Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores"

Transcripción

1 Análisis de Datos Introducción al aprendizaje supervisado Profesor: Dr. Wilfrido Gómez Flores 1

2 Conceptos básicos Reconocimiento de patrones (RP): clasificar objetos en un número de categorías o clases. Aprendizaje automático (AA): desarrollar algoritmos que permitan a las computadoras aprender a partir de datos de ejemplo (i.e., entrenamiento) para hacer predicciones o decisiones. El RP aborda un problema del mundo real y en algún momento utiliza técnicas de AA para la clasificación o toma de decisiones. Áreas de aplicación: visión por computadora, reconocimiento óptico de caracteres, diagnóstico asistido por computadora, reconocimiento de voz, identificación de personas, etc. 2

3 Conceptos básicos A los objetos físicos se les conoce con el término genérico de patrones. Un patrón se representa por un conjunto de medidas conocidas como características, las cuales describen a un objeto físico de manera única. En el caso más general, d características x i, i=1,2,,d, forman un vector de características d-dimensional denotado como x = [x 1,x 2,,x d ] T (1) donde T denota transposición. Una clase de patrones es un conjunto de objetos que poseen características similares. 3

4 Sistema de reconocimiento de patrones Mundo real Sensor termómetro, micrófono, cámara digital Extracción de características Clasificación Decisión convierte medidas en características un patrón está representado por un vector de características características invariantes y discriminantes aprende a partir de datos de entrenamiento responde preguntas como: Qué patrones se parecen? o Qué grupos se forman a partir del conjunto de patrones? 4

5 Ciclo de diseño Inicio Recolección de datos Selección de características Qué se está midiendo? Cuántos datos se necesitan? Qué características proveen la mejor separabilidad y generalización? Diseño del clasificador Qué clasificador trabaja mejor? Evaluación del sistema Cómo debe ser medido el desempeño? Fin 5

6 Ciclo de diseño: selección de características Recolección de datos: generalmente se aplican técnicas de preprocesamiento y normalización: Ventajas: mejores características, rápido aprendizaje, mejora la generalización. Métodos: remoción de valores atípicos, normalización y escalamiento, análisis de componente principales. Selección de características: encontrar un subconjunto de características que maximicen el desempeño del clasificador. Mejorar la separabilidad (características diferentes para objetos en diferentes clases) y la generalización (características similares para objetos en la misma clase). Minimización de la redundancia y maximización de la relevancia. Métodos: medidas de separabilidad de clases, medidas de dependencia, pruebas de hipótesis, etc. 6

7 Ciclo de diseño: clasificador Diferentes taxonomías de las metodologías de clasificación. Taxonomía por método de aprendizaje: Aprendizaje supervisado: - Las clases de los datos de entrenamiento se conocen. - Mapear el espacio de características a un espacio de clases con el mínimo error. - Riesgo de perder capacidad de generalización por sobreentrenamiento. Aprendizaje no supervisado: - Las clases de los datos de entrenamiento no se conocen. - Agrupar patrones con miníma diferencia intra-grupo y máxima diferencia inter-grupo. - El número de grupos puede ser conocido o desconocido. 7

8 Ciclo de diseño: clasificador Modelo supervisado: clasificación Clase A Clase B Dominio del problema Patrón Maestro Sistema de aprendizaje Señal de error Salida deseada Respuesta + Σ Característica 2 Frontera de decisión Característica 1 Modelo no supervisado: agrupamiento Grupo A Datos sin etiquetar Dominio del problema Patrón Sistema de aprendizaje Señal de error Regla de adaptación Respuesta Característica 2 Grupo B Característica 1 8

9 Ciclo de diseño: clasificador Taxonomía metodológica: Estadística (o Bayesiana): - Las características son variables aleatorias con propiedades estadísticas. - Reconocimiento basado en máxima probabilidad. Geométrica: - El espacio de características es dividido en regiones donde cada una representa una clase. - Análisis lineal discriminante, máquinas de vectores de soporte, etc. Red neuronal artificial: - Métodos de caja negra que transforman el espacio de características al espacio de clases. - Perceptrón multicapa, función de base radial, etc. Basado en modelos: - Las clases se representan por patrones de referencia. - Reconocimiento basado en encontrar la referencia más cercana. 9

10 Ciclo de diseño: clasificador En el paradigma de aprendizaje supervisado, el objetivo es inferir una función f:x Y, a partir de un conjunto de patrones de entrenamiento Z n compuesto de pares de puntos (x i,y i ), donde x i X y y i Y para i=1,2,,n: Z n = ((x 1,y 1 ),,(x n,y n )) (2) Típicamente X R d, Y R y y i es discreto, de modo que para c clases y i {1,2,,c}. Comúnmente, para problemas de clasificación binaria y i { 1,+1}. 10

11 Ciclo de diseño: evaluación Evaluación del sistema: un método convencional es contar cuántos errores de clasificación ocurren para cada clase. Sea N i el número de patrones en cada clase y P i la probabilidad de error para la clase ω i. Usando distribución binomial *, la probabilidad de k i errores para la clase ω i es P(k i errores) = N i P k i (1 P i i ) N i k i (3) k i N i = 40 P i = 0.3 P(k i ) k i *Distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí. 11

12 Ciclo de diseño: evaluación Cómo estimar el valor de P i? Mediante el método de máxima verosimilitud se tiene que: ˆP i = k i N i (4) La probabilidad de error total estimada sobre todas las c clases es: c i=1 ˆP = P(ω i ) k i N i = c i=1 k i N (5) donde P(ω i ) es la probabilidad a priori de la clase ω i : P(ω i ) = N i N donde N es el total de patrones u observaciones. (6) 12

13 Ciclo de diseño: evaluación Clases balanceadas vs desbalanceadas. N 1 = 21, k 1 = 3 N 2 = 19, k 2 = 2 N 1 = 35, k 1 = 0 N 2 = 5, k 2 = 5 Característica 2 Frontera de decisión Característica 2 Frontera de decisión Característica 1 Característica 1 ˆP = 5 40 = ˆP = 5 40 =

14 Ciclo de diseño: evaluación En la práctica, se tiene conjuntos de datos finitos, de modo que para evaluar el sistema de clasificación se deben generar conjuntos de entrenamiento y prueba. A mayor número de patrones de entrenamiento, mejor generalización. A mayor número de patrones de prueba, mejor estimación de la probabilidad del error de clasificación. Métodos de remuestreo: Resubstitution, Hold-out method, crossvalidation method, leave-one-out method, bootstrap method. Métodos de evaluación: matriz de confusión, análisis ROC, coeficiente de correlación de Matthews, etc. 14

15 Términos importantes clase, modelo característica, vector de características extracción de características patrones de entrenamiento, muestras de entrenamiento, datos de entrenamiento patrones de prueba, muestras de prueba, datos de prueba costo, riesgo clasificador frontera de decisión separabilidad y generalización aprendizaje supervisado 15

Aprendizaje: Boosting y Adaboost

Aprendizaje: Boosting y Adaboost Técnicas de Inteligencia Artificial Aprendizaje: Boosting y Adaboost Boosting 1 Indice Combinando clasificadores débiles Clasificadores débiles La necesidad de combinar clasificadores Bagging El algoritmo

Más detalles

TECNOLOGÍAS INTELIGENTES PARA EXPLOTACIÓN DE INFORMACIÓN

TECNOLOGÍAS INTELIGENTES PARA EXPLOTACIÓN DE INFORMACIÓN TECNOLOGÍAS INTELIGENTES PARA EXPLOTACIÓN DE INFORMACIÓN FUNDAMENTOS CURSO DE DOCTORADO Dr. Ramón García-Martínez * * * CONTEXTO La inteligencia de negocio propone un abordaje interdisciplinario que tomando:

Más detalles

Introducción a las Redes Neuronales

Introducción a las Redes Neuronales Introducción a las Redes Neuronales Excepto en las tareas basadas en el cálculo aritmético simple, actualmente, el cerebro humano es superior a cualquier computador: Reconocimiento de imágenes, Interpretación

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.

Más detalles

LOS SISTEMAS ADAPTATIVOS

LOS SISTEMAS ADAPTATIVOS 0010100100100101010110010001 0101010001010100101000101 0010100011110010110010001 11111111111010100010101001010010100010101010101 0010100011110101010101011100101001001010101100100010010100011110101010001

Más detalles

Visión por computadora Computer vision

Visión por computadora Computer vision Visión por computadora Computer vision Conjunto de algoritmos que permiten obtener una representación visual del mundo, suficiente para la realización de una tarea dada. Representación visual El mundo:

Más detalles

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4 PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área

Más detalles

Aprendizaje Automatizado

Aprendizaje Automatizado Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Aprendizaje basado en ejemplos.

Aprendizaje basado en ejemplos. Aprendizaje basado en ejemplos. In whitch we describe agents that can improve their behavior through diligent study of their own experiences. Porqué queremos que un agente aprenda? Si es posible un mejor

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

CLASIFICACIÓN DE LA IMAGEN. Escuela de Ingeniería Civil y Geomática Francisco Luis Hernández Torres

CLASIFICACIÓN DE LA IMAGEN. Escuela de Ingeniería Civil y Geomática Francisco Luis Hernández Torres CLASIFICACIÓN DE LA IMAGEN TÉCNICA QUE PERMITE LA IDENTIFICACIÓN DE LOS DIFERENTES OBJETOS O GRUPOS PRESENTES EN UNA IMAGEN MULTI-ESPECTRAL. MÉTODO NO SUPERVISADO MÉTODO SUPERVISADO El Desarrollo De Las

Más detalles

EXPERIMENTO ALEATORIO

EXPERIMENTO ALEATORIO EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Bloque temático: Sistemas de Reconocimiento de Patrones

Bloque temático: Sistemas de Reconocimiento de Patrones Bloque temático: Sistemas de Reconocimiento de Patrones 1 Sistemas de Reconocimiento de Patrones PRACTICAS 6)Estudio de ejemplos en Matlab 7)Adquisición de imágenes reales: generación de una librería de

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

REDES NEURONALES. Una esquema simplificado de una neurona se muestra en la siguiente figura. Cuerpo celular. Dendrita. Axón.

REDES NEURONALES. Una esquema simplificado de una neurona se muestra en la siguiente figura. Cuerpo celular. Dendrita. Axón. REDES NEURONALES Las redes neuronales constituyen una poderosa herramienta para modelar sistemas, especialmente no lineales, sean dinámicos o estáticos. En el cuerpo celular se realizan la mayoría de las

Más detalles

Redes bayesianas temporales para reconocimiento de escenarios

Redes bayesianas temporales para reconocimiento de escenarios Redes bayesianas temporales para reconocimiento de escenarios Ahmed Ziani and Cina Motamed Visión de Alto Nivel Dr. Enrique Sucar Irvin Hussein López Nava Junio 2009 Introducción (1) Objetivo: aplicaciones

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

GUÍA DOCENTE: Sistemas Basados en Conocimiento y Minería de Datos (SBC)

GUÍA DOCENTE: Sistemas Basados en Conocimiento y Minería de Datos (SBC) GUÍA DOCENTE: Sistemas Basados en Conocimiento y Minería de Datos (SBC) Curso Académico: 2015-2016 Programa: Centro: Universidad: Máster Universitario en Ingeniería Informática Escuela Politécnica Superior

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO 2 Objetivo El objetivo principal de las técnicas de clasificación supervisada es obtener un modelo clasificatorio válido para permitir tratar

Más detalles

Series Temporales. Departamento de Informática Universidad Carlos III de Madrid Avda. de la Universidad, Leganés (Madrid)

Series Temporales. Departamento de Informática Universidad Carlos III de Madrid Avda. de la Universidad, Leganés (Madrid) Series Temporales Departamento de Informática Universidad Carlos III de Madrid Avda. de la Universidad, 30. 28911 Leganés (Madrid) Series Temporales Introducción Problema de predicción Modelos neuronales

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill. GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos

Más detalles

5. TEOREMA FUNDAMENTAL: Formulación y Demostración. Jorge Eduardo Ortiz Triviño

5. TEOREMA FUNDAMENTAL: Formulación y Demostración. Jorge Eduardo Ortiz Triviño 5. TEOREMA FUNDAMENTAL: Formulación y Demostración Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co/jeortizt/ 1 CONTENIDO 1. INTRODUCCIÓN 2. VARIABLES ALEATORIAS 3. TEOREMA

Más detalles

Análisis Inteligente de Datos: Introducción

Análisis Inteligente de Datos: Introducción Análisis Inteligente de Datos: cvalle@inf.utfsm.cl Departamento de Informática - Universidad Técnica Federico Santa María Santiago, Marzo 2009 Temario 1 Temario 1 Preguntas Relevantes Por qué análisis

Más detalles

Capítulo 8. Análisis Discriminante

Capítulo 8. Análisis Discriminante Capítulo 8 Análisis Discriminante Técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables

Más detalles

Tema 1: Introducción

Tema 1: Introducción Estadística Universidad de Salamanca Curso 2010/2011 Outline 1 Estadística 2 Outline 1 Estadística 2 La estadística es una ciencia que comprende la recopilación, tabulación, análisis e interpretación de

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAE13001731 HORAS TEORÍA : 3 SEMESTRE : QUINTO HORAS PRÁCTICA : 1 REQUISITOS

Más detalles

Desempeño de Medidas de Riesgo sobre Distribuciones de Valores Extremos

Desempeño de Medidas de Riesgo sobre Distribuciones de Valores Extremos Desempeño de Medidas de Riesgo sobre Distribuciones de Valores Extremos Resumen Ejecutivo Antecedentes El riesgo es un concepto ampliamente estudiado, con diversas definiciones que dependen del contexto

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS PROBABILIDAD Área a la que pertenece: Área Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0056 Asignaturas antecedentes y subsecuentes PRESENTACIÓN

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Bases Formales de la Computación: Sesión 3. Modelos Ocultos de Markov

Bases Formales de la Computación: Sesión 3. Modelos Ocultos de Markov Bases Formales de la Computación: Sesión 3. Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Cali Periodo 2008-2 Contenido 1 Introducción

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA. práctica, Total: 85 Horas a la semana: 5 teoría: 4 prácticas: 1 Créditos:

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA. práctica, Total: 85 Horas a la semana: 5 teoría: 4 prácticas: 1 Créditos: UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA Probabilidad y Estadística 18/01/10 Clave: 214 Semestre: 1 Duración del curso: semanas: 17 horas: 68 de teoría y 17 de práctica, Total: 85 Horas

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Segmentación basada en texturas INTRODUCCIÓN La textura provee información sobre la distribución espacio-local del color o niveles de intensidades

Más detalles

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

[20380] Visió per Computador Prueba 2 (2013) Teoria (10p) (una pregunta test fallada descuenta 1/4 de pregunta acertada)

[20380] Visió per Computador Prueba 2 (2013) Teoria (10p) (una pregunta test fallada descuenta 1/4 de pregunta acertada) 102784 [20380] Visió per Computador Prueba 2 (2013) Teoria (10p) (una pregunta test fallada descuenta 1/4 de pregunta acertada) 1. En cuál de estas posibles aplicaciones podríamos utilizar una característica

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: ANÁLISIS DEL RIESGO ACTUARIAL Y FINANCIERO

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: ANÁLISIS DEL RIESGO ACTUARIAL Y FINANCIERO MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: ESTADÍSTICA ACTUARIAL III: ANÁLISIS MULTIVARIANTE DE DATOS Código: 603377 Materia: ESTADÍSTICA ACTUARIAL Módulo: ANÁLISIS DEL

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Maxima Verosimilitud [Escribir el subtítulo del documento] Valores que hacen mas verosímil la información

Maxima Verosimilitud [Escribir el subtítulo del documento] Valores que hacen mas verosímil la información Maxima Verosimilitud [Escribir el subtítulo del documento] Valores que hacen mas verosímil la información Theodoro Perez Brito 24/05/2009 1. Principio de la máxima Verosimilitud: Supongamos que la distribución

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México

Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México Presentan: Dr. Miguel

Más detalles

UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA

UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA I. DATOS INFORMATIVOS 1.1 Asignatura : Estadística para el Comunicador Social 1.2 Código : 1001-1023 1.3 Pre-requisito

Más detalles

VISIÓN POR COMPUTADOR

VISIÓN POR COMPUTADOR VISIÓN POR COMPUTADOR Introducción Ingeniería de Sistemas y Automática Universidad Miguel Hernández Tabla de Contenidos 2 Definición de Visión por Computador Captación Información Luminosa Imagen Digital

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ciencias Básicas CODIGO SEMESTRE DENSIDAD HORARIA HT

Más detalles

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones

Más detalles

CONCEPTOS BÁSICOS (Freeman capt.1; Neural Nets capt. 4,5 y 7)

CONCEPTOS BÁSICOS (Freeman capt.1; Neural Nets capt. 4,5 y 7) Tema 1: Conceptos Básicos Sistemas Conexionistas 1 CONCEPTOS BÁSICOS (Freeman capt.1; Neural Nets capt. 4,5 y 7) 1.- Introducción. 1.1.- Redes Neuronales de Tipo Biológico. 1.2.- Redes Neuronales dirigidas

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

PROBABILIDAD Y ESTADISTICA

PROBABILIDAD Y ESTADISTICA PLAN DE ESTUDIOS 2008 LICENCIADO EN INFORMÁTICA FACULTAD DE CONTADURÍA, ADMINISTRACIÓN E INFORMÁTICA ASIGNATURA: PROBABILIDAD Y ESTADISTICA ÁREA DEL MATEMÁTICAS CLAVE: I2PE1 CONOCIMIENTO: ETAPA FORMATIVA:

Más detalles

Localización. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Localización. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides M.Sc. Kryscia Ramírez Benavides Problemas de Navegación de los Robots Dónde estoy?. Dónde he estado? Mapa de decisiones. A dónde voy? Planificación de misiones. Cuál es la mejor manera de llegar? Planificación

Más detalles

ESTRATEGIAS EN LA SESIÓN DE APRENDIZAJE PROCESOS COGNITIVOS PROCESOS PEDAGÓGICOS

ESTRATEGIAS EN LA SESIÓN DE APRENDIZAJE PROCESOS COGNITIVOS PROCESOS PEDAGÓGICOS ESTRATEGIAS EN LA SESIÓN DE APRENDIZAJE ESTRATEGIAS DE APRENDIZAJE Controladas por el sujeto que aprende PROCESOS COGNITIVOS - Recepción de la información. - Observación selectiva. - División del todo

Más detalles

Métodos Predictivos en Minería de Datos

Métodos Predictivos en Minería de Datos Métodos Predictivos en Minería de Datos Tutor: El curso será impartido por Dr. Oldemar Rodríguez graduado de la Universidad de París IX y con un postdoctorado de la Universidad de Stanford. Duración: Cuatro

Más detalles

Modelo Predictivo del Crimen para la Región Metropolitana

Modelo Predictivo del Crimen para la Región Metropolitana Análisis Espacial de la Criminalidad basado en Georeferenciación de Denuncias José Miguel Benavente PhD Departamento de Economía. Departamento de Ingeniería Industrial. Universidad de Chile. Carabineros

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL:

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Aprendizaje

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

Carrera: Integrantes de la Academia de Ingeniería Industrial: M.C. Ramón García González. Integrantes de la

Carrera: Integrantes de la Academia de Ingeniería Industrial: M.C. Ramón García González. Integrantes de la 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Ingeniería de calidad Licenciatura en Ingeniería Industrial Clave de la asignatura: Horas teoría horas práctica - créditos 4-0 - 8 2.- HISTORIA

Más detalles

Probabilidad y Estadística Descripción de Datos

Probabilidad y Estadística Descripción de Datos Descripción de Datos Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 28 Contenido 1 Probabilidad

Más detalles

CRITERIOS DE SELECCIÓN DE MODELOS

CRITERIOS DE SELECCIÓN DE MODELOS Inteligencia artificial y reconocimiento de patrones CRITERIOS DE SELECCIÓN DE MODELOS 1 Criterios para elegir un modelo Dos decisiones fundamentales: El tipo de modelo (árboles de decisión, redes neuronales,

Más detalles

PLANEACIÓN DIDÁCTICA FO205P

PLANEACIÓN DIDÁCTICA FO205P PLANEACIÓN DIDÁCTICA FO205P11000-44 DIVISIÓN (1) INGENIERÍA EN TICS DOCENTE (2) ING. JULIO MELÉNDEZ PULIDO NOMBRE DE LA ASIGNATURA (3) PROBABILIDAD Y ESTADISTICA CRÉDITOS (4) 5 CLAVE DE LA ASIGNATURA (5)

Más detalles

5. Clasificación de las formas del relieve. Modelización y análisis del terreno

5. Clasificación de las formas del relieve. Modelización y análisis del terreno 5. Clasificación de las formas del relieve los elementos del relieve pozo cresta planicie pico canal collado ladera formas elementales: crestas la pendiente no es un curvatura nula convexidad criterio

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Procesos estocásticos. Definición

Procesos estocásticos. Definición Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Tema 9: Contraste de hipótesis.

Tema 9: Contraste de hipótesis. Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los

Más detalles

Modelos de cola.

Modelos de cola. Modelos de cola http://humberto-r-alvarez-a.webs.com Las colas Las colas son frecuentes en la vida cotidiana: En un banco En un restaurante de comidas rápidas Al matricular en la universidad Los autos

Más detalles

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo, 2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo

Más detalles

Unidad 2 COMPONENTES

Unidad 2 COMPONENTES Unidad 2 COMPONENTES Objetivo de la Unidad: Conocer los distintos elementos que conforman un sistema hidráulico, sus características y funciones. 2 SECCIONES DE UN SISTEMA HIDRÁULICO Generar Sección de

Más detalles

Árboles Filogenéticos. BT7412, CC5702 Bioinformática Diego Arroyuelo. 2 de noviembre de 2010

Árboles Filogenéticos. BT7412, CC5702 Bioinformática Diego Arroyuelo. 2 de noviembre de 2010 Unidad 6: Árboles Filogenéticos BT7412, CC5702 Bioinformática Diego Arroyuelo 2 de noviembre de 2010 Temario (Introduction to Computational Molecular Biology Setubal y Meidanis Capítulo 6) 1. Introducción

Más detalles

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA Descripción de la asignatura Estadística I El objetivo de la asignatura es proporcionar al estudiante conocimiento Departamento de Estadística y comprensión

Más detalles

Métodos, Algoritmos y Herramientas

Métodos, Algoritmos y Herramientas Modelado y Simulación de Sistemas Dinámicos: Métodos, Algoritmos y Herramientas Ernesto Kofman Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA - Universidad Nacional de Rosario.

Más detalles

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD)

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) Fortino Vela Peón fvela@correo.xoc.uam.mx FVela-0 Objetivo Introducir las ideas básicas del principio de máxima verosimilitud. Problema Considere el experimento

Más detalles

La asignatura proporciona al alumno los conceptos básicos de estadística. Se organiza el temario en cinco unidades.

La asignatura proporciona al alumno los conceptos básicos de estadística. Se organiza el temario en cinco unidades. 1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Carrera: Clave de la asignatura: Muestreo y Regresión. Ingeniería Forestal. FOC-1027 SATCA: 2 2 4 2.- PRESENTACIÓN. Caracterización de la asignatura.

Más detalles

2. CONTRIBUCIÓN DE LA ASIGNATURA AL PERFIL DE EGRESO

2. CONTRIBUCIÓN DE LA ASIGNATURA AL PERFIL DE EGRESO PROGRAMA DE ESTUDIO Facultad de Ciencias Químicas e Ingeniería Nombre de la asignatura: PROBABILIDAD Y ESTADÍSTICA 2 Clave: 0 $ 7 & L F O R Formativ R: Básic o ( X ) P r o f e s i o n( a l) E s p e c i

Más detalles

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos Contenido Prefacio ix 1 Introducci6n a la estadfstica y al an;!llisis de datos 1 1.1 1.2 1.3 1.4 1.5 1.6 Repaso 1 EI papel de la probabilidad 2 Medidas de posici6n: media de una muestra 4 Medidas de variabilidad

Más detalles

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas Contenidos mínimos Criterios de evaluación Ejemplos de preguntas 1º ESO Números naturales, enteros y decimales: operaciones elementales. Fracciones: operaciones elementales. Potencias de exponente natural.

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Aprendizaje Automático para el Análisis de Datos GRADO EN ESTADÍSTICA Y EMPRESA. Ricardo Aler Mur

Aprendizaje Automático para el Análisis de Datos GRADO EN ESTADÍSTICA Y EMPRESA. Ricardo Aler Mur Aprendizaje Automático para el Análisis de Datos GRADO EN ESTADÍSTICA Y EMPRESA Ricardo Aler Mur TIPOS DE TAREAS, MODELOS Y ALGORITMOS ? Datos Entrenamiento Algoritmo Modelo Galaxia espiral TAREAS / MODELOS

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS I. IDENTIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I CÓDIGO DE LA ASIGNATURA 33102106 ÁREA CIENCIAS BASICAS DE INGENIERIA SEMESTRE SEGUNDO PLAN DE ESTUDIOS 1996 AJUSTE 2002 HORAS TOTALES POR SEMESTRE 64 HORAS

Más detalles

LECTURA 01: LA ESTADÍSTICA. TÉRMINOS DE ESTADÍSTICA. RECOLECCIÓN DE DATOS TEMA 1: LA ESTADISTICA: DEFINICION Y CLASIFICACION

LECTURA 01: LA ESTADÍSTICA. TÉRMINOS DE ESTADÍSTICA. RECOLECCIÓN DE DATOS TEMA 1: LA ESTADISTICA: DEFINICION Y CLASIFICACION LECTURA 01: LA ESTADÍSTICA. TÉRMINOS DE ESTADÍSTICA. RECOLECCIÓN DE DATOS TEMA 1: LA ESTADISTICA: DEFINICION Y CLASIFICACION 1. DEFINICION La estadística es una ciencia que proporciona un conjunto métodos

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Carrera: Ingeniería Civil CIM 0531

Carrera: Ingeniería Civil CIM 0531 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Probabilidad y Estadística Ingeniería Civil CIM 0531 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Proyecto PropULSA: Estadística y Probabilidad Breviario Académico

Proyecto PropULSA:  Estadística y Probabilidad Breviario Académico Estadística y Probabilidad Breviario Académico Estadística: Es la ciencia que tiene por objetivo recolectar, escribir e interpretar datos, con la finalidad de efectuar una adecuada toma de decisiones en

Más detalles

Nombre de la asignatura: Simulación. Créditos: Aportación al perfil

Nombre de la asignatura: Simulación. Créditos: Aportación al perfil Nombre de la asignatura: Simulación Créditos: 2-4-6 Aportación al perfil Analizar, diseñar y gestionar sistemas productivos desde la provisión de insumos hasta la entrega de bienes y servicios, integrándolos

Más detalles

MATEMÁTICAS 2º DE BACHILLERATO

MATEMÁTICAS 2º DE BACHILLERATO MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes de orden 2 y 3 8.

Más detalles

Análisis de estudios de cohortes en Ciencias de la P005/10. Salud (modelos regresión de Poisson y de Cox)

Análisis de estudios de cohortes en Ciencias de la P005/10. Salud (modelos regresión de Poisson y de Cox) Análisis de estudios de cohortes en Ciencias de la P005/10 Salud (modelos regresión de Poisson y de Cox) Fecha de aprobación de programa: Marzo 2012 Fechas curso: 4 y 5 de Junio de 2012 Horario: Mañana

Más detalles

3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE. Un motor de inducción tiene físicamente el mismo estator de una máquina

3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE. Un motor de inducción tiene físicamente el mismo estator de una máquina 220 3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE ARDILLA 3.2.1 Descripción del problema. Un motor de inducción tiene físicamente el mismo estator de una máquina sincrónica con diferente construcción

Más detalles

ESTADISTICA INFERENCIAL

ESTADISTICA INFERENCIAL ESTADISTICA INFERENCIAL CODIGO 214543 (COMPUTACION) 224543 (SISTEMAS) 254443 (CONTADURIA) 264443 (ADMINISTRACION) 274443( GRH) HORAS TEORICAS HORAS PRACTICAS UNIDADES CREDITO SEMESTRE 02 02 03 IV PRE REQUISITO

Más detalles

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE ASIGNATURA Estadistica CURSO ACADÉMICO - SEMESTRE 2016-17 - Primer semestre GA_05IQ_55001012_1S_2016-17 Datos Descriptivos Nombre de la Asignatura Titulación Centro

Más detalles

Simulación. Problema del jardinero. Modelo de stock aleatorio. Camino crítico.

Simulación. Problema del jardinero. Modelo de stock aleatorio. Camino crítico. Simulación Temario de la clase Introducción. Generacion de variables aleatorias: método de la transformada inversa. Avance del tiempo de simulación. Determinación de la cantidad de iteraciones requeridas.

Más detalles