Mecánica de Sólidos. UDA 3: Torsión en Ejes de Sección Circular

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Mecánica de Sólidos. UDA 3: Torsión en Ejes de Sección Circular"

Transcripción

1 Mecánica de Sólidos UDA 3: Torsión en Ejes de Sección Circular 1

2 Definición y Limitaciones Se analizarán los efectos que produce la aplicación de una carga de torsión sobre un elemento largo y recto como un eje o tubo. En un inicio se considerará que el elemento tiene una sección transversal circular. Se mostrará como determinar la distribución de esfuerzo dentro del elemento, así como el ángulo de torsión cuando el material se comporta en forma elástico lineal o de manera inelástica Se abordará el análisis estáticamente indeterminado de los ejes y tubos, además de temas especiales como los elementos con secciones transversales. 2

3 Deformación por Torsión de un Eje Circular El par de torsión es un momento que tiende a torcer un elemento sobre su eje longitudinal. Su efecto es de gran importancia en el diseño de ejes o árboles de transmisión utilizados en vehículos y maquinarias. Observe que: La torsión ocasiona que los círculos se conserven como círculos y que cada línea longitudinal de la cuadrícula se deforme en una hélice que interseca los círculos en ángulos iguales. Las secciones transversales de los extremos a lo largo del eje seguirán siendo planas. Las líneas radiales se conservan rectas durante la deformación. 3

4 Fórmula de la Torsión Cuando un par de torsión externo se aplica sobre un eje, éste genera un par de torsión correspondiente. Si el material es elástico lineal, entonces se aplica la ley de Hooke. τ Gγ En consecuencia cualquier variación lineal en la deformación cortante conducirá a una correspondiente variación lineal en el esfuerzo cortante a lo largo de cualquier línea radial ubicada en la sección transversal. Esta ecuación expresa la distribución del esfuerzo cortante sobre la sección transversal en función de la posición radial ρ del elemento. Ahora es posible aplicar la condición de que el par de torsión producido por la distribución de esfuerzos sobre toda la sección transversal sea equivalente al par de torsión interno resultante T en la sección, lo cual mantendrá al eje en equilibrio. 4

5 Deformación por Torsión de un Eje Circular Cada elemento de área da, ubicado en ρ, está sometido a una fuerza de df τ da. El par de torsión producido por esta fuerza es dt = ρ(τda. Por lo tanto, para toda la sección transversal se tiene: La integral depende sólo de la geometría del eje. Representa el momento polar de inercia del área de la sección transversal del eje alrededor de su línea central longitudinal. Su valor se simboliza como J: 5

6 Deformación por Torsión de un Eje Circular 6

7 Deformación por Torsión de un Eje Sólido Si el eje tiene una sección transversal circular sólida, el momento polar de inercia J puede determinarse usando un elemento de área en forma de un aro o anillo diferencial que tienen un grosor dp y una circunferencia 2πp: J es una propiedad geométrica del área circular y que siempre es positiva. Las unidades que se utilizan mas a menudo para su medición son mm4 o in4. 7

8 Deformación por Torsión de un Eje Sólido El esfuerzo cortante varia linealmente al largo de cada línea radial de la sección transversal del eje. Si se aísla un elemento del material que se encuentra sobre esta sección, entonces debido a la propiedad complementaria de la fuerza cortante, deben existir también esfuerzos cortantes iguales que actúen sobre cuatro de sus caras adyacente. No solo el par de torsión interno T desarrolla una distribución lineal del esfuerzo cortante a lo largo de cada línea radial en el plano del área de la sección transversal, sino que también se desarrolla una distribución del esfuerzo cortante asociada a lo largo de un plano axial. 8

9 Deformación por Torsión de un EjeSólido. 9

10 Deformación por Torsión de un Eje Tubular Si un eje tiene una sección transversal tubular, con radio interior C1 y radio exterior Co, entonces su memento polar de inercia J puede determinarse con base a : 10

11 11

12 12

13 13

14 Ejemplo #1: 14

15 Solución de ejemplo #1: 15

16 Ejemplo #2: Deformación por Torsión de un Ejes 16

17 Transmisión de Potencia Con frecuencia, los ejes y tubos con secciones circulares se utilizan para transmitir la potencia desarrollada por una máquina. Cuando se utilizan con este fin, se les somete a un par de torsiones que depende de la potencia generada por la máquina y de la velocidad angular del eje. La potencia se define como el trabajo realizado por unidad de tiempo. El trabajo transmitido por un eje giratorio es igual al par aplicado por el ángulo de rotación. Como la velocidad angular del eje 19

18 Transmisión de Potencia En el sistema Internacional, la potencia se expresa en vatios cuando el par de torsión se mide en newton-metros (N-m) y w se expresa en radianes por segundo (rad/s) (1 W = 1N-m/s). Para el sistema americano (pies-libras-segundos) la potencia tendrá unidades pies-libras por segundo (ft-lb/s) y se denomina caballos de fuerza (Horse Power) hp. 1 hp = 550 pies-lb/s La frecuencia, es una medida del número de revoluciones o ciclos que realiza el eje cada segundo. 1 Hz = 1 ciclo/s 1 ciclo = 2 π rad ω= 2πf 20

19 Transmisión de Potencia Diseño de Ejes Cuando se conoce la potencia transmitida por un eje y su frecuencia de rotación, el par de torsión que se desarrolla en el eje puede determinarse a partir de: 2 Al conocer T y el esfuerzo cortante permisible para el material, es posible determinar el tamaño de la sección transversal del eje empleando la fórmula de la torsión, siempre y cuando el comportamiento del material sea elástico lineal. 2 ) Eje Sólido Eje Tubular 21

20 Transmisión de Potencia 22

21 Angulo de Giro Si se aplica un par de torsión T en un extremo de la barra circular, y el otro extremo se mantiene fijo, la flecha se torcerá entre lo dos extremos a través de un ángulo θ. Conforme se aplica el par de torsión, un elemento a lo largo de la superficie externa del miembro, inicialmente recto, gira un pequeño ángulo: donde: T: par de torsión L: longitud de la barra J: momento polar de inercia G: módulo de elasticidad a cortante 23

22 Módulo 3: Torsión en Ejes Sección rectangular Línea media de la cara ancha S s S s T T b L Línea media de la cara angosta a

23 Módulo 3: Torsión en Ejes S smax Punto crítico S s (b) Estado de esfuerzo S smax b T S s a (a) Distribuciones de esfuerzos cortantes a lo largo de (i) los lados de la sección, (ii) dos líneas medias y (iii) una línea oblicua T (c) La forma de las secciones rectangulares cambia al ser sometida a torsión y dichas secciones no permanecen planas T S smax = αab S ' = γ 2 smax S smax,, θ = TL Gβab 3, a/b α β γ Sección rectangular

24 Módulo 3: Torsión en Ejes Tubos de pared delgada T t < r m /10, r m = A m π, S s ds S s t: espesor de pared t A m L T T S s = TL ds, = 2A t 4, TLs θ 2 A G Si t = cte, θ =. t 4A 2 Gt m m m

25 t T r m t r T r m. 2 y Gt r TL t r T S m m s π θ π = =. 2 3 y, Gt r TL t r T S m m s π θ π = = Circular hueca Circular hueca con ranura Módulo 3: Torsión en Ejes Tubos de pared delgada

26 Módulo 3: Torsión en Ejes Diagrama de torques

27 Módulo 3: Torsión en Ejes Diagrama de torques Solución: El esfuerzo cortante máximo producido por torsión depende de la magnitud del par de torsión y del diámetro de la sección; entonces, se debe encontrar la combinación de par de torsión y diámetro que produce el máximo esfuerzo. Se debe construir un diagrama de par de torsión para determinar los pares internos en las diferentes secciones del elemento. Diagrama de par de torsión: Nótese que las cargas sobre el elemento garantizan el equilibrio de éste, ya que la suma de pares de torsión es igual a cero: T1 T2 + T3 = 20 kn 50 kn + 30 kn = 0. El sentido positivo del par puede asumirse arbitrariamente.

28 Módulo 3: Torsión en Ejes T 1 = 20 kn-m T 2 = 50 kn-m T 3 = 30 kn-m Diagrama de torques φ 8 φ 10 φ 9 A B C D E F G H I Medidas en cm T (kn-m) 20 x A B C D E F G H I 30 Entre las secciones A y C no hay cargas, por lo tanto, se traza una línea horizontal en T = 0 desde A hasta C. En C se traza una flecha vertical hacia arriba que corresponde al par T1 de 20 kn-m; el signo de este par se tomó arbitrariamente positivo. Entre C y E no hay par, entonces, se traza la línea horizontal mostrada. En la sección E está el par T2 de 50 kn que va en sentido contrario a T1, entonces, se traza la flecha vertical hacia abajo que llega hasta un valor de T = 20 kn 50 kn = 30 kn. La línea horizontal entre E y G indica que no hay par en ese tramo de la pieza. La flecha en G corresponde al par T3. Finalmente, la línea horizontal entre G e I indica que no hay par entre estas dos secciones. El diagrama cierra en T = 0 indicando que la pieza está en equilibrio.

29 Módulo 3: Torsión en Ejes Diagrama de torques Sección crítica y esfuerzo máximo: Las secciones más críticas se escogen con base en el par de torsión y el diámetro de éstas. - Los tramos AC y GH no soportan par de torsión ni tampoco esfuerzo. - El tramo CD soporta un par de 20 kn-m y tiene un diámetro de 8 cm. - El tramo DE puede descartarse ya que soporta el mismo par que el del tramo CD, teniendo mayor diámetro (por lo tanto, menores esfuerzos de acuerdo con la ecuación 2.12). - El tramo EF soporta un par de torsión mayor que el del tramo DE, entonces, podría ser crítico. - Finalmente, el tramo FG soporta 30 kn y tiene un diámetro de 9 cm. Comparado con el tramo CD no podría descartarse ninguno de los dos, a simple vista, ya que uno tiene mayor par, pero el otro menor diámetro. Comparando el tramo FG con el EF, se descarta este último, ya que ambos soportan el mismo momento de torsión, pero el EF posee mayor diámetro (menores esfuerzos). En conclusión, se analizan los tramos CD y FG. Sin tener en cuenta los efectos de los cambios de sección sobre los esfuerzos, todas las secciones de cada tramo soportarán la misma distribución de esfuerzos. En el tramo CD, el esfuerzo máximo (que ocurre en la periferia) está dado por la ecuación: Para el tramo FG, el esfuerzo máximo es igual a: De acuerdo con esto, las secciones más críticas son las del tramo FG, y el esfuerzo máximo in dicho tramo ocurre en la superficie y es igual a 210 MPa.

30 Módulo 3: Torsión en Ejes Diagrama de torques Cálculo del ángulo de torsión: El ángulo de torsión total es la suma de los ángulos de torsión en los diferentes tramos. Nótese que en los tramos AB, BC, GH y HI no hay deformación ya que no están cargados. Los signos de los ángulos de torsión se han tomado de acuerdo con los signos de los pares de torsión en los diferentes tramos. El ángulo de torsión total es: El signo negativo indica que el ángulo de torsión en el tramo EG es mayor que en el CE. Mirando la pieza por la derecha, la cara I gira en sentido horario con respecto a la cara A; esto se deduce con base en la dirección de los pares de torsión que producen las deformaciones.

31 Módulo 3: Torsión en Ejes Cálculo del ángulo de torsión: Propiedades FÍSICAS aproximadas de algunos materiales de ingeniería. Ψ Diagrama de torques

32 Módulo 3: Torsión en Ejes

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Resistencia de los Materiales

Resistencia de los Materiales Resistencia de los Materiales Clase 4: Torsión y Transmisión de Potencia Dr.Ing. Luis Pérez Pozo luis.perez@usm.cl Pontificia Universidad Católica de Valparaíso Escuela de Ingeniería Industrial Primer

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

Equilibrio y cinemática de sólidos y barras (2)

Equilibrio y cinemática de sólidos y barras (2) Equilibrio y cinemática de sólidos y barras (2) Fuerzas aiales distribuidas y sección variable Índice Ejercicios de recapitulación Fuerzas aiales distribuidas Equilibrio Deformación Ejemplos Barras de

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

1.- Torsión. Momento de Torsión

1.- Torsión. Momento de Torsión MECÁNICA TÉCNICA TEMA XX 1.- Torsión. Momento de Torsión En un caso más general, puede suceder que el plano del Momento, determinado por el momento resultante de todos los momentos de las fuerzas de la

Más detalles

Primera parte: Funciones trigonome tricas (cont). Tiempo estimado: 1.3 h

Primera parte: Funciones trigonome tricas (cont). Tiempo estimado: 1.3 h 1. DATOS DE IDENTIFICACIÓN Asignatura: Cálculo Diferencial Docente: Alirio Gómez Programa : INGENIERÍA Semestre: 4 Fecha de elaboración: 21-07-2013 Guía Nº: 2 Título: Funciones. Alumno: Grupo: CB-N-2 Primera

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO)

1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) 1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

CAPÍTULO 2. RESISTENCIAS PASIVAS

CAPÍTULO 2. RESISTENCIAS PASIVAS CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.

Más detalles

Ecuaciones diferenciales de Equilibrio

Ecuaciones diferenciales de Equilibrio Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),

Más detalles

DILATACIÓN PREGUNTAS PROBLEMAS

DILATACIÓN PREGUNTAS PROBLEMAS DILATACIÓN 1. Qué es la temperatura? PREGUNTAS PROBLEMAS 1. Dos barras idénticas de fierro (α = 12 x 10-6 /Cº) de 1m de longitud, fijas en uno de sus extremos se encuentran a una temperatura de 20ºC si

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

Movimiento y Dinámica circular

Movimiento y Dinámica circular SECTOR CIENCIAS - FÍSICA TERCERO MEDIO 2011 Trabajo de Fábrica III MEDIO APREDIZAJES ESPERADOS - Aplicar las nociones físicas fundamentales para explicar y describir el movimiento circular; utilizar las

Más detalles

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

CAPÍTULO 2 CO CEPTOS DE RESISTE CIA DE MATERIALES

CAPÍTULO 2 CO CEPTOS DE RESISTE CIA DE MATERIALES CAPÍULO 2 CO CEPO DE REIE CIA DE MAERIALE 2.1 I RODUCCIÓ En este capítulo se presenta una revisión de los aspectos más pertinentes para el curso de Diseño I de la teoría de resistencia de materiales. e

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: - Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

MATEMÁTICAS GRADO DÉCIMO

MATEMÁTICAS GRADO DÉCIMO MATEMÁTICAS GRADO DÉCIMO SEGUNDA PARTE TEMA 1: VELOCIDAD ANGULAR Definición Velocidad Angular CONCEPTO: DEFINICIONES BÁSICAS: La velocidad angular es una medida de la velocidad de rotación. Se define como

Más detalles

Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas

Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido Contenido anes : Contenido Discutiremos: ángulo trigonométrico : Contenido Discutiremos:

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Equilibrio y Movimiento de los objetos

Equilibrio y Movimiento de los objetos Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

Las Funciones Trigonométricas. Sección 5.1 Angulos

Las Funciones Trigonométricas. Sección 5.1 Angulos 5 Las Funciones Trigonométricas Sección 5.1 Angulos Introducción Si comenzamos con un rayo fijo l 1, que tiene un extremo nombrado O, y rotamos el rayo en el plano sobre O in a plane, hasta llegar a la

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Escuela Superior Tepeji del Río

Escuela Superior Tepeji del Río Escuela Superior Tepeji del Río Área Académica: Ingenieria Industrial Asignatura: Resistencia de los Materiales Profesor(a):Miguel Ángel Hernández Garduño Periodo: Julio- Diciembre 2011 Asignatura: Resistencia

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO Cuerpo rígido Como ya se ha señalado, un cuerpo rígido, es aquel que no se deforman cuando es sometido a fuerzas

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

CONCEPTOS CLAVE DE LA UNIDAD 3

CONCEPTOS CLAVE DE LA UNIDAD 3 CONCEPTOS CLAVE DE LA UNIDAD 3 1. Razón trigonométrica seno. Si θ es la medida de algún ángulo interior agudo en cualquier triángulo rectángulo, entonces a la razón que hay de la longitud del cateto opuesto

Más detalles

Ejercicios y Problemas de Fatiga

Ejercicios y Problemas de Fatiga UNIVERSIDAD SIMON BOLIVAR División de Física y Matemáticas Departamento de Mecánica MC2143-Mecánica de Materiales III Ejercicios y Problemas de Fatiga Problema No. 1 En la Fig. 1a se muestra el esquema

Más detalles

Física: Momento de Inercia y Aceleración Angular

Física: Momento de Inercia y Aceleración Angular Física: Momento de Inercia y Aceleración Angular Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Momento de Torsión (Torque) La capacidad de un fuerza de hacer girar un objeto se define como torque.

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

1. El movimiento circular uniforme (MCU)

1. El movimiento circular uniforme (MCU) FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP =

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP = GUIA FISICA MOVIMIENO CICULA UNIFOME NOMBE: FECHA: FÓMULAS PAA MOVIMIENO CICULA UNIFOME El periodo y la frecuencia son recíprocos Velocidad Lineal o angencial( V ) Velocidad Angular( ) elación entre Velocidad

Más detalles

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES 15.0. SIMBOLOGÍA A g A s d pilote f ce β γ s área total o bruta de la sección de hormigón, en mm 2. En una sección hueca A g es el área de hormigón solamente

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

ANÁLISIS COMPARATIVO ENTRE EJES HUECOS Y EJES SÓLIDOS EN LA TRANSMISIÓN DE POTENCIA

ANÁLISIS COMPARATIVO ENTRE EJES HUECOS Y EJES SÓLIDOS EN LA TRANSMISIÓN DE POTENCIA ANÁLISIS COMPARATIVO ENTRE EJES HUECOS Y EJES SÓLIDOS EN LA TRANSMISIÓN DE POTENCIA Jesus Diego Alberto Ramirez Nuñez a,francisco Javier Ortega Herrera b, Guillermo Tapia Tinoco b José Miguel García Guzmán

Más detalles

Estática. Equilibrio de un cuerpo rígido

Estática. Equilibrio de un cuerpo rígido Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 10.1.- Qué longitud debe tener un redondo de hierro (G = 80.000 MPa), de 1 cm de diámetro para que pueda sufrir un ángulo de

Más detalles

Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín

Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín UNIVERSIDAD COOPERATIVA DE COLOMBIA CURSO FISICA MECANICA PRACTICA DE LABORATORIO PRACTICA No. 10: SUMA DE TORQUES Y EQUILIBRIO ROTACIONAL 1. INTRODUCCION. La aplicación de fuerzas sobre un cuerpo puede

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25.

2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25. 2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25. 2.2.- Para la palanca de cambios mostrada, determine

Más detalles

VANESA PEÑA PAOLA PUCHIGAY 901

VANESA PEÑA PAOLA PUCHIGAY 901 VANESA PEÑA PAOLA PUCHIGAY 901 Por magnitud física entendemos cualquier propiedad de los cuerpos que se puede medir o cuantificar. Medir una magnitud física consiste en asignarle a esa magnitud un numero

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION ESCUELA DE ELÉCTRICA ESCUELA DE TELECOMUNICACIONES PROGRAMA AL FUNDAMENTOS DE RESISTENCIA DE LOS MATERIALES

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades.

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades. LA DENSIDAD (D) de un material es la masa por unidad de volumen del material La densidad del agua es aproximadamente de 1000 DENSIDAD RELATIVA (Dr) de una sustancia es la razón de la densidad de una sustancia

Más detalles

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en

Más detalles

SEMANA 02 SISTEMAS DE MEDIDAS DE ARCOS, RELACIÓN ENTRE LOS SISTEMAS DE MEDIDAS DE ARCOS. LONGITUD DE ARCO.

SEMANA 02 SISTEMAS DE MEDIDAS DE ARCOS, RELACIÓN ENTRE LOS SISTEMAS DE MEDIDAS DE ARCOS. LONGITUD DE ARCO. SEMANA 02 SISTEMAS DE MEDIDAS DE ARCOS, RELACIÓN ENTRE LOS SISTEMAS DE MEDIDAS DE ARCOS. LONGITUD DE ARCO. I. INTRODUCCIÓN Arco Sección de un círculo que se encuentra entre dos puntos del círculo. Cualesquiera

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

UNIDAD 3 ESTÁTICA DE CUERPOS RÍGIDOS. CONDICIONES DE EQUILIBRIO GENERALIDADES.-

UNIDAD 3 ESTÁTICA DE CUERPOS RÍGIDOS. CONDICIONES DE EQUILIBRIO GENERALIDADES.- UNIDAD 3 ESTÁTICA DE CUERPOS RÍGIDOS. CONDICIONES DE EQUILIBRIO GENERALIDADES.- Se dice que una fuerza es el efecto que puede ocasionar un cuerpo físico sobre otro, el cual este está compuesto de materia

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.

Más detalles

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior

Más detalles

Tema 4 : TRACCIÓN - COMPRESIÓN

Tema 4 : TRACCIÓN - COMPRESIÓN Tema 4 : TRCCIÓN - COMPRESIÓN F σ G O σ σ z N = F σ σ σ y Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 4.1.-Calcular el incremento de longitud que tendrá un pilar de hormigón

Más detalles

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así: Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

Péndulo de torsión y momentos de inercia

Péndulo de torsión y momentos de inercia Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

TECNOLOGÍAS DE FABRICACIÓN Mayormente piezas mecánicas. No se descartan otras aplicaciones

TECNOLOGÍAS DE FABRICACIÓN Mayormente piezas mecánicas. No se descartan otras aplicaciones TECNOLOGÍAS DE FABRICACIÓN Mayormente piezas mecánicas. No se descartan otras aplicaciones PROPÓSITO GENERAL: Seleccionar el proceso más adecuado Factores a tener en cuenta: La pieza: Material, forma,

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C) Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

TERCERA LEY DE NEWTON

TERCERA LEY DE NEWTON ESTATICA DEFINICIÓN.- Es parte de la Mecánica Clásica que tiene por objeto estudiar las condiciones para los cuerpos se encuentren en equilibrio. Equilibrio.- se dice que un cuerpo se encuentra en equilibrio

Más detalles

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase.

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase. Taller 1 para el curso Mecánica II. Pág. 1 de 7 UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA Taller No 1 - Curso: Mecánica II Grupo: Encuentre la respuesta para cada uno de los ejercicios

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables Capítulo 7 Trigonometría del triángulo rectángulo Contenido breve Módulo 17 Medición de ángulos Módulo 18 Ángulos notables La trigonometría se utiliza para realizar medidas indirectas de posición y distancias.

Más detalles

MOVIMIENTO CIRCULAR UNIFORME (MCU) = t

MOVIMIENTO CIRCULAR UNIFORME (MCU) = t U S O: FÍSIA Mención MATEIAL: FM-08 MOVIMIENTO IULA UNIFOME (MU) Una partícula se encuentra en movimiento circular, cuando su trayectoria es una circunferencia, como, por ejemplo, la trayectoria descrita

Más detalles

Anexo A: Modelación de vigas en PERFORM 3D. Figura A.1: Geometría de la viga VT-06-A.

Anexo A: Modelación de vigas en PERFORM 3D. Figura A.1: Geometría de la viga VT-06-A. Anexo A: Modelación de vigas en PERFORM 3D Se muestra un modelamiento de una viga asimétrica VT-06-A con un f c= 21 Mpa (210 kg-f/cm 2 ), módulo de Poisson ν=0.15 y modulo elástico E= 2.13 E+08 Mpa (2.1737E+09

Más detalles

ÍNDICE 1.- DESCRIPCIÓN... 2

ÍNDICE 1.- DESCRIPCIÓN... 2 ÍNDICE 1.- DESCRIPCIÓN... 2 2.- COMPROBACIONES... 2 2.1.- Perímetro del soporte (P5)... 2 2.1.1.- Zona adyacente al soporte o carga (combinaciones no sísmicas)... 2 2.2.- Perímetro crítico (P5)... 4 2.2.1.-

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Instituto de Física Universidad de Guanajuato Agosto 2007

Instituto de Física Universidad de Guanajuato Agosto 2007 Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que

Más detalles

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3 Relación de problemas: Elasticidad lineal 1. Una barra de sección rectangular con anchura 100 mm, fondo 50 mm y longitud 2 m se somete a una tracción de 50 Tm; la barra sufre un alargamiento de 1 mm y

Más detalles