Ing. Miguel A. Ruiz Orellana 6

7 F v1 1000mm δ 1 := δ 1 = 0.2mm A mas E 42 F v2 1500mm δ 2 := A mas E 42 δ 2 = 0.23mm δ mastil := δ 1 + δ 2 δ mastil = 0.43mm 2.2. Compresión simple En el caso de la compresión, se tiene que la fuerza solicitante al elemento en dirección al eje axial del mismo tiene sentido negativo o de aproximación al elemento, hecho que genera una deformación negativa o de compresión, es decir reduciendo la longitud del componente. El fenómeno de la compresión no tiene mucha incidencia en elementos cortos pues si en tracción se producen fallos por estiramiento esto pasa por el desgarre de las pequeñas irregularidades superficiales o de los pequeños poros presentes; sin embargo en caso del fenómeno de compresión no es probable que se desgarren los poros al ser comprimidos, a no ser a una muy alta solicitación, pero eso si, si la longitud de los elementos sometidos es larga, las fuerzas de compresión generan un fenómeno de pandeo (deformación lateral) que es muy riesgosa y debe ser estudiada cuando el caso amerite. En la figura 2.1 el elemento C-D se encuentra solicitado a compresión. Docente: Ing. Miguel A. Ruiz Orellana 7

8 2.3 Miembro cargado axialmente Estáticamente Indeterminado Cuando una barra se encuentra fija en ambos extremos, entonces se tienen dos reacciones axiales desconocidas y solo se puede plantear una ecuación estática. En este caso se precisa auxiliar con ecuaciones de desplazamientos de los elementos para encontrar las incógnitas. Se aprovecha la geometría de la deformación de la barra para plantear la ecuación de desplazamiento que se la llama frecuentemente condición de compatibilidad. La condición de compatibilidad en caso de una barra fija en ambos extremos es: δ = 0 Se dice que un problema es estáticamente indeterminado cuando tiene más incógnitas que el número de ecuaciones posibles de plantear en base al equilibrio estático. Por cuanto el extremo A y el extremo B podrán igualarse a cero planteándose estas como ecuaciones de desplazamientos, así: FA * L A* E AC FB * L A* C BC = 0 De esa manera se ha programado una segunda ecuación que permite resolver el problema. A RA L AC F C L BC RB B Ejercicio 2.3 La barra de acero mostrada en la figura tiene un diámetro de 5 mm. Está empotrada en la pared A y antes de cargarla se tiene una holgura de 1mm entre la pared en B y la barra. Determine las reacciones en A y en B Docente: Ing. Miguel A. Ruiz Orellana 8

9 cuando la barra se somete a una fuerza axial de P=20 kn. Considere E AC =200 GPa. Ejercicio 2.4 El tubo de acero mostrado en la figura tiene un radio exterior de 20 mm y un radio interior de 15 mm. Si entra justamente entre las paredes fijas antes de ser cargado determine la reacción en las paredes cuando se somete a la carga. Considere E AC =200 GPa. A B C 8 kn 300 mm 8 kn 700 mm Docente: Ing. Miguel A. Ruiz Orellana 9

10 2.3 Esfuerzos Térmicos Un cambio de temperatura ocasiona normalmente en los materiales un incremento en sus dimensiones, siendo que por el contrario la disminución de temperatura conlleva una disminución de las dimensiones del material. Esta relación estará dada según: δ T = α *ΔT * L Donde: α= coeficiente lineal de dilatación térmica [1/ºC] ΔT=Diferencia de Temperatura L=longitud del elemento L Deformación δ por cambio de δ Si un material se dilata en un espacio abierto (libre de restricciones), entonces el material no experimenta ningún esfuerzo; sin embargo si el elemento que sufre una dilatación térmica se encuentra restringido, la deformación restringida produce esfuerzos térmicos que se describen en las ecuaciones siguientes: F = α * ΔT * A* E σ = α * ΔT * E Docente: Ing. Miguel A. Ruiz Orellana 10

11 2.5 Método de superposición De forma general para la resolución de problemas hiperestáticos, se suele utilizar el método de superposición, que consiste en sobreponer las deformaciones debido a fuerzas externas y las deformaciones debido a fuerzas internas e igualarlas a la magnitud de la deformación total, así: A Sección tranversal A A F F B RB B δ δf δb RB δb δ = δ + δ T F B Ejercicio 2.5 Tres barras de material diferente están conectadas entre si y situadas entre dos muros a una temperatura de 12 ºC. Determine la fuerza ejercida sobre el soporte cuando la temperatura es de 18 ºC. Docente: Ing. Miguel A. Ruiz Orellana 11

12 Ejercicio 2.6 Una barra que sirve de atiesador entre dos planchas ubicadas en un horno, se encuentra fija y sin holgura entre ambas a 20ºC. Si el horno alcanza una temperatura de 150ºC, Cuanto será la tensión termica generada por la barra? Si las planchas pueden deformarse 1mm entre ambas, cuanto disminuirá la tensión térmica? La barra es de un acero AISI 1030 σ y := lbf Tensión a la fluencia del material in 2 σ y = N en otras unidades mm 2 E lbf := Modulo de elasticidad in 2 α m := Coeficiente de dilatación termica mºc Long φ v := 65cm Longitud de la varilla := 5mm Diámetro de la varilla T 1 := 20ºC Temperatura inicial T 2 := 150ºC Temperatura máxima del horno Docente: Ing. Miguel A. Ruiz Orellana 12

13 Ejercicio 2.7 La parrilla mostrada en la figura es parte de un horno que trabaja hasta una temperatura de 350 ºC. Las varillas miden 5mm de diámetro y son de acero st 70. a) Averiguar sus propiedades térmicas y calcular la tensión térmica que se genera hacia ambos lados. b) Si por razones constructivas la plancha lateral del horno será delgada (no resistente) cual será la holgura mínima que se debe dar entre la parrilla y las planchas laterales del horno? Docente: Ing. Miguel A. Ruiz Orellana 13

14 Docente: Ing. Miguel A. Ruiz Orellana 14

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE 1- Una barra prismática de sección transversal circular está cargada por fuerzas P, de acuerdo a la figura siguiente.

Más detalles

Tema 5 TRACCIÓN-COMPRESIÓN

Tema 5 TRACCIÓN-COMPRESIÓN Tema 5 TRACCIÓN-COMPRESIÓN Problema 5.1 Obtenga el descenso del centro de gravedad de la barra, de longitud L, de la figura sometida a su propio peso y a la fuerza que se indica. El peso específico es

Más detalles

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min RESISTEI DE MTERIES II URSO 1-1 EXME DE JUIO /5/1 1 h 15 min echa de publicación de la preacta: /6/1 echa y hora de la revisión del examen: 1/6/1 a las 9: 1. Un perfil IPE de m de longitud, empotrado en

Más detalles

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial ASIGNATURA: RESISTENCIA DE MATERIALES GUÍA N 1: ESFUERZOS Y DEFORMACIONES NORMALES 1.- Sabiendo que la fuerza en la barra articulada AB es 27 kn (tensión), hallar (a) el diámetro d del pasador para el

Más detalles

Ejercicios y Problemas de Fatiga

Ejercicios y Problemas de Fatiga UNIVERSIDAD SIMON BOLIVAR División de Física y Matemáticas Departamento de Mecánica MC2143-Mecánica de Materiales III Ejercicios y Problemas de Fatiga Problema No. 1 En la Fig. 1a se muestra el esquema

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 14.1.- Se considera un soporte formado por un perfil de acero A-42 IPN 400 apoyado-empotrado, de longitud L = 5 m. Sabiendo

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas:

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas: Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Consignas de reflexión a) Defina el concepto de momento torsor. b) Cómo se distribuyen las tensiones de corte en la sección transversal de la llave?

Consignas de reflexión a) Defina el concepto de momento torsor. b) Cómo se distribuyen las tensiones de corte en la sección transversal de la llave? TRABAJO PRACTICO Nro. 8- TORSION 1) a ) Para la llave de la fig. calcule la magnitud del par de torsión aplicado al perno si se ejerce una fuerza de 50 N en un punto a 250 mm del eje de la caja. b) Calcule

Más detalles

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

2. Un ensayo de tracción lo realizamos con una probeta de 15 mm de diámetro y longitud inicial de 150 mm. Los resultados obtenidos han sido:

2. Un ensayo de tracción lo realizamos con una probeta de 15 mm de diámetro y longitud inicial de 150 mm. Los resultados obtenidos han sido: PROBLEMAS ENSAYOS 1. Un latón tiene un módulo de elasticidad de 120 GN/m 2 y un límite elástico de 250 10 6 N/m 2. Una varilla de este material de 10 mm 2 de sección y 100 cm de longitud está colgada verticalmente

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

La presión p del fluido multiplicado por el área proyectada de incidencia de la presión da como resultado una fuerza ejercida por el fluido, así:

La presión p del fluido multiplicado por el área proyectada de incidencia de la presión da como resultado una fuerza ejercida por el fluido, así: CAP. 6 OBJETIVOS: TEMAS: RECIPIENTES DE PARED DELGADA - Establecer las tensiones presentes en recipientes de pared delgada - Diseñar los recipientes de pared delgada 8.1. Cilindros de pared delgada bajo

Más detalles

Equilibrio y cinemática de sólidos y barras (2)

Equilibrio y cinemática de sólidos y barras (2) Equilibrio y cinemática de sólidos y barras (2) Fuerzas aiales distribuidas y sección variable Índice Ejercicios de recapitulación Fuerzas aiales distribuidas Equilibrio Deformación Ejemplos Barras de

Más detalles

10. (B 1.52) Se desea considerar un diseño alterno para dar soporte al elemento BCF del problema anterior, por lo que se reemplazará

10. (B 1.52) Se desea considerar un diseño alterno para dar soporte al elemento BCF del problema anterior, por lo que se reemplazará TALLER Solucione los siguientes ejercicios teniendo en cuenta, antes de resolver cada ejercicio, los pasos a dar y las ecuaciones a utilizar. Cualquier inquietud enviarla a juancjimenez@utp.edu.co o personalmente

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS

PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS 1. El dibujo de la figura muestra una combinación de pluma de brazo con un tensor que soporta una carga de 6kN. Ambas piezas están hechas de

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.

Más detalles

Diseño estructural ANÁLISIS Y PREDIMENSIONADO DE COLUMNAS

Diseño estructural ANÁLISIS Y PREDIMENSIONADO DE COLUMNAS Diseño estructural ANÁLISIS Y PREDIMENSIONADO DE COLUMNAS JUNIO 2013 Predimensionado de columnas Introducción La columna es el elemento estructural vertical empleado para sostener la carga de la edificación.

Más detalles

Mecánica de Materiales I

Mecánica de Materiales I Mecánica de Materiales I Tema 1 Esfuerzo y Deformación Introducción Índice de contenido Sección 1 - Concepto de Esfuerzo Sección 2 - Deformaciones Sección 3 - Ensayo de tracción Sección 4 - Curva Esfuerzo-Deformación

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 10.1.- Qué longitud debe tener un redondo de hierro (G = 80.000 MPa), de 1 cm de diámetro para que pueda sufrir un ángulo de

Más detalles

Obra: Pista de patinaje sobre hielo

Obra: Pista de patinaje sobre hielo Obra: Pista de patinaje sobre hielo Cubierta colgante pesada que cubre una luz libre de 95 metros. Su estructura está conformada por cables colocados cada 2 metros con apoyos a distinta altura. Completan

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

PROBLEMA 1. Se pide: 1. Calcular para una confiabilidad del 95 % el valor máximo que puede tomar F para que la pieza tenga vida infinita.

PROBLEMA 1. Se pide: 1. Calcular para una confiabilidad del 95 % el valor máximo que puede tomar F para que la pieza tenga vida infinita. PROBLEMA 1 La pieza de la figura, que ha sido fabricada con acero forjado de resistencia última 750 MPa y densidad 7850 kg/m 3, sirve intermitentemente de soporte a un elemento de máquina, de forma que

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

Determinación de la Tensión Adm.de una barra de acero por medio del diagrama.

Determinación de la Tensión Adm.de una barra de acero por medio del diagrama. TRABAJO PRÁCTICO N 7 Determinación de la Tensión Adm.de una barra de acero por medio del diagrama. CONSIDERACIONES TEÓRICAS GENERALES Se denomina tracción axial al caso de solicitación de un cuerpo donde

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo once: Dimensionado UNO 1. Introducción. 1.1. Para el control de las elásticas. En este capítulo presentamos la metodología a seguir para establecer las dimensiones

Más detalles

PREGUNTAS PRUEBAS PAU MATERIALES

PREGUNTAS PRUEBAS PAU MATERIALES PREGUNTAS PRUEBAS PAU MATERIALES JUNIO 2010 FE Opción A Defina brevemente las siguientes propiedades que presentan los compuestos metálicos: a) Elasticidad (0,5 puntos) b) Tenacidad (0,5 puntos) c) Maleabilidad

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

RESISTENCIA DE MATERIALES

RESISTENCIA DE MATERIALES UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE

Más detalles

P 1 = 6 t P 2 = 2 t E = 2000 t/cm 2. Rdos: l = cm. P 1 = 10 t E ac = 2100 t/cm 2 E cu = 1000 t/cm 2 d= 2 cm D= 5 cm L= 10 cm.

P 1 = 6 t P 2 = 2 t E = 2000 t/cm 2. Rdos: l = cm. P 1 = 10 t E ac = 2100 t/cm 2 E cu = 1000 t/cm 2 d= 2 cm D= 5 cm L= 10 cm. TP N C.2.1 Para el siguiente sistema se pide : a) Determinar el diagrama de tensiones normales. b) Calcular la variación de longitud absoluta ( l ) de la barra. P 1 = 6 t P 2 = 2 t E = 2000 t/cm 2 1 =

Más detalles

CIV302 A y B 5 II-2013 G. Elias Belmonte C. 05/08/ /12/ /07/2013. Tema Objetivo Actividades de Enseñanza Recursos Didácticos

CIV302 A y B 5 II-2013 G. Elias Belmonte C. 05/08/ /12/ /07/2013. Tema Objetivo Actividades de Enseñanza Recursos Didácticos CARTA DESCRIPTIVA (PLANIFICACION DIDACTICA) Materia Grupo Nivel Semestre Docente Fecha de Inicio del calendario acad. Fecha de conclusión calendario acad. Fecha de Elaboración de la carta CIV302 A y B

Más detalles

ESTABILIDAD II A (6402)

ESTABILIDAD II A (6402) 1 ESTABILIDAD II A (6402) GUIA DE TRABAJOS PRÁCTICOS COMPLEMENTARIOS DE SOLICITACIÓN POR TORSIÓN, FLEXIÓN, FLEXIÓN VARIABLE Y COMPUESTA Y CÁLCULO DE DESPLAZAMIENTOS POR TTV.: Por Ing. H.Eduardo Rofrano

Más detalles

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo

Más detalles

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3 Relación de problemas: Elasticidad lineal 1. Una barra de sección rectangular con anchura 100 mm, fondo 50 mm y longitud 2 m se somete a una tracción de 50 Tm; la barra sufre un alargamiento de 1 mm y

Más detalles

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS:

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: TEMAS: - Demostrar la euaión de la tensión de torsión, su apliaión y diseño de miembros sometidos a tensiones de torsión 5.1. Teoría de torsión simple 5..

Más detalles

Si cada elefante pesa en promedio 3800 kg y se considera que su peso se reparte uniformemente sobre la plataforma:

Si cada elefante pesa en promedio 3800 kg y se considera que su peso se reparte uniformemente sobre la plataforma: Considerar los siguientes datos para un acero: Límite elástico = 345 MPa Módulo de Young = 207 GPa Tenacidad a fractura = 90 MPa Tensión de rotura = 517 MPa Deformación bajo carga máxima = 20% Factor de

Más detalles

DILATACIÓN PREGUNTAS PROBLEMAS

DILATACIÓN PREGUNTAS PROBLEMAS DILATACIÓN 1. Qué es la temperatura? PREGUNTAS PROBLEMAS 1. Dos barras idénticas de fierro (α = 12 x 10-6 /Cº) de 1m de longitud, fijas en uno de sus extremos se encuentran a una temperatura de 20ºC si

Más detalles

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES.

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Félix C. Gómez de León Antonio González Carpena TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Curso de Resistencia de Materiales cálculo de estructuras. Clases de tensiones. Índice. Tensión simple

Más detalles

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago Estática A Fuerzas Si sobre un cuerpo actúan solo dos fuerzas en la misma línea, y el cuerpo está en reposo o moviéndose con velocidad constante, las fuerzas son iguales pero de sentidos contrarios. Si

Más detalles

Sólo cuerdas dinámicas

Sólo cuerdas dinámicas Efectos de una caída Al caernos desde una cierta altura estando amarrados con una se producen varios sucesos simultáneos. Toda la energía potencial que habíamos ganado con la altura se convierte en cinética

Más detalles

Estática Profesor Herbert Yépez Castillo

Estática Profesor Herbert Yépez Castillo Estática 2015-1 Profesor Herbert Yépez Castillo Introducción 8.1 Tipos de Estructuras Armaduras Marcos Máquinas 8.2 Armadura Estabilidad y determinación estática externas Estabilidad y determinación estática

Más detalles

OBJETO DEL ENSAYO DE TRACCION

OBJETO DEL ENSAYO DE TRACCION OBJETO DEL ENSAYO DE TRACCION UN CUERPO SE ENCUENTRA SOMETIDO A TRACCION SIMPLE CUANDO SOBRE SUS SECCIONES TRANSVERSALES SE LE APLICAN CARGAS NORMALES UNIFORMEMENTE REPARTIDAS Y DE MODO DE TENDER A PRODUCIR

Más detalles

TRABAJOS PRACTICOS N 8 TEMA: DISEÑO DE ELEMENTOS ESTRUCTURALES SOMETIDOS A TRACCIÓN, COMPRESION, APLASTAMIENTO Y CORTE.

TRABAJOS PRACTICOS N 8 TEMA: DISEÑO DE ELEMENTOS ESTRUCTURALES SOMETIDOS A TRACCIÓN, COMPRESION, APLASTAMIENTO Y CORTE. 8.1. Especifíquese una aleación de aluminio conveniente para una barra redonda con un diámetro de 10 mm. Sometida a una fuerza de Tracción directa estática de 8,50 kn. 8.2. Una barra rectangular con sección

Más detalles

Estática. Equilibrio de un cuerpo rígido

Estática. Equilibrio de un cuerpo rígido Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio

Más detalles

Ecuaciones diferenciales de Equilibrio

Ecuaciones diferenciales de Equilibrio Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),

Más detalles

PROBL EMAS. *3-4. Determine la magnitud y el ángulo 8 de F necesarios Determine las magnitudes de Fl y F2 necesarias

PROBL EMAS. *3-4. Determine la magnitud y el ángulo 8 de F necesarios Determine las magnitudes de Fl y F2 necesarias 90 CAPíTULO 3 Equilibrio de una partícula PROBL EMAS 3-1. Determine las magnitudes de l 2 necesarias para que la partícula P esté en equilibrio. 3-3. Determine la magnitud el ángulo 8 de } necesarios para

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN Se presentan a continuación dos pruebas: OPCIÓN A y OPCIÓN B, cada una de ellas con un ejercicio y varias cuestiones.

Más detalles

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm Problema 1. n la celosía de la figura, calcular los esfuerzos en todas las barras y reacciones en los apoyos, debido a la actuación simultánea de todas las acciones indicadas (cargas exteriores y asientos

Más detalles

PRÁCTICA 1: NEUMÁTICA CONVENCIONAL: Consulta de catálogos comerciales

PRÁCTICA 1: NEUMÁTICA CONVENCIONAL: Consulta de catálogos comerciales Sistemas neumáticos y oleohidráulicos. Consulta de catálogos. 1 PRÁCTICA 1: NEUMÁTICA CONVENCIONAL: Consulta de catálogos comerciales En primer término la práctica consiste simplemente en observar con

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO 4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión

Más detalles

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE COMENTARIOS AL CAPÍTULO 6. BARRAS EN FLEXIÓN SIMPLE Para tener una respuesta simétrica de la sección en flexión simple y evitar efectos torsionales, se exige que cuando sean más de una las arras de los

Más detalles

Dr. Bernardo Gómez González

Dr. Bernardo Gómez González EJEMPLO DEL CÁLCULO DE LOS ESFUERZOS PERMISIBLES POR COMPRESIÓN AXIAL Y POR FLEXIÓN ALREDEDOR DEL EJE DE MAYOR MOMENTO DE INERCIA DE LA SECCIÓN TRANSVERSAL DISEÑO ESTRUCTURAL UNIVERSIDAD TECNOLÓGICA DE

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 10.- SOLUCIONES CONSTRUCTIVAS EN CONSTRUCCIONES METALICAS Esta unidad de trabajo la vamos a desarrollar desde un punto de vista

Más detalles

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. MADRID CURSO 2010/2011 PUENTES I PRACTICA 1

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. MADRID CURSO 2010/2011 PUENTES I PRACTICA 1 CURSO 2010/2011 PUENTES I PRACTICA 1 En la figura se muestra la sección transversal de un puente formado por cinco vigas prefabricadas doble T de hormigón pretensado separadas 2,635 metros entre sí. La

Más detalles

Verificación del pilote Entrada de datos

Verificación del pilote Entrada de datos Verificación del pilote Entrada de datos Proyecto Fecha : 28.10.2015 Configuración (entrada para tarea actual) Materiales y estándares Estructuras de hormigón : CSN 73 1201 R Pilote Para pilote compresivo

Más detalles

2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25.

2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25. 2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25. 2.2.- Para la palanca de cambios mostrada, determine

Más detalles

CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil

CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil 1 CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) CARACTER: OBJETIVOS: CONTENIDOS Obligatorio de la Licenciatura en Ingeniería Civil Capacitar al alumno

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Problema 1. Vista general del problema. Modelo - Vista longitudinal. Sección cajón. φ= m m m

Problema 1. Vista general del problema. Modelo - Vista longitudinal. Sección cajón. φ= m m m Problema 1 Sea el puente de la Figura 1 consistente en una sección cajón de hormigón armado simplemente apoyado en sus extremos y que apoya al centro sobre una columna circular empotrada en la base. La

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2 1. Tema: Determinación de la posición de las galgas extensiométricas en una barra de torsión. 2. Objetivos: a. Simular el comportamiento estático de una barra de torsión, mediante el uso de un paquete

Más detalles

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior

Más detalles

Ingeniería Asistida por Computador

Ingeniería Asistida por Computador Problema No 1: Se desea mecanizar un eje como el que representa en la figura, el elemento debe soportar una carga de 6500N actuando sobre un tramo de la barra, el material considerado para la pieza es

Más detalles

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca

Más detalles

Ejemplo 11b. Se pide: Datos: Cálculo de losas: Análisis de cargas. Cálculo de solicitaciones.

Ejemplo 11b. Se pide: Datos: Cálculo de losas: Análisis de cargas. Cálculo de solicitaciones. Ejemplo 11b. Se pide: Calcular el entrepiso del ejemplo anterior utilizando la simbología del Cirsoc 2005; el que se encuentra en vigencia. En el ejemplo anterior se resolvió el mismo entrepiso mediante

Más detalles

Según un estudio de hace algunos años, del ACI & ASCE (American Society of Civil Engineers) señalaba:

Según un estudio de hace algunos años, del ACI & ASCE (American Society of Civil Engineers) señalaba: COLUMNAS Pedestales cortos a compresión Condición L < 3. d menor Esfuerzo en el hormigón 0,85. φ. f c ; φ = 0.70 Sin armadura (hormigón simple) o como columna corta Columnas cortas de hormigón armado Zunchadas

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

Vigas Hiperestáticas

Vigas Hiperestáticas Vigas Hiperestáticas A.J.M.Checa November 11, 7 En el tipo de vigas que vamos a analizar en esta sección, el número de incógnitas es mayor que el número de ecuaciones. Por tanto, hemos

Más detalles

2DA PRÁCTICA CALIFICADA

2DA PRÁCTICA CALIFICADA 2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA

Más detalles

CURVATURA EN COLUMNAS

CURVATURA EN COLUMNAS UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICA CURVATURA EN COLUMNAS Prof. Cristian Castillo Sección 02 Presentado por: Olivera Ricardo

Más detalles

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero?

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? ELASTICIDAD PREGUNTAS 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? 3. Dos alambres hechos de metales A y B, sus longitudes y

Más detalles

Asignatura: TEORÍA DE ESTRUCTURAS

Asignatura: TEORÍA DE ESTRUCTURAS Asignatura: TEORÍA DE ESTRUCTURAS Titulación: INGENIERO TÉCNICO EN OBRAS PÚBLICAS Curso (Cuatrimestre): 2º Primer Cuatrimestre Profesor(es) responsable(s): Dr. Luis Sánchez Ricart Ubicación despacho: Despacho

Más detalles

CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA

CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA Con el propósito de seleccionar los materiales y establecer las dimensiones de los elementos que forman una estructura

Más detalles

Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas

Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Apellidos, nombre asset Salom, Luisa (lbasset@mes.upv.es) Departamento Centro Mecánica de Medios

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA. PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre 2005. MECÁNICA. C1) Determina la resultante del sistema de fuerzas coplanarias mostrado en la figura inferior izquierda.

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores:

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores: TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN Curso 2010/11 Elaborados por los profesores: Luis Bañón Blázquez (PCO) Fco. Borja Varona Moya (PCO) Salvador Esteve Verdú (ASO) PRÓLOGO La

Más detalles

3. ESTRUCTURAS. Se realiza un cálculo lineal de primer orden, admitiéndose localmente plastificaciones de acuerdo a lo indicado en la norma.

3. ESTRUCTURAS. Se realiza un cálculo lineal de primer orden, admitiéndose localmente plastificaciones de acuerdo a lo indicado en la norma. 3. ESTRUCTURAS El presente estudio tiene por objeto justificar el cálculo de la estructura de la obra de referencia. Asimismo se indican las características de los materiales empleados, hipótesis utilizadas

Más detalles

TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO

TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO 1. A) En cada uno de los cinco ejemplos siguientes se presenta en la ilustración de la izquierda el cuerpo a aislar, mientras que a la derecha se presenta

Más detalles

PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS

PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS 1. Una grúa móvil levanta una carga de madera que pesa W = 25 kn. El peso del mástil ABC y El peso combinado de la camioneta y el conductor son los indicados

Más detalles

GUÍA 3: CORRIENTE CONTINUA Electricidad y Magnetismo

GUÍA 3: CORRIENTE CONTINUA Electricidad y Magnetismo GUÍA 3: CORRIENTE CONTINUA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

CAPÍTULO 2. RESISTENCIAS PASIVAS

CAPÍTULO 2. RESISTENCIAS PASIVAS CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.

Más detalles

Cálculo del proceso de varada para embarcaciones deportivas. Trabajo realizado por: Joan Garcia Alonso Ingeniero en Sistemas y Tecnología Naval

Cálculo del proceso de varada para embarcaciones deportivas. Trabajo realizado por: Joan Garcia Alonso Ingeniero en Sistemas y Tecnología Naval Cálculo del proceso de varada para embarcaciones deportivas Trabajo realizado por: Joan Garcia Alonso Ingeniero en Sistemas y Tecnología Naval Introducción Actualmente el proceso de varada de las embarcaciones

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

CONSIDERACIONES PARA EL DISEÑO

CONSIDERACIONES PARA EL DISEÑO CAPITULO II CONSIDERACIONES PARA EL DISEÑO 1.- ACCIONES SOBRE LAS ESTRUCTURAS 1.1.- Acciones a considerar sobre las estructuras Las acciones a tener en cuenta sobre una estructura o elemento estructural,

Más detalles

Sistemas Electrotécnicos y Automáticos. Líneas de Transmisión.

Sistemas Electrotécnicos y Automáticos. Líneas de Transmisión. istemas Electrotécnicos y Automáticos. íneas de Transmisión.. Un cable tetrapolar de cobre con aislamiento de XPE, tensión nominal kv, longitud 0 m, caída de tensión %, alimenta a 80/0 V, 50Hz una instalación

Más detalles

ESTRUCTURAS SIMETRICAS

ESTRUCTURAS SIMETRICAS ESTRUCTURAS SIMETRICAS Las estructuras reales presentan con mucha frecuencia diseños que tienen la característica de ser simétricas con relación a algún plano, como por ejemplo las estructuras de muchos

Más detalles

TAREA # 2 FISICA I FUERZAS Prof. Terenzio Soldovieri C.

TAREA # 2 FISICA I FUERZAS Prof. Terenzio Soldovieri C. la presente hoja ni reescribirla en su tarea (Sólo debe entregar los problemas marcados, los restantes son para ejercitación). Puntuación: 10 puntos, los cuales serán sumados a la sumatoria de la calificación

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION ESCUELA DE ELÉCTRICA ESCUELA DE TELECOMUNICACIONES PROGRAMA AL FUNDAMENTOS DE RESISTENCIA DE LOS MATERIALES

Más detalles

PROYECTO DE CONSTRUCCIÓN

PROYECTO DE CONSTRUCCIÓN ACOSOL, S.A. PROYECTO DE CONSTRUCCIÓN Titulo: Sustitución del Tramo de la Tubería Norte de las Conducciones Principales de Abastecimiento entre los Autoportantes de Arroyo Calahonda y Arroyo Lucera en

Más detalles

Estática. Fig. 1. Problemas números 1 y 2.

Estática. Fig. 1. Problemas números 1 y 2. Estática 1. Un bote está amarrado mediante tres cuerdas atadas a postes en la orilla del río, tal como se indica en la figura 1(a). La corriente del río ejerce una fuerza sobre este bote en la dirección

Más detalles

T P N 7- CORTE PURO Y TENSION DE APLASTAMIENTO

T P N 7- CORTE PURO Y TENSION DE APLASTAMIENTO COMISION DE INGENIERIA QUIMICA T P N 7- CORTE PURO Y TENSION DE APLASTAMIENTO 1. En la figura se ve un punzón para perforar placas de acero. Supóngase que se usa un punzón con diámetro de 0,75 in para

Más detalles

EJERCICIO 1. Trazar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada m. 0.

EJERCICIO 1. Trazar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada m. 0. EJERCICIOS DE APLICACION EJERCICIO 1. razar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada. θ.8 m y x 15. m p.1 m θ.1 m La carga axial

Más detalles