Mecánica Estadística: Estadística de Maxwell-Boltzmann

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Mecánica Estadística: Estadística de Maxwell-Boltzmann"

Transcripción

1 Ludwg Boltzmann James Clerk Maxwell E. Martínez 1

2 Lápda de Boltzmann en el cementero de Vena S=k ln W E. Martínez 2

3 S=k ln W Entropía, una propedad termodnámca Una medda de nuestra gnoranca de un sstema físco-químco Conexón entre las propedades termodnámcas macroscópcas del sstema y las propedades mcroscópcas de sus elementos E. Martínez 3

4 La entropía de un sstema aslado tende a crecer (o por lo menos no decrece) como consecuenca de cualquer transformacón termodnámca. Consdere usted un cubo de helo, aslado en una habtacón a una temperatura constante, dgamos 17 grados celcus... He aquí el helo: E. Martínez 4

5 En el nstante msmo que dejamos el helo en la habtacón tenemos absoluto conocmento de la poscón de cada molécula del helo. E. Martínez 5

6 ... Sn embargo, en un proceso cuasestátco este helo se fundrá, transformándose en agua líquda. Y este proceso de fusón ha destrudo el orden en que se encontraban las moléculas en el sóldo. Ha aumentado, al gual que la entropía, nuestra gnoranca sobre la poscón de las partículas, producto del desorden. E. Martínez 6

7 Entropía e gnoranca Vamos a asocar la entropía con total gnoranca, en vez de asocarla sólo con la gnoranca de la poscón de los elementos. Por lo tanto, el problema es dar un sgnfcado precso al concepto de gnoranca, y hallar la relacón funconal que lo vncule con la entropía (y así, tambén, poder entender cabalmente porqué está esa relacón funconal en la lápda de Ludwg Boltzmann) E. Martínez 7

8 Consderemos por analogía un mazo de nape El mazo representa el sstema... y los napes, los elementos E. Martínez 8

9 S los elementos (napes) se encuentran orgnalmente ordenados (por pnta y valores), ello corresponderá a un estado de orden total (correspondendo a un estado de entropía cero). Es decr, que exste una únca dsposcón posble de los elementos del sstema, y conocemos perfectamente la poscón de cada nape. S se barajan las cartas (correspondendo a una agtacón térmca debda a un aumento de la temperatura) aumenta nuestra gnoranca respecto de la poscón de un nape dado (correspondendo a un aumento de la entropía). Cómo medremos esta gnoranca? E. Martínez 9

10 Consderemos el mazo ordenado, extragamos una carta al azar y coloquémosla en una poscón cualquera del mazo. S el número de cartas es N, tendremos N poscones dstntas gualmente posbles. Supongamos ahora que son dos los napes que se extrajeron y se han vuelto a colocar en otra poscón cualquera. El número de dsposcones dstntas e gualmente posbles es ahora N(N-1) E. Martínez 10

11 Sacamos un nape... Q Q N napes ordenados... y lo colocamos en una de las N poscones Habrán N poscones, gualmente posbles, donde la carta puede ubcarse! E. Martínez 11

12 Sacamos ahora dos napes... K Q Q N napes ordenados Este lugar ya está ocupado!... y volvemos a colocar los dos napes K Habrán N(N-1) poscones, gualmente posbles, donde los dos napes pueden ubcarse! E. Martínez 12

13 Se observa que el aumento de nuestra gnoranca acerca de la dsposcón de los napes en el mazo (que se corresponde con el aumento del desorden) está asocado con el número de dsposcones dstntas gualmente posbles. Podemos proponer, entonces, como medda de nuestra gnoranca el número de dsposcones dstntas de los napes, gualmente posbles, para el estado que se consdere. Es mportante consderar que, a pror, todas las poscones dstntas son gualmente posbles E. Martínez 13

14 El número de dsposcones dstntas de los elementos de un sstema dado se denotará por W Consderemos ahora dos mazos que se barajan ndependentemente Cuál es el número W de dsposcones gualmente probables del sstema formado por los dos mazos? W = W W 1 2 Sea W 1 el número de... y W para este dsposcones gualmente sstema 2 probables de este sstema E. Martínez 14

15 Por otro lado, termodnámcamente s S 1 y S 2 ndcan la entropía de dos sstemas ndependentes, la entropía total S está dada por S = S + S 1 2 Hemos encontrado una nterrelacón entre W y S, tal que: a) A un aumento de S corresponde un aumento de W, y vceversa b) Cuando se consderan dos sstemas ndependentes, a la propedad adtva de S le corresponde la propedad multplcatva de W E. Martínez 15

16 Por lo tanto, la funcón que vncule a S y W deberá ser tal que f(w W ) = f(w ) + f(w ) Exste una, y solo una, funcón que verfca la condcón anteror y es la que fue puesta en la lápda de Boltzmann S = k lnw E. Martínez 16

17 S = k lnw Para el caso de un sstema físco-químco, W representará, al gual que los napes de la baraja, el número de todas las posbles poscones de sus elementos. Supongamos que el sstema tene N partículas, una funcón de volumen V, y una energía nterna U Uno de lo objetvo de la mecánca estadístca es calcular la gnoranca W como funcón de W = W(U, V, N) E. Martínez 17

18 Vamos a calcular W para un sstema aslado de elementos ndependentes localzados. Por localzado se entenderá que el elemento se puede encontrar en el entorno de una poscón fja en el espaco; además se puede encontrar uno, y solo un, elemento en tal poscón. Por ndependente se entenderá que el estado del elemento en un nstante dado no está afectado por el estado de los restantes elementos. E. Martínez 18

19 Supongamos entonces que tenemos un sstema aslado con N partículas déntcas. Cada partícula puede ocupar un nvel de energía E, E, La energía (constante) de este sstema aslado es U Defnamos una dstrbucón del sstema de partículas medante la notacón (n, n,..., n,... ) 1 2 E. Martínez 19

20 (n, n,..., n,... ) 1 2 número de partículas en el nvel, donde cada una de ellas tene una energía E Entonces n E=U y además n =N E. Martínez 20

21 Defnamos el conjunto de todas estas dstrbucones como Ω= (n 1, n2,..., n,...) / n =N, n E=U Cada elemento de Ω se dce que es un macroestado Ahora, cada macroestado tene varas maneras de confgurarse, y una manera asocada a un determnado macroestado se llamará mcroestado Luego W es el número de mcroestados posbles del sstema E. Martínez 21

22 Macroestado y mcroestado Supongase que el sstema tene N = 4 partículas, y que la energía nterna es U = 6, y los nveles de energía van desde 0, 1, 2,... He aquí tres posbles macroestados A B C E. Martínez 22

23 E. Martínez 23 Mecánca Estadístca: Estadístca de Maxwell-Boltzmann A Como el sstema es localzado, esto sgnfca que las partículas son dstngubles, luego algunas manfestacones (mcroestados) para el macroestado A son las sguentes: A A

24 E. Martínez 24 Mecánca Estadístca: Estadístca de Maxwell-Boltzmann Algunos mcroestados asocados al macroestado B son los sguentes: B B B B

25 La pregunta es entonces dado un determnado macroestado, cuántos mcroestados asocados tene? La respuesta no es senclla. Sn embargo s la respondemos tenemos calculado el conjunto W. En efecto, sea ω Ω un macroestado Defnamos por asocados a ω Entonces ω como el número de mcroestados W= ω ω Ω E. Martínez 25

26 Insstmos en la pregunta entonces, dado un determnado macroestado, cuántos mcroestados asocados tene? La respuesta no es senclla. Sn embargo s por un momento olvdamos la condcón n E=U podemos responder a la pregunta, Dado N objetos, de cuántas maneras podemos repartr estos objetos en k cajas que tengan capacdad para n,n,..., n, objetos 1 2 k respectvamente?, donde n + n n = N 1 2 k E. Martínez 26

27 ... N boltas... n n 1 + n k = N ( N ) ( N - n 1 ) n 1 ( ) N - (n n ) 1 k-1 n 2 n k E. Martínez 27

28 No resulta complcado demostrar que ( N )( N - n 1 ) n 1 ( ) N - (n n )... 1 k-1 = n 2 n k N! n! n!... n! 1 2 k Son todos los mcroestados posbles para el macroestado (n, n,..., n ) 1 2 k pero que no necesaramente tenen la condcón n E + n E n E = U k k E. Martínez 28

29 De otra forma, la cardnaldad de un macroestado partcular (n, n,..., n ) 1 2 k es (n, n,..., n ) 1 2 k = N! n! n!... n! 1 2 k Sn consderar la condcón n E + n E n E = U k k E. Martínez 29

30 De manera que podemos conclur que donde W= ω Ω N! n1! n2! L n k! Ω= ω=(n 1, n 2,..., n k ) / k n =N, n E=U =1 =1 k E. Martínez 30

31 Así como toda ubcacón del nape extraído del mazo es gualmente probable, toda confguracón de un mcroestado es gualmente probable. En rgor, es el postulado fundamental de la mecánca estadístca: Todo sstema en equlbro tene la msma probabldad de estar en cualquera de sus mcroestados permtdos. De esta manera, el macroestado que tenga mayor número de mcroestados es, obvamente, el macroestado más probable. Y, en consecuenca, será (en probabldad) el estado de equlbro. E. Martínez 31

32 A la búsqueda del macroestado más probable Supongamos que exste una dstrbucón ω Ω tal que ω ω ω Ω Nuestro nterés es calcular entonces ω E. Martínez 32

33 A la búsqueda del macroestado más probable Encontrar ω sgnfca N! max n 1! L n k! sujeto a las condcones extremas k k =1 n =N, =1 n E =U E. Martínez 33

34 A la búsqueda del macroestado más probable Maxmzar la funcón N! ω= n 1! L n k! Es equvalente a maxmzar ln ω=ln N! -ln (n 1! L nk! ) E. Martínez 34

35 A la búsqueda del macroestado más probable Utlzando el método de los multplcadores de Lagrange, defnmos ( ) ( ) n -N - n E -U T( ω)=ln ω+ α β Dervando parcalmente e gualando a cero T(w) n =0 T(w) α =0 ; ; T(w) β =0 E. Martínez 35

36 A la búsqueda del macroestado más probable Para obtener las dervadas de ln n ω = n utlzamos la fórmula de Strlng ( ln N! -(ln n! + L+ln n! )) 1 ln M! =M ln M-M k y obtenemos ln w n =-ln n E. Martínez 36

37 A la búsqueda del macroestado más probable Obtenemos T( ω) =-ln n + + E =0 n α β De modo que, s dentfcamos por tenemos n =e α+ βe βe =c n e los máxmos, E. Martínez 37

38 A la búsqueda del macroestado más probable La constante c se encuentra sumando los n, esto es n =N=c e βe de modo que c= N β E e E. Martínez 38

39 A la búsqueda del macroestado más probable Conclumos que la dstrbucón más probable es ω ( n, n, ) = L 1 2, nk donde n =N e βe k β E e j=1 j Contnuará... E. Martínez 39

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

4. PROBABILIDAD CONDICIONAL

4. PROBABILIDAD CONDICIONAL . ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

TERMODINÁMICA FUNDAMENTAL. TEMA 3. Primer principio de la termodinámica

TERMODINÁMICA FUNDAMENTAL. TEMA 3. Primer principio de la termodinámica TERMODINÁMIA FUNDAMENTAL TEMA 3. Prmer prncpo de la termodnámca 1. alor 1.1. oncepto de calor alor: orma de transerenca de energía entre dos sstemas termodnámcos, o entre un sstema y su entorno, como consecuenca

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

Propiedades Asintóticas

Propiedades Asintóticas Capítulo 3 Propedades Asntótcas 3.. Dstrbucones Estaconaras Defncón 3. Sea X n, n, una cadena de Markov con espaco de estados E y matrz de transcón P. Sea π(), E, una dstrbucón de probabldad, es decr,

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

Lección: Disoluciones

Lección: Disoluciones Leccón: Dsolucones TEMA: Introduccón 1 Adolfo Bastda Pascual Unversdad de Murca. España. I. Caracterzacón de las dsolucones.......2 I.A. Composcón de una dsolucón....... 2 I.B. Magntudes molares parcales.........

Más detalles

2.1. Sustancias puras. Medida de los cambios de entalpía.

2.1. Sustancias puras. Medida de los cambios de entalpía. 2 Metalurga y termoquímca. 7 2. Metalurga y termoquímca. 2.1. Sustancas puras. Medda de los cambos de entalpía. De acuerdo a las ecuacones (5 y (9, para un proceso reversble que ocurra a presón constante

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

Capítulo V. Teoremas de Fermat, Euler y Wilson

Capítulo V. Teoremas de Fermat, Euler y Wilson Capítulo V Teoremas de Fermat, Euler y Wlson En este capítulo utlzamos los conceptos desarrollados en dvsbldad y conteo para deducr tres teoremas báscos de la teoría de números. En el próxmo capítulo,

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c.

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c. Estadístca robablístca 6. Tablas de contngenca y dagramas de árbol. En los problemas de probabldad y en especal en los de probabldad condconada, resulta nteresante y práctco organzar la nformacón en una

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c.

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c. .. TIPOS DE CORRIENTES Y DE ELEMENTOS DE CIRCUITOS Contnua: Corrente cuyo valor es sempre constante (no varía con el tempo). Se denota como c.c. t Alterna: Corrente que varía snusodalmente en el tempo.

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana? Cadenas de Marov Después de mucho estudo sobre el clma, hemos vsto que s un día está soleado, en el 70% de los casos el día sguente contnua soleado y en el 30% se pone nublado. En térmnos de probabldad,

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición-

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición- Fscoquímca CIBX Guía de Trabajos Práctcos 2010 Trabajo Práctco N 7 - Medda de la Fuerza lectromotrz por el Método de Oposcón- Objetvo: Medr la fuerza electromotrz (FM) de la pla medante el método de oposcón

Más detalles

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático qco sθ qz Ez= 4 zπε0 2+ R2 = 4πε0 [z2 +R2 ]3/ 2 El campo de las cargas en reposo. Campo electrostátco ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electromagnétco.

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

TEMA 1: PROBABILIDAD

TEMA 1: PROBABILIDAD robabldad TEM : ROBBILIDD Índce del tema Índce del tema.. Introduccón 2.2. Defncón de probabldad 3.2.. ropedades nmedatas 3 Ejemplo 7 Ejemplo 2 8 Ejemplo 3 9.3. robabldad condconada 0.3.. Introduccón 0.3.2.

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingenería Químca Undad I. Introduccón a los cálculos de Ingenería Químca

Más detalles

1. Actividad y Coeficientes de actividad

1. Actividad y Coeficientes de actividad ermodnámca. ema Dsolucones Reales. Actvdad y Coecentes de actvdad Se dene el coecente de actvdad,, de manera que: ( ( ln Actvdad ( Esta epresón es análoga a la de las dsolucones deales. Sn embargo, es

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

Reconocimiento de Locutor basado en Procesamiento de Voz. ProDiVoz Reconocimiento de Locutor 1

Reconocimiento de Locutor basado en Procesamiento de Voz. ProDiVoz Reconocimiento de Locutor 1 Reconocmento de Locutor basado en Procesamento de Voz ProDVoz Reconocmento de Locutor Introduccón Reconocmento de locutor: Proceso de extraccón automátca de nformacón relatva a la dentdad de la persona

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal

Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal Dsolucones TEM. Dsolucones reales. otencal químco en dsolucones reales. Concepto de actvdad. Una dsolucón es una mezcla homogénea de un componente llamado dsolvente () que se encuentra en mayor proporcón

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 0-03 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Olgopolo y competenca monopolístca.

Más detalles

Variable aleatoria: definiciones básicas

Variable aleatoria: definiciones básicas Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado

Más detalles

1. Modelos Expresados en Variables de Estado 1

1. Modelos Expresados en Variables de Estado 1 2 3 Modelo en Varables de Estado.doc 1 1. Modelos Exresados en Varables de Estado 1. Modelos Exresados en Varables de Estado 1 1.1. Introduccón 2 1.2. Defncón 2 1.3. Forma General 9 1.4. Solucón 1 1.5.

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP)

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP) MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Prmer Semestre - Otoño 2014 Omar De la Peña-Seaman Insttuto de Físca (IFUAP) Benemérta Unversdad Autónoma de Puebla (BUAP) 1 / Omar De la Peña-Seaman

Más detalles

Sistemas de Varias Partículas.

Sistemas de Varias Partículas. Capítulo 6 Sstemas de Varas Partículas. Al estudar los sstemas con varas partículas surgen varos elementos adconales, como son los enlaces o lgaduras entre puntos, tanto nternos al sstema como externos,

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Tema 3. Sólido rígido.

Tema 3. Sólido rígido. Tema 3. Sóldo rígdo. Davd Blanco Curso 009-010 ÍNDICE Índce 1. Sóldo rígdo. Cnemátca 3 1.1. Condcón cnemátca de rgdez............................ 3 1.. Movmento de traslacón...............................

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

OSCILACIONES 1.- INTRODUCCIÓN

OSCILACIONES 1.- INTRODUCCIÓN OSCILACIONES 1.- INTRODUCCIÓN Una parte relevante de la asgnatura trata del estudo de las perturbacones, entenddas como varacones de alguna magntud mportante de un sstema respecto de su valor de equlbro.

Más detalles

LABORATORIO DE OPERACIONES UNITARIAS I

LABORATORIO DE OPERACIONES UNITARIAS I UNIVERSIA EL ZULIA FACULTA E INGENIERÍA ESCUELA E INGENIERÍA QUÍMICA EPARTAMENTO E INGENIERÍA QUÍMICA BÁSICA LABORATORIO E OPERACIONES UNITARIAS I TRANSFERENCIA E CALOR EN INTERCAMBIAORES Profesora: Maranela

Más detalles

En un mercado hay dos consumidores con las siguientes funciones de utilidad:

En un mercado hay dos consumidores con las siguientes funciones de utilidad: En un mercado hay dos consumdores con las sguentes funcones de utldad: U ( + y, y = ln( + U ( = + y con a >,, y a ln( + donde, =,, es la cantdad del ben consumda por el ndvduo, y es la cantdad de renta

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

Introducción a las Subastas de Múltiples Objetos

Introducción a las Subastas de Múltiples Objetos Introduccón a las Subastas de Múltples Objetos Alvaro J. Rascos Vllegas Unversdad de los Andes Abrl de 2010 lvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

Tema 3. Trabajo, energía y conservación de la energía

Tema 3. Trabajo, energía y conservación de la energía Físca I. Curso 2010/11 Departamento de Físca Aplcada. ETSII de Béjar. Unversdad de Salamanca Profs. Alejandro Medna Domínguez y Jesús Ovejero Sánchez Tema 3. Trabajo, energía y conservacón de la energía

Más detalles

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Ing. Federco G. Salazar Termodnámca del Equlbro TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Contendo 1. Conversón y Coordenada de Reaccón. 2. Ecuacones Independentes y Regla

Más detalles

Laboratorio de Electricidad PRACTICA - 8 SHUNTS PARA INSTRUMENTOS DE MEDICIÓN DE CORRIENTE

Laboratorio de Electricidad PRACTICA - 8 SHUNTS PARA INSTRUMENTOS DE MEDICIÓN DE CORRIENTE PRACTCA - 8 HUNT PARA NTRUMNTO D MDCÓN D CORRNT - Fnaldades 1.- Convertr un dspostvo fundamental de medcón (alvanómetro) en un mlamperímetro con márenes de medda más elevados. 2.- Calcular el valor del

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles

ALINEAMIENTO DE DOS SECUENCIAS (pairwise alignment)

ALINEAMIENTO DE DOS SECUENCIAS (pairwise alignment) ALINEAMIENTO DE DOS SECUENCIAS (parwse algnment) El alneamento de una pareja de secuencas permte cuantfcar el grado de smltud que hay entre ellas y determnar s exste algún tpo de relacón entre ambas. Para

Más detalles

MÁQUINAS TÉRMICAS. Aspectos Fundamentales de Termodinámica. Mayo 2012 ASPECTOS FUNDAMENTALES

MÁQUINAS TÉRMICAS. Aspectos Fundamentales de Termodinámica. Mayo 2012 ASPECTOS FUNDAMENTALES MÁQUINAS TÉRMICAS Aspectos Fundamentales de Termodnámca rof. Mguel ASUAJE Mayo 2012 Contendo ASECTOS FUNDAMENTALES Breve revsón de los conceptos de Termodnámca Trabajo y Calor rmera Ley d Segunda Ley Cclo

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

ONDAS ESFÉRICAS RADIACIÓN ACÚSTICA

ONDAS ESFÉRICAS RADIACIÓN ACÚSTICA ONDAS ESFÉRCAS RADACÓN ACÚSTCA.- SEA UN MEDO FLUDO LMTADO SÓTROPO Y HOMOGÉNEO. CONSDEREMOS EN SU NTEROR UNA ESFERA DE RADO QUE SE HNCHA RÁPDAMENTE HASTA LOGRAR UN VALOR DE RADO. EL FLUDO ALREDEDOR DE LA

Más detalles

Fuerzas ficticias Referencial uniformemente acelerado

Fuerzas ficticias Referencial uniformemente acelerado Capítulo 10 Fuerzas fctcas Las fuerzas fctcas son fuerzas que deben nclurse en la descrpcón de un sstema físco cuando la observacón se realza desde un sstema de referenca no nercal, a pesar de ello, se

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES

VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO bofsca@rubenprofe.com.ar El crcuto funcona así: ESISTENCIS EN PLELO.- Las cargas salen del extremo postvo de la fuente y recorren el conductor (línea negra) hasta llegar al punto, allí las cargas se dvden

Más detalles

Análisis estadístico de incertidumbres aleatorias

Análisis estadístico de incertidumbres aleatorias Análss estadístco de ncertdumbres aleatoras Errores aleatoros y sstemátcos La meda y la desvacón estándar La desvacón estándar como error de una sola medda La desvacón estándar de la meda úmero de meddas

Más detalles

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del

Apuntes de Mecánica Newtoniana: Sistemas de Partículas, Cinemática y Dinámica del Apuntes de Mecánca Newtonana: Sstemas de Partículas, Cnemátca y Dnámca del Rígdo. Arel Fernández Danel Marta Insttuto de Físca - Facultad de Ingenería - Unversdad de la Repúblca Índce general Contendos

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Mecánica del Sólido Rígido

Mecánica del Sólido Rígido Mecánca del Sóldo Rígdo 1.- Introduccón Cnemátca, Dnámca y Estátca 2.- Cnemátca. Tpos de movmento del sóldo: Traslacón, Rotacón Movmento Plano General Movmento General 3.- Cnétca. Fuerzas y aceleracones.

Más detalles

Conceptos fundamentales de Termodinámica

Conceptos fundamentales de Termodinámica CAPÍTULO Conceptos fundamentales de Termodnámca ESQUEMA DEL CAPÍTULO. Qué es la Termodnámca y por qué es útl?. Defncones báscas necesaras para descrbr los sstemas termodnámcos.3 Termometría.4 Ecuacones

Más detalles

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución.

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución. Ejercco nº En una empresa de teleonía están nteresados en saber cuál es el número de aparatos teleóncos (ncludos teléonos móvles) que se tene en las vvendas. Se hace una encuesta y, hasta ahora, han recbdo

Más detalles

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio.

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio. 1 Movmento Vbratoro Tema 8.- Ondas, Sondo y Luz Movmento Peródco Un móvl posee un movmento peródco cuando en ntervalos de tempo guales pasa por el msmo punto del espaco sempre con las msmas característcas

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles