Actividad A ganar, a ganar!
|
|
- Antonio Giménez Guzmán
- hace 6 años
- Vistas:
Transcripción
1 Nivel: 2.º Medio Subsector: Matemática Unidad temática: Estadística y probabilidad Ficha 13: Actividad A ganar, a ganar! Cada vez que en un juego de azar se acumula el pozo de dinero para repartir, miles de personas se dedican a escoger sus números de la suerte y jugar, para poder alcanzar el anhelado sueño de ser millonario. Cómo podemos predecir, saber o intuir cuál es la probabilidad de ganar? Pues es bastante sencillo: Pierre Simon Laplace logró deducir que para poder determinar la probabilidad de ganar, los jugadores deben saber los casos favorables y los casos totales de cada suceso. El gran ejemplo que existe en Chile son los juegos de azar como el Loto o el Kino. Inicialmente el Loto se jugaba con 36 números en total, de los cuales había que acertar a 6. Con el tiempo, esto cambió a 39 números en total y se mantuvo la misma cantidad de aciertos. Aumenta esto nuestras posibilidades de ser millonarios? Quedamos igual que al principio? O definitivamente disminuye esto nuestras posibilidades? Verifiquemos. Inicialmente Casos favorables: 6 Casos totales : 36 Probabilidad de acertar:
2 Últimamente Casos favorables: 6 Casos totales: 39 Probabilidad de acertar: Qué sucedió? Cómo puedo interpretar este resultado? Investiga acerca de Pierre Simon Laplace y sus conclusiones respecto de las probabilidades. Una vez hecho esto, realiza la siguiente actividad: Ejercicios de desarrollo 1. En una urna hay 3 bolas blancas, 2 rojas y 4 azules. Calcula la probabilidad de que al extraer una bola al azar, sea roja. 2. Cuál es el espacio muestral del experimento "suma de los puntos obtenidos al lanzar dos dados"? 3. Una urna contiene 8 bolas rojas, 5 amarillas y 7 verdes. Se extrae una bola al azar. Determina la probabilidad de que: a) Sea roja b) Sea amarilla c) Sea verde 4. En una clase hay 10 alumnas rubias, 20 morenas, 5 alumnos rubios y 10 morenos. Un día sólo asisten 44. Calcula la probabilidad de que la persona que falte sea: a) hombre b) mujer c) hombre rubio d) mujer morena e) persona pelirroja
3 Ejercicios de selección múltiple 1) En una bolsa hay 3 fichas blancas y 2 fichas negras. Se saca al azar una ficha. Cuál es la probabilidad de obtener una ficha blanca? A) 1/2 B) 1/3 C) 1/5 D) 2/5 E) 3/5 2) Una caja contiene 6 fichas rojas, 8 negras y 10 verdes. La probabilidad de sacar una ficha negra es: A) 1/2 B) 1/3 C) 1/8 D) 1/16 E) 1/24 3) Se lanzan tres monedas no cargadas. Cuál es la probabilidad de obtener tres sellos? A) 1/8 B) 1/4 C) 3/8 D) 1/2 E) 3/4 4) Se lanza un dado no cargado. La probabilidad de obtener un número mayor que 4 es: A) 1/3 B) 1/2 C) 2/3 D) 3/4 E) 5/6
4 5) Se lanza un dado no cargado. La probabilidad de que el número obtenido sea menor que 6 es: A) 1 B) 5/6 C) 2/3 D) 1/2 E) 1/6 6) Se lanzan dos dados no cargados. Cuál es la probabilidad de obtener una suma igual a tres? A) 1/36 B) 1/18 C) 1/9 D) 5/36 E) 1/6 7) En una urna hay tres bolas negras y dos blancas. Cuál es la probabilidad de sacar una blanca? A) 2/3 B) 3/5 C) 1/2 D) 2/5 E) 1/5 8) Se elige al azar un número del 1 al 15. Cuál es la probabilidad de que este número sea múltiplo de 2? A) 1/15 B) 2/15 C) 7/15 D) 8/15 E) 1/2
5 9) Dado el conjunto D = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Si se elige un número al azar, cuál es la probabilidad de obtener un cuadrado perfecto? A) 1/3 B) 1/4 C) 1/2 D) 2/3 E) 3/4 10) Se lanzan dos dados simultáneamente. Cuál es la probabilidad de que el resultado sume un número menor que 5? A) 1/12 B) 1/9 C) 1/6 D) 10/36 E) N. A. Entonces, cómo podemos predecir, saber o intuir cuál es la probabilidad de ganar? Después de leer e investigar, queda claro que podemos saber con anticipación cuáles son nuestras posibilidades. Tales posibilidades están regidas por una probabilidad definida por una regla. Es decir, existe un procedimiento matemático válidamente definido, probado y aceptado que nos permite calcular la probabilidad de que un suceso exitoso ocurra. En un suceso ello depende del número de casos favorables de ocurrir y del número total de casos posibles de ocurrir. Se relacionan estos números de casos mediante una comparación por cuociente. Por lo mismo, mientras mayor sea el número de casos favorables mayor es la probabilidad de que el suceso sea exitoso. Y viceversa. Es decir, podemos predecir y saber con certeza cuál es la probabilidad que tenemos de acertar. Pero la seguridad de ganar solamente la podemos intuir. Ello es parte del azar. Y como en todo orden de cosas, tenemos que saber perder y saber ganar.
PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias?
PROBABILIDAD Ejercicio nº 1.- a Al lanzar un dado sacar puntuación par. b Lanzar un dado y sacar una puntuación mayor que 6. c Bajar a la planta baja en ascensor. Ejercicio nº 2 a En una caja hay cinco
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor
EJERCICIOS DE PROBABILIDAD (1ºA)
EJERCICIOS DE PROBABILIDAD (1ºA) 5) 6) Una bolsa contiene bolas negras y rojas. Se extraen sucesivamente tres bolas. Obtener: a) El espacio muestral. b) El suceso A = extraer tres bolas del mismo color.
EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30
EVALUACIÓN 1. Si la probabilidad que llueva en San Pedro en verano es 1/30 y la probabilidad que caigan 100 cc es 1/40, cuál es la probabilidad que no llueva en San Pedro y que no caigan 100 cc? A) 1/1200
Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos
EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO.
GUIA DE EJERCICIOS. TEMA: ESPACIO MUESTRAL-PROBABILIDADES-LEY DE LOS GRANDES NUMEROS. MONTOYA.- CONCEPTOS PREVIOS. EQUIPROBABILIDAD: CUANDO DOS O MAS EVENTOS TIENEN LA MISMA PROBABILIDAD DE OCURRIR. SUCESO
TEMA 14 CÁLCULO DE PROBABILIDADES
Tema 14 Cálculo de probabilidades Matemáticas I 1º Bachillerato 1 TEMA 14 CÁLCULO DE PROBABILIDADES ESPACIO MUESTRAL. SUCESOS EJERCICIO 1 : En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una
JUEGOS DE AZAR. Comprende y pone en práctica la probabilidad en juegos de azar
JUEGOS DE AZAR 06 Comprende y pone en práctica la probabilidad en juegos de azar En Presentación de contenidos repasa qué son los juegos de azar. En los ejercicios pone en práctica el azar lanzando una
Clase 4: Probabilidades de un evento
Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia
Lección 22: Probabilidad (definición clásica)
LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los
14Soluciones a los ejercicios y problemas
Soluciones a los ejercicios y problemas PÁGINA 8 Pág. P RACTICA Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los
13. II) Que salga una pinta del trébol es más probable que salga una pinta de diamante. III) La probabilidad de que salga un AS de trébol es 1/13.
GUIA UNO P.S.U. PROBABILIDADES ) Al lanzar un dado común (seis caras), cuál es la probabilidad de obtener un número que no sea primo? A) 2 5) Al lanzar dos dados no cargados, cuál es la probabilidad de
6. Calcula la probabilidad de obtener un número mayor que 2 al lanzar un dado cúbico correcto con sus caras numeradas de 1 a 6.
1. Tenemos una urna con 3 bolas rojas y 2 bolas verdes. Si sacamos 3 bolas de la urna, sin devolución, entonces: a) Hallar el espacio muestral de este experimento b) Formar los sucesos (sacar los resultados)
Tema 11 Probabilidad Matemáticas B 4º ESO 1
Tema 11 Probabilidad Matemáticas B 4º ESO 1 TEMA 11 PROBABILIDAD SUCESOS EJERCICIO 1 : En una bolsa hay 8 bolas numeradas del 1 al 8. Extraemos una bola al azar y anotamos su número. a Escribe el espacio
(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad.
(1) Medir el azar Se lanzan dos dados y sumamos los puntos de las caras superiores a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. Una bolsa contiene 4 bolas rojas,
INTRODUCCIÓN A LA PROBABILIDAD.
INTRODUCCIÓN A LA ROBABILIDAD. Departamento de Matemáticas Se denomina experimento aleatorio a aquel en que jamás se puede predecir el resultado. El conjunto formado por todos los resultados posibles de
Acertar: dependencia o independencia de los sucesos?
Nivel: 2.º Medio Sector: Matemática Unidad temática: Estadística y probabilidad Actividad para el estudiante Acertar: dependencia o independencia de los sucesos? Quizás hayas jugado el juego Monopoly o
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
AZAR, PROBABILIDAD Y ESTADÍSTICA EXPERIENCIAS DE AZAR
AZAR, PROBABILIDAD Y ESTADÍSTICA EXPERIENCIAS DE AZAR Hay situaciones en la vida diaria en las que no podemos saber qué resultado va a salir, pero sí sabemos los posibles resultados; son situaciones que
Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1]
Probabilidad Un fenómeno es aleatorio si conocemos todos sus posibles resultados pero no podemos predecir cual de ellos ocurrirá. Cada uno de estos posibles resultados es un suceso elemental del fenómeno
SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS
1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda
Probabilidad. Relación de problemas 5
Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas
La tómbola escolar TÓMBOLA
Ficha 0 Matemática 9 La tómbola escolar TÓMBOLA 8 6 0 7 Observa la imagen y responde las siguientes preguntas: Qué artículos observas? Completa la tabla con la cantidad de artículos que hay en la tómbola.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
13Soluciones a los ejercicios y problemas PÁGINA 280
Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una
Problemas Resueltos del Tema 1
Tema 1. Probabilidad. 1 Problemas Resueltos del Tema 1 1- Un estudiante responde al azar a dos preguntas de verdadero o falso. Escriba el espacio muestral de este experimento aleatorio.. El espacio muestral
Unidad 14 Probabilidad
Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números
LAS PROBABILIDADES Y EL SENTIDO COMÚN
LAS PROBABILIDADES Y EL SENTIDO COMÚN Existen leyes del azar? Nuestro sentido común pareciera decirnos que el azar y las leyes son conceptos contradictorios. Si algo sucede al azar, es porque no hay leyes
CÁLCULO DE PROBABILIDADES
8 Unidad didáctica 8. Cálculo de probabilidades CÁLCULO DE PROBABILIDADES CONTENIDOS Experimentos aleatorios Espacio muestral. Sucesos Sucesos compatibles e incompatibles Sucesos contrarios Operaciones
Probabilidad Hoja de trabajo #1. Actividad: Buscando todos los resultados de un experimento
Probabilidad Hoja de trabajo #1 Actividad: Buscando todos los resultados de un experimento Instrucciones: En cada uno de los siguientes experimentos determina todos los posibles resultados al llevarlo
Tema 7: Estadística y probabilidad
Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro
PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES.
ANDALUCIA: º) (Andalucía, junio, 98) Ana, Juan y Raúl, que están esperando para realizar una consulta médica, sortean, al azar, el orden en que van a entrar. a) Calcule la probabilidad de que los dos últimos
Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos
SIMULACIÓN SIMULACIÓN DE UN JUEGO DE VOLADOS
UNIVERSIDAD NACIONAL DE INGENIERIA RECINTO UNIVERSITARIO SIMON BOLIVAR FACULTAD DE ELECTROTECNIA Y COMPUTACIÓN INGENIERIA EN COMPUTACIÓN SIMULACIÓN SIMULACIÓN DE UN JUEGO DE VOLADOS Integrantes: Walter
PROBABILIDADES. Ej: calcular la probabilidad de obtener dos veces cara y una vez sello al lanzar tres veces seguidas una moneda.
OLEGIO ANTA ELENA PROBABILIDADE PROBABILIDAD LAIA: uando la ocurrencia de un suceso ( es igualmente posible que la ocurrencia de los demás. P ( = número de casos favorable para A número total de casos
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo
Notas sobre combinatoria y probabilidad [segunda parte]
Notas sobre combinatoria y probabilidad [segunda parte] Tercer artículo de una serie dedicada a la estadística y su aplicación en las aulas, el texto es la segunda parte de un análisis acerca del uso de
PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.
Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. PROBABILIDAD Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad
Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I
Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I 1. Supongamos que Ω = A B y P (A B) = 0.2. Hallar: (a) El máximo valor posible para P (B), de tal manera
EJERCICIOS DE PROBABILIDAD
EJERCICIOS DE PROBABILIDAD 1. Se extrae una carta de una baraja española, calcula la probabilidad de que: a) Sea un rey; b) Sea un oro; c) Sea el rey de oros; d) Sea un rey o un oros; e) Sea un rey o una
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2
7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral
DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL
DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC
Práctica No. 1. Materia: Estadística II Docente: Lic.Emma Mancilla Semestre : Sexto A1. Septiembre de 2011
Práctica No. 1 Materia: Estadística II Docente: Lic.Emma Mancilla Semestre : Sexto A1 Septiembre de 2011 1. Repaso:Conjuntos - Cálculo combinatorio. 1. Dado el conjunto A = {6, 2, 8, 4, 3} encontrar todos
El azar y la probabilidad. Un enfoque elemental
El azar y la probabilidad. Un enfoque elemental Experimentos al azar El azar puede percibirse fácilmente cuando se repite muchas veces una acción cuyo resultado no conocemos, como tirar dados, repartir
PARA MAYOR INFORMACION ABRA LA PAGINA WEB www.abaco.com.ve www.miprofe.com.ve www.abrakadabra.com.ve
Este material es producido por José Arturo Barreto, M,A,, en Caracas, Venezuela josearturobarreto@yahoo.com Tel: (0416)3599615 (0424)2616413 (0412)0231903 PARA MAYOR INFORMACION ABRA LA PAGINA WEB www.abaco.com.ve
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Notas de Probabilidades
1 Introducción Notas de Probabilidades En la vida cotidiana nos encontramos con frecuencia con situaciones que producen varios resultados conocidos, sin poder determinar con exactitud cual de ellos ocurrirá.
Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.
Capítulo 2 Probabilidades 2. Definición y propiedades Al realizar un experimento aleatorio nuestro interés es obtener información sobre las leyes que rigen el fenómeno sometido a estudio. El punto de partida
Probabilidad y Simulación
Probabilidad y Simulación Estímulo del Talento Matemático Real Academia de Ciencias 4 de febrero de 2006 Entendiendo el azar Queremos entender un fenómeno aleatorio (azar, incertidumbre). Entenderlo lo
Explicación de la tarea 3 Felipe Guerra
Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La
Curso de sensibilización a la PAEP (Prueba de Admisión a Estudios de Posgrado)
Tema 2. Razonamiento cuantitativo Subtema 2.7 Probabilidad Instrucciones: Realiza estos ejercicios, sigue los procedimientos que se mostraron en los ejemplos del curso. Permutación 1. De cuántas maneras
Ejercicios Resueltos
PROF.: GUILLERMO CORBACHO C. Psu Probabilidades Ejercicios Resueltos INTRODUCCIÓN Los ejercicios que a continuación se presentan son extraídos de diversas publicaciones escritas en Chile para la preparación
REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA
REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Similar a las distribuciones de frecuencia, una distribución de probabilidad discreta puede ser representada (descrita) tanto gráficamente como
Recuerdan la Fórmula del Interés Compuesto????; Pues Podemos Utilizarla para Obtener Nuestro Valor Futuro. F = P ( 1 + i ) n
VALOR FUTURO Conocida o Dada la Cantidad de Dinero Invertido o Prestado HOY, $P, se Denomina Valor Futuro, a $F, que representa aquella Cantidad de Dinero o Valor que Equivale a $P en un Periodo n, de
FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 13. COMBINACIONES Y PROBABILIDAD
FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 13. COMBINACIONES Y PROBABILIDAD Grado 11 Taller # 13 Nivel II RESEÑA HISTORICA El concepto de Probabilidad ha evolucionado en
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 15 Y 16
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS 15 Y 16 1. De una urna con 7 bolas blancas y 14 negras extraemos una. Cuál es la probabilidad de
Manejo de la Información
Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado
EJERCICIOS RESUELTOS TEMA 3
EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar
Juego Azar O Matemática?
Juego Azar O Matemática? Carlos Aragón Pérez Grado en Ingeniería en telecomunicaciones c.aragon@edu.uah.es Vamos a explicar las técnicas matemáticas que podremos utilizar para poder ganar en los juegos
SaltarLaBanca.es Roulette Analysis 2012 v1.1 Manual de usuario V1.1 Actualizado 06/11/2012
SaltarLaBanca.es Roulette Analysis 2012 v1.1 Manual de usuario V1.1 Actualizado 06/11/2012 Indice de contenidos 1. Números de la mesa 2. Paridad, color y mitad 3. Filas y columnas 4. Número de giros y
MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales
MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda
MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.
MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido
a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales
1 PROBABILIDAD 1.(97).- Para realizar un control de calidad de un producto se examinan tres unidades del producto, extraídas al azar (y sin reemplazamiento) de un lote de 100 unidades. Las unidades pueden
CAPÍTULO 5. Probabilidad. 5.1 Álgebra de sucesos. 1. Experimento lanzar un dado y anotar la cara que sale:
CAPÍTULO 5 Probabilidad 5.1 Álgebra de sucesos 5.1.1 Fenómenos determinísticos y aleatorios En la naturaleza se producen dos tipos de fenómenos: Determinísticos: Son los fenómenos que siempre que se efectúen
Enseñar Matemáticas en el siglo XXI INDICADORES DE LAS COMPETENCIAS (PISA 2003)
INDICADORES DE LAS COMPETENCIAS (PISA 2003) Pensar y razonar Plantear cuestiones propias de las matemáticas ( cuántos hay? Cómo encontrarlo? Si es así, entonces etc.) Conocer los tipos de respuestas que
Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS
Tema 11 Cálculo de probabilidades - Matemáticas B 4º E.S.O. 1 TEMA 11 CÁLCULO DE PROBABILIDADES 11.0 INTRODUCCIÓN 11.0.1. - EXPERIENCIAS ALEATORIAS, CASOS, ESPACIO MUESTRAL, SUCESOS Un suceso aleatorio
Propuesta didáctica: Juego de azar
Propuesta didáctica: Juego de azar Clase: 5º año Contenido programático: Experimento aleatorio. Sucesos: probable, seguro, imposible. Autor: Ernst Klett Verlag - Adaptado por la maestra Esther Moleri Tiempo
Tema 3 Probabilidades
Probabilidades 1 Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas que hacen afirmaciones
Tabla de contenidos. El Informe Secreto de la Primitiva
Tabla de contenidos Tabla de contenidos... 1 Hay números que salen más que otros?... 2 Hay números más rentables que otros?... 3 Cómo podemos jugar de manera óptima?... 5 Conclusiones... 5 El Informe Secreto
Un problema sobre repetidas apuestas al azar
Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito
Soluciones a las actividades de cada epígrafe
0 Soluciones a las actividades de cada epígrafe Pág. PÁGIA 08 En este juego hay que conseguir que no queden emparejadas dos bolas del mismo color. Por ejemplo: GAA PIERDE GAA PIERDE PIERDE uál es la probabilidad
PÁGINA 261 PARA EMPEZAR
13 Soluciones a las actividades de cada epígrafe PÁGINA 261 Pág. 1 PARA EMPEZAR Un desafío interrumpido Uno de los problemas que el caballero de Meré le propuso a Pascal es el siguiente: Dos contendientes,
Problemas de Probabilidad Soluciones
Problemas de Probabilidad Soluciones. En una carrera participan los caballos A, B, C y D. Se estima que la probabilidad de que gane A es el doble de la probabilidad de que gane cada uno de los otros tres.
16 SUCESOS ALEATORIOS. PROBABILIDAD
EJERCICIOS PROPUESTOS 16.1 Indica si estos experimentos son aleatorios y, en caso afirmativo, forma el espacio muestral. a) Se extrae, sin mirar, una carta de una baraja española. b) Se lanza un dado tetraédrico
1.4 Cálculo de Probabilidades con Métodos de Conteo. Considerere un espacio muestral finito,
1 1.4 Cálculo de Probabilidades con Métodos de Conteo Considerere un espacio muestral finito, y defina, Luego, Ω = {ω 1,..., ω n }, P ({ω i }) = p i, i = 1,..., n P (A) = ω i A p i, A Ω Ω se dice equiprobable
GUÍA DE APRENDIZAJE N 14 FECHA DE EDICIÓN 05/12/11
LICEO CARMELA CARVAJAL DE PRAT PROVIDENCIA DPTO. DE MATEMATICA GUÍA DE APRENDIZAJE N 14 FECHA DE EDICIÓN 05/12/11 SECTOR: M A T E M A T I C A PROFESORA: BLANCA E. RAMÍREZ N. MAIL DE PROFESORES: b.e.r.n.matematica@gmail.com,
Materia: Matemática de Octavo Tema: Probabilidad de sucesos independientes
Materia: Matemática de Octavo Tema: Probabilidad de sucesos independientes Te has preguntado si pueden pasar dos cosas a la vez? Jana tiene dos mazos de cartas. Cada mazo tiene diez cartas. Hay tres figuras
Probabilidad Clásica
PROF.: GUILLERMO CORBACHO C. Probabilidad Clásica Los ejercicios que a continuación se presentan son extraídos de diversas publicaciones escritas en Chile para la preparación de la prueba de selección
Puede dar pérdida un Casino?
Puede dar pérdida un Casino? por Ernesto Mordecki En esta nota calculamos la probabilidad de que pierda la banca en la ruleta, en un período dado de tiempo. uestro enfoque consiste en determinar cuantas
Probabilidad condicionada
Probabilidad condicionada Ejercicio nº 1.- Si A y B son dos sucesos tales que: P[A] 0,4 P[B / A] 0,25 P[B'] 0,75 a Son A y B independientes? b Calcula P[A B] y P[A B]. Ejercicio nº 2.- Sabiendo que: P[A]
PROBABILIDAD. De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar.
PROBABILIDAD Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? A "Mayor que 6" B "No obtener 6" C "Menor que 6" c Halla los
Tenemos 3 formas de juego, la bolsa de acciones, la polla y la polla extraordinaria.
Tenemos 3 formas de juego, la bolsa de acciones, la polla y la polla extraordinaria. Bolsa de acciones: En este juego el usuario podrá comprar y vender acciones en los eventos a los cuales se haya registrado,
todas especialidades Soluciones de las hojas de problemas
Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica
Ejercicios Resueltos de Teorema Central de Límite (TCL) Ejercicios 1 y 2: Resolución de Ejercicios propuestos del Tema 5.
EJERCICIOS DE PROBABILIDAD EJERCICIOS ADECUADOS PARA SECUNDARIA O BACHILLER TITULO: AUTOR: Ejercicios Resueltos de Teorema Central de Límite (TCL) JUAN VICENTE GONZÁLEZ OVANDO Ejercicio 15: Ejercicios
Mª Cruz González Página 1
SELECTIVIDAD Probabilidad. Junio 00 (Opc. Se tiene tres cajas iguales. La primera contiene bolas blancas y 4 negras; la segunda contiene 5 bolas negras y, la tercera, 4 blancas y negras. a) Si se elige
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES
TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela
Hasta el momento hemos analizado como los agentes económicos toman sus decisiones de consumo o producción en condiciones de certeza total.
III. Elección en condiciones de incertidumbre Hasta el momento hemos analizado como los agentes económicos toman sus decisiones de consumo o producción en condiciones de certeza total. Es decir, cuando
Técnicas De Conteo. En este caso si k es grande, no es tan sencillo hacer un conteo exhaustivo de los puntos o resultados de S.
Técnicas De Conteo Si en el experimento de lanzar la moneda no cargada, se lanzan 5 monedas y definimos el evento A: se obtienen 3 caras, cómo calcular la probabilidad del evento A?, si todos los resultados
Clase 5: Variables Aleatorias y Distribuciones de Probabilidad
Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una
2015 / 2016 CONSULTA EN EL AREA DE SOCIOS. ESCRUTINIO de la Jornada 13. PLENO al 15 0,00. Premio de 14 0,00. Premio de 13 0,00. Premio de 12 5.
2015 / 2016 CONSULTA EN EL AREA DE SOCIOS SOCIO: 12345678A Clave: rounders1x2 ESCRUTINIO de la Jornada 13 PLENO al 15 0,00 Premio de 14 0,00 Premio de 13 0,00 Premio de 12 5.829,72 Premio de 11 373,08
PROBLEMAS DE PROBABILIDAD. BOLETIN IV
PROBLEMAS DE PROBABILIDAD. BOLETIN IV 1. Se considera el experimento aleatorio de lanzar un dado al aire y anotar el número de la cara superior. Hallar: a) El espacio muestral. b) El suceso A= obtener
Probabilidad. Objetivos. Antes de empezar
12 Probabilidad Objetivos En esta quincena aprenderás a: Distinguir los experimentos aleatorios de los que no lo son. Hallar el espacio muestral y distintos sucesos de un experimento aleatorio. Realizar
TEORÍA DE PROBABILIDAD
1 UNIVERSIDAD CATOLICA ANDRES BELLO Urb. Montalbán La Vega Apartado 29068 Teléfono: 471-4148 Fax: 471-3043 Caracas, 1021 - Venezuela Facultad de Ingeniería Escuela de Ingeniería Informática -----------------------
TAREA 2 Diseño de un juego
Pontificia Universidad Católica de Chile Departamento de Ciencia de la Computación IIC3686 Creación de Videojuegos Profesor: Alejandro Woywood Primer Semestre 2006 TAREA 2 Diseño de un juego Nombre: Augusto
2 3 independientes? y mutuamente excluyentes? Halla )
EJERCICIOS DE PROBABILIDAD para hacer en casa IES Jovellanos 1º BI-NS Probabilidad 1. a) Demuestre mediante un diagrama de Venn que ( A B) \ ( A C) = A ( B \ C) b) Demuestre con propiedades Booleanas que
Ejercicios y problemas resueltos de probabilidad condicionada
Ejercicios y problemas resueltos de probabilidad condicionada 1.- Sean A y B dos sucesos aleatorios con p(a) = 1/2, p(b) = 1/3, p(a B)= 1/4. Determinar: 1 2 3 4 5 2.- Sean A y B dos sucesos aleatorios