Ejercicio 1 de la Opción A del modelo 6 de Solución
|
|
- Lidia Figueroa Miguélez
- hace 4 años
- Vistas:
Transcripción
1 Ejercicio 1 de la Opción A del modelo 6 de 2003 [2'5 puntos] Sea la función f : R R definida por f(x) = 2x 3-6x + 4. Calcula el área del recinto limitado por la gráfica de f y su recta tangente en el punto de abscisa correspondiente al máximo relativo de la función. f(x) = 2x 3-6x + 4 es una función polinómica por tanto derivable en R todas las veces que nos haga falta. Como hay que hallar la recta tangente en su máximo relativo, sabemos que si x = a es el máximo relativo de f(x) verifica que f '(a) = 0 y además f '(a) < 0. f ' (x) = 6x 2-6 f ' (x) = 0, nos dá 6x 2-6 = 0, de donde x 2 = 1 y x = ± 1. Que son los posibles máximo o mínimos relativos de f(x). f '' (x) = 12x Como f ''(-1) = 12(-1) = - 12 < 0, x = - 1 es el máximo relativo buscado. La recta tangente en x = - 1 es y - f(-1) = 0.(x - 1) = 0 porque f '(-1) = 0 f(-1) = 2(-1) 3-6(-1) + 4 = 8, luego la recta tangente es y - 8 = 0, es decir y = 8. Para calcular el área encerrada por f(x) y la recta y = 8, tenemos que calcular los puntos donde coinciden es decir las soluciones de la ecuación f(x) = 8 2x 3-6x + 4 = 8, 2x 3-6x - 4 = 0. Le aplicamos la regla de Ruffini Luego -1 es una raíz y 2x 3-6x - 4 = (x + 1).(2x 2-2x 2-4 ) = 0, de donde x +1 = 0. Y su solución es x = -1 2x 2-2x 2-4 = 0, y sus soluciones son, es decir x = 2 y x = -1. La función f(x) y la recta tangente y = 8 se cortan en x = - 1 y x = 2, por tanto el área pedida es Área = = = ( ) - (-1/2 +3-4) = 27/2 unidades de área Gráficamente, aunque no lo piden, es
2 Ejercicio 2 de la Opción A del modelo 6 de 2003 Dada la función f definida para x -1 por f(x) = x 3 /(1 + x) 2, determina: (a) [1'5 puntos] Las asíntotas de la gráfica de f. (b) [1 punto] Los puntos de corte, si existen, de dicha gráfica con sus asíntotas. (a) Como = -, x = - 1 es una asíntota vertical (A.V.) de f(x) = +. Como es una cociente de polinomios con el numerador de un grado mas que el denominador tiene una asíntota oblicua (A.O.) del tipo y = mx + n, y es la misma en + y en -. Luego la asíntota oblicua es y = mx + n = x - 2 También se puede obtener dividiendo, y la asíntota es el cociente de la división x 3 x 2 +2x+1 -x 3-2x 2-2 x - 2
3 -2x 2 - x +2x 2 +4x+2 3x+2 Veamos la posición relativa de f(x) respecto de la A.O. Como, f(x) está por encima de la A.O. en +. Como, f(x) está por debajo de la A.O. en -. (b) Para hallar los puntos de corte de f(x) con la asíntota igualamos la función con la asíntota y vemos si tiene soluciones. Con las asíntotas verticales no hay corte, solo con la oblicua. Igualando tenemos x 3 /(1+x) 2 = x - 2 x 3 = (1+x) 2.(x - 2) = x 3-3x - 2. Simplificando x 3 tenemos x = -2/3, con lo cual f(x) y la asíntota se cortan en el punto (-2/3, -8/3). Aunque no lo piden la gráfica de la función y de las asíntotas (en azul la oblicua) son: Ejercicio 3 de la Opción A del modelo 6 de 2003
4 Considera las matrices, y. (a) [0'75 puntos] Para qué valores de m existe la matriz A -1? (b) [1 punto] Siendo m = 2, calcula A -1 y resuelve el sistema A.X = B. (c) [0'75 puntos] Resuelve el sistema A.X = B para m = 1., y. (a) para que exista A -1 su determinante tiene que ser distinto de cero A = = 1.(-m 2-3 ) (-1).(-4m) = -m 2 + 4m - 3 -m 2 + 4m - 3 = 0 m 2-4m + 3 = 0, y resolviendo la ecuación tenemos m = 3 y m = 1. Luego si m 3 y m 1 existe A -1. (b) Si m = 2, existe A 1 y es A -1 = (1/ A ).[Adj(A)] t A = A = -(2) 2 + 4(2) - 3 = 1 A t = Adj( A t ) = A -1 = (1/ A ).[Adj(A)] t = (1/1). =. A.X = B, multiplicamos por la izquierda por A -1 A -1. A.X = A -1. B, operando tenemos I.X = A -1. B, de donde
5 X = A -1. B =. = = (c) Resuelve A.X = B con m = 1 Si m = 1 no existe A -1. Veamos si el sistema es compatible La matriz de lkos coeficientes es A = y la matriz ampliada A * = En A como = 1 0, rango(a) = 2 En A * como =0, rango(a * ) = 2 Como rango(a) = 2 = rango(a * ), por el teorema de Rouche el sistema es compatible e indeterminado. Tiene dos ecuaciones y dos incógnitas principales. Nos quedamos con las dos primeras ecuaciones del sistema x - y = 1 y + 3z = 1. Tomamos z = λ, y operando tenemos y = 1-3λ, x = 1 + λ. La solución del sistema es (x,y,z) = (1 + λ, 1-3λ, λ) con λ R Ejercicio 4 de la Opción A del modelo 6 de 2003 Considera el plano π x - 2y + 1 = 0 y la recta. (a) [1'25 puntos] Halla el valor de a sabiendo que la recta está contenida en el plano. (b) [1'25 puntos] Calcula el ángulo formado por el plano π y la recta (a)
6 π x - 2y + 1 = 0,. Para que r π, rango (A) = rango(a * ) = 2,siendo A = y A * = la matriz de los coeficientes y la matriz ampliada del sistema formado por el plano y las dos ecuaciones de la recta r. En A para que tenga rango 2, A = 0 A = = 1(-3a+1)+2(a-1) = -a = 0. Luego a = 0 Veamos que efectivamente A y A * tienen rango2 con a =0 En A como = -1 0, rango(a) = 2 En A * como = {2ªF+1ª(-1);3ªF+1ª(-1)} = =1.(0) =0, rango(a * ) = 2. (b) El ángulo formado por s y π,α, es el complementario del menor de los ángulos que forman el vector director de s, v, con el vector normal de π, n. De π x - 2y + 1 = 0, n = (1,-2,1) De, v = (1,-3,1)x((1,-1,1) = =i(-2) -j(0) + k(2) = (-2,0,2)
7 cos(90 - ) = sen( ) = = 0, luego = arsen( ) = 0, es decir el ángulo que forman la recta y el plano es 0º. Ejercicio 1 de la Opción B del modelo 6 de 2003 [2'5 puntos] De entre todos los rectángulos que tienen uno de sus vértices en el origen de coordenadas, el opuesto de este vértice en la curva y = 2x 2 /(x 2-1) con (x > 1), uno de sus lados situado sobre el semieje positivo de abscisas y otro lado sobre el semieje positivo de ordenadas, halla el que tiene área mínima. La figura sería con f(x) = 2x 2 /(x 2-1) y (x > 1). El área del rectángulo es base por altura, es decir A(x) = x.f(x) = 2x 3 /(x 2-1) Calculamos A'(x), la igualamos a cero para ver los posibles máximos o mínimos y después comprobamos en A''(x) A'(x) = [6x 2 (x 2-1) - 2x 3 (2x)] / (x 2-1 ) 2 = (2x 4-6x 2 ) / (x 2-1 ) 2 A'(x) = 0 implica (2x 4-6x 2 ) = 0 = 2x 2 (x 2-3 ). Por tanto las soluciones son x = 0, x = + y x = -. Como el problema dice que x > 1, están descartadas las soluciones x = 0 y x = - Veamos que es un mínimo comprobando que A''( ) > 0 A''(x) = [ (8x 3-12x)(x 2-1 ) 2 - (2x 4-6x 2 )(2)(x 2-1)(2x) ] / (x 2-1 ) 4 A''( ) = [ (8( ) 3-12( ))(nº positivo ) - 0] / (nº positivo) > 0, luego x = + es un mínimo. Las dimensiones del rectángulo pedido son x = = + e y = f( ) = 2( ) 2 /(( ) 2-1) = 3. Ejercicio 3 de la Opción B del modelo 6 de 2003
8 [2'5 puntos] Una empresa cinematográfica dispone de tres salas, A, B y C. Los precios de entrada a estas salas son de 3, 4 y 5 euros, respectivamente. Un día la recaudación conjunta de las tres salas fue de 720 euros y el número total de espectadores fue de 200. Si los espectadores de la sala A hubieran asistido a la sala B y los de la sala B a la sala A, se hubiese obtenido una recaudación de 20 euros más. Calcula el número de espectadores que acudió a cada una de las salas. Sea x = nº de espectadores de la sala A y = nº de espectadores de la sala B z = nº de espectadores de la sala C Las relaciones que me han dado conducen al siguiente sistema x + y + z = 200 3x+4y+5z = 720 3y+4x+5z = 720. Si a la 2ª ecuación le sumamos la 1ª multiplicada por -3, y a la 3ª le sumamos la 1ª multiplicada por -4 obtenemos el siguiente sistema equivalente x + y + z = 200 y+2z = 120 -y+z = Si a la 3ª ecuación le sumamos la 2ª multiplicada por 1, obtenemos el siguiente sistema equivalente x + y + z = 200 y+2z = 120 3z = 60. Resolviéndolo obtenemos z = 20, y = 120-2(20) = 80, x = = 100, luego la solución del sistema es (x,y,z) = (100, 80, 20), es decir: nº de espectadores de la sala A = 100 nº de espectadores de la sala B = 80 nº de espectadores de la sala C = 20 Ejercicio 4 de la Opción B del modelo 6 de 2003 [2'5 puntos] Halla la ecuación de una circunferencia que pase por el punto (-1,-8) y sea tangente a los ejes coordenados.
9 La ecuación de la circunferencia de centro C(a,b) y radio r es (x - a) 2 + (y - b) 2 = r 2 Como dicen que es tangente a los ejes coordenados el radio r es la distancia del centro C a cada uno de los ejes coordenados, es decir r = d(c, eje OX) = d(c, eje OY) La ecuación de la recta del eje OX es y = 0 La ecuación de la recta del eje OY es x = 0 Por tanto r = d(c, eje OX) = d(c, y = 0) = b r = d(c, eje OY) = d(c, x = 0) = a Igualando tenemos a = b, de donde a = b o a = -b Si tomamos r = a = b, e imponemos la condición de que (-1,-8) es un punto de la circunferencia (x - a) 2 + (y - a) 2 = a 2 obtenemos (-1 - a) 2 + (-8 - a) 2 = a 2. Operando tenemos a a + 65 =0 Resolviendo la ecuación a a + 65 =0 obtenemos a = - 5 y a = - 13, por tanto hay dos circunferencias posibles, una de centro (-5, -5) y radio 5, y otra de centro (-13, -13) y radio 13 Si tomamos r = a = - b, e imponemos la condición de que (-1,-8) es un punto de la circunferencia (x - a) 2 + (y + a) 2 = a 2 obtenemos (-1 - a) 2 + (-8 + a) 2 = a 2. Operando tenemos a 2-14a + 65 =0, que no tiene soluciones reales Por tanto las circunferencias pedidas son (x + 5) 2 + (y + 5) 2 = 5 2 y (x + 13) 2 + (y + 13) 2 = 13 2 Aunque no lo piden las gráficas son:
10
IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]
IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,
IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre
IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular
IES Fco Ayala de Granada Junio específico de 2010 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Junio específico de 010 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 Junio Específico 010 [ 5 puntos] La hipotenusa de un triángulo rectángulo mide
IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica
IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 4 Especifico 2) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Septiembre de 013 (Modelo 4 Especifico ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 Septiembre 013 específico [ 5 puntos] Un rectángulo está inscrito en un
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A
IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina
Examen de Junio de 2011 (Común) con soluciones (Modelo )
Opción A Junio 011 común ejercicio 1 opción A ['5 puntos] Se desea construir un depósito cilíndrico cerrado de área total igual a 54 m. Determina el radio de la base y la altura del cilindro para que éste
Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.
EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula
Modelo 4 de Sobrantes de 2004
Ejercicio n de la opción A del modelo 4 de 24 9 Considera la integral definida I d + [ 5 puntos] Epresa la anterior integral definida aplicando el cambio de variables + t. [ punto] Calcula I. I d + Cambio
IES Fco Ayala de Granada Sobrantes del 2001 (Modelo 5) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes del (Modelo 5) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO -. MATEMÁTICAS II OPCIÓN A Ejercicio de la Opción A de sobrantes
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector
EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es
1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:
RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx
Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6
página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
Aplicaciones de la integral definida al cálculo de áreas
Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano
a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.
6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se
Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones
Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Matemáticas II. Segundo de Bachillerato. Curso Exámenes
Matemáticas II. Segundo de Bachillerato. Curso 0-03. Exámenes LÍMITES Y CONTINUIDAD o F. Límites y continuidad o F Ejercicio. Calcular el dominio de definición de las siguientes funciones: f(x) = 4 x h(x)
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León
Selectividad Septiembre 011 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger
Derivadas e integrales
Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Septiembre de 01 (Modelo ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Septiembre 01 ['5 puntos] Un alambre de 10 metros de longitud se divide en dos trozos.
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas
Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2
Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
PROBLEMAS DE INTEGRALES INDEFINIDAS
PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su
IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada (Modelo del 01) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 011-01 Opción A Ejercicio 1, Opción A, Modelo de 01 Sea la
EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN
EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN.- Calcular el área encerrada por la función: y = 9, el eje OX, y las rectas = f 9 Se trata de un triángulo de base y altura 9 9 El área sombreada
RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse)
RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) 1. LUGARES GEOMÉTRICOS Definición: Se llama lugar geométrico a la figura que forman un conjunto de puntos que cumplen una determinada
IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría
P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales 1. Estudiar el sistema de ecuaciones según los valores del parámetro a. ax + y + z = a x y + z = a 1 x + (a 1)y + az = a + 3 Resolverlo (si es posible) para a = 1. (Junio
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente
APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?
LUGARES GEOMÉTRICOS. CÓNICAS
9 LUGARES GEOMÉTRICOS. CÓNICAS Página PARA EMPEZAR, RELEXIONA Y RESUELVE Cónicas abiertas: parábolas e hipérbolas Completa la siguiente tabla, en la que α es el ángulo que forman las generatrices con el
x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por
x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y
Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.
LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente
MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA
1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Ecuaciones de la recta en el espacio
Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu
EJERCICIOS DE GEOMETRÍA
EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
LA RECTA Y SUS ECUACIONES
UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
TEMA 6. ECUACIONES DE LA RECTA
TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera
Formulas Matemáticas
B A C a TRIGONOMETRÍA Radian Grados sen a cos a tag a 0 2π 0 0 1 0 π/6 30º 1 / 2 3 / 2 3 / 3 π/4 45º 2 / 2 2 / 2 1 π/3 60º 3 / 2 1 / 2 3 π/2 90º 1 0 π 180º 0-1 0 3π/2 270º -1 0 sen a = B / C cos a = A
Problemas métricos. 1. Problemas afines y problemas métricos
. Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto
Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es:
Representa las rectas y = x + e y = x y calcula el punto que tienen en común El punto que tienen en común estas dos rectas se obtiene resolviendo el siguiente sistema de ecuaciones: y = x + y = x 3 x =,
MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos
MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )
= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x
Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas
ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas.
ECUACIÓN DE LA RECTA. El punto (, 0) está situado: a) Sobre el eje de ordenadas. b) En el tercer cuadrante. c) Sobre el eje de abscisas. (Convocatoria junio 00. Examen tipo D) Dibujando los ejes de coordenadas
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:
EJERCICIOS REPASO 2ª EVALUACIÓN
MATRICES Y DETERMINANTES 1.) Sean las matrices: EJERCICIOS REPASO 2ª EVALUACIÓN a) Encuentre el valor o valores de x de forma que b) Igualmente para que c) Determine x para que 2.) Dadas las matrices:
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3
[4] [EXT-A] a) La derivada de la función f() es: (-) (-) Determine la función f() sabiendo que f() = b) Determine el límite: lim + ++ ++ + [4] [EXT-B] a) Dadas las funciones f() = y g() = - +, determine
INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A
INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS
Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas
TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO
Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes
Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad
Limites, asíntotas y continuidad Problema 1: Sea la función. Determina las asíntotas si existen. Problema 2: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 3: Un inversor
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.
PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que
A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.
A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría
6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.
Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS
XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,
GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA
ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas
Aplicaciones de la derivada 7
Aplicaciones de la derivada 7 ACTIVIDADES 1. Página 160 a) La pendiente de la recta tangente es 12. b) La pendiente de la recta tangente es 3. 2. Página 160 a) La pendiente de la recta tangente es. b)
INTEGRAL DEFINIDA. APLICACIONES
COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del
1. Raíces y logaritmos
1 RAÍCES Y LOGARITMOS 1 1. Raíces y logaritmos 1. Racionalizar los denominadores: a) 1 b) 1 11 4 c) 7 + 7 d) 5 5 +. Despejar x en las siguientes igualdades: a) x = 6 b) 7 x = 15 c) x = 6 d) 5x = 1. Calcular
TEMA 8. GEOMETRÍA ANALÍTICA.
TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta
P. A. U. LAS PALMAS 2005
P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica
CONCEPTOS QUE DEBES DOMINAR
INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende
Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad
Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,