xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular
|
|
- Ana María Aguilera Toledo
- hace 4 años
- Vistas:
Transcripción
1 . [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y = y la recta y = +.. [0] [ET-B] a) Enunciar e interpretar geométricamente el Teorema de Rolle. b) Hallar la primitiva de f() = ln cuya gráfica pasa por el punto (,).. [0] [JUN-A] Hallar la función polinómica de grado sabiendo que su gráfica pasa por el punto P(,0), que tiene por tangente en el punto de abscisa = 0 la recta de ecuación y = +, y que su integral entre 0 y vale. e. [0] [JUN-B] Sea la función f() = +e. a) Calcular un punto de su gráfica tal que la recta tangente en dicho punto sea paralela al eje O. Escribe la ecuación de la recta tangente. b) Calcular el área limitada por la gráfica de la función, el eje O y las rectas = 0 y = ln5. 5. [0] [ET-A] a) Hallar lim ln(+). + + b) Calcular ++ d [0] [ET-B] a) Determinar las asíntotas horizontales y verticales de la función f() = --. b) Calcular -- d. 7. [0] [JUN-A] Sea la función f() = tangente a f() en el punto de abscisa = 6 a +b si 0. Hallar a, b y c sabiendo que f() es continua en (0, ), la recta cln si < es paralela a la recta y = -+, y se cumple que e f()d =. 8. [0] [JUN-B] Sea la función f() = - +. a) Calcular sus asíntotas y estudiar su crecimiento y decrecimiento. b) Dibujar el recinto comprendido entre la recta y =, la gráfica de la función f(), el eje O y la recta = ; calcular el área de dicho recinto. 9. [0] [ET-A] a) Calcular sen() +sen () d ln(+)+ln(-) b) Calcular lim d 0 sen() 0. [0] [ET-B] a) Determinar en qué puntos de la gráfica de la función y = la recta tangente a la misma es paralela a la recta y = +7. b) Hallar el área de la región comprendida entre las rectas =, = y que está limitada por dichas rectas, la gráfica de la función f() = - y el eje O. 7 de julio de 05 Página de 6
2 . [0] [JUN-A] Sea f(t) = +e t a) Calcular f(t)dt. g() b) Sea g() = f(t)dt. Calcular lim [0] [JUN-B] a) Calcular ++ d. b) Calcular los valores del parámetro a para que las tangentes a la gráfica de la función f() = a + + en los puntos de abscisas = y = - sean perpendiculares.. [0] [ET-A] a) Estudiar la continuidad y derivabilidad de la función f() = - en el intervalo [-,]. Calcular la función derivada de f() en ese intervalo. b) Calcular el área del recinto delimitado en el primer cuadrante por la gráfica de la función y = ln y las rectas y = 0, y = y = 0.. [0] [ET-B] Hallar el valor de m para que el área delimitada, en el primer cuadrante, por la función y =, y la recta y = m sea de 9 unidades cuadradas. 5. [0] [JUN-A] Calcular el área de la región finita y limitada por la gráfica de la función f() = -+ y la recta tangente a la gráfica de f en el punto de abscisa =. 6. [0] [JUN-B] a) Hallar el valor de los parámetros reales a y b para los que la función f() = en. ln() b) Calcular d. sen()-a si > 0 +b si 0 es continua 7. [00] [ET-A] Determinar la función f tal que f'() = ++ y con f() = [00] [ET-B] Determinar el área limitada por la parábola de ecuación y = y la recta de ecuación y = [00] [JUN-A] a) Dadas las funciones f() = ln() y g() = -, hallar el área del recinto plano limitado por las rectas =, = y las gráficas de f() y g(). b) Dar un ejemplo de función continua en un punto y que no sea derivable en él 0. [00] [JUN-A] a) Si el término independiente de un polinomio p() es -5 y el valor que toma p() para = es 7, se puede asegurar que p() toma el valor en algún punto del intervalo [0,]? Razonar la respuesta y enunciar los resultados teóricos que se utilicen. b) Calcular cos() d. +sen (). [009] [ET-A] Sea la función f() =. + a) Hallar su dominio, intervalos de crecimiento y decrecimiento, etremos relativos, intervalos de concavidad y conveidad, 7 de julio de 05 Página de 6
3 puntos de infleión y asíntotas. Esbozar su gráfica. b) Calcular el valor de f()d. 0. [009] [ET-B] Sea la función f() = sen()+cos(), definida en el intervalo [0, ]. a) Hallar los intervalos de crecimiento y decrecimiento, y los etremos relativos. Esbozar su gráfica. b) Calcular el área del recinto limitado por la gráfica de f y las rectas de ecuaciones = 0, = e y =.. [009] [ET-B] Calcular d (+). [009] [JUN-A] Sea la función f() = --. a) Hallar los intervalos de crecimiento y decrecimiento, los de concavidad y conveidad y esbozar su gráfica. b) Demostrar que no es derivable en =. c) Calcular el área de la región limitada por dicha gráfica, el eje O y las rectas = -, = [009] [JUN-A] Calcular - d 6. [009] [JUN-B] Calcular los valores de a para los cuales el área comprendida entre la gráfica de la función y = - +a y el eje O es de 56 unidades de superficie. 7. [008] [ET-A] Calcular d (+) 8. [008] [ET-B] Calcular d 9-(-) 9. [008] [JUN-A] Sea la función f() = ln, con (0,+ ). Se pide: a) Calcular los intervalos de crecimiento y decrecimiento, los etremos relativos y las asíntotas. Esbozar la gráfica. b) Calcular f()d. sen si > 0 0. [008] [JUN-B] Dada f() =, se pide: - si 0 a) Estudiar la continuidad y derivabilidad de la función f(). b) Calcular f()d.. [007] [ET-A] Calcular el área del recinto limitado por la curva de ecuación y = ln, el eje O y las rectas = y =.. [007] [ET-B] Sea la función f() =. Se pide hallar: + 7 de julio de 05 Página de 6
4 a) Los intervalos de crecimiento y decrecimiento de f, los máimos y mínimos relativos y las asíntotas. Esbozar su gráfica. b) El área de la región limitada por la gráfica de f, el eje O y las rectas = - y =.. [007] [JUN-A] Sea la función f() = -. a) Hallar los intervalos de crecimiento y decrecimiento, los de concavidad y conveidad, los puntos de infleión y las asíntotas. Esbozar su gráfica. b) Calcular el área de la región limitada por dicha gráfica y las rectas = -, = -.. [007] [JUN-B] Hallar el área del recinto limitado por las curvas de ecuaciones y = -, y = [006] [ET-A] Calcúlese el área del recinto limitado por la curva de ecuación y = - + y por la recta tangente a dicha curva en el punto = [006] [ET-B] Sea f() = -. a) Determínese el dominio de f, sus asíntotas, simetrías y máimos y mínimos relativos. Esbócese su gráfica. b) Calcúlese f()ln()d. 7. [006] [JUN-A] Hállese el área del recinto limitado por la parábola y = - y la recta y = [006] [JUN-B] Dada la función f() = -, se pide: + a) Determínense los intervalos de crecimiento y decrecimiento, los de concavidad y conveidad, los puntos de infleión y las asíntotas de f. Esbócese su gráfica. b) Calcúlese el área de la región limitada por dicha gráfica y las rectas = 0, y = 0. ln +, > 0 9. [005] [ET-A] (a) Estúdiense la derivabilidad de f() =, sus intervalos de crecimiento y decrecimiento y sus, 0 puntos de infleión. Esbócese su gráfica. (b) Calcúlese el área limitada por la gráfica de f() y las rectas = -, =, y = [005] [ET-B] Sea P(a,sena) un punto de la gráfica de la función f() = sen() en el intervalo [0, ]. Sea r p la recta tangente a dicha gráfica en el punto P y A p el área de la región determinada por las rectas r p, = 0, =, y = 0. Calcúlese el punto P para el cual el área A p es mínima (Nota: Puede asumirse, sin demostrar, que la recta r p se mantiene por encima del eje O entre = y ).. [005] [ET-B] Calcúlese d. ++. [005] [JUN-A] (a) Calcúlense los intervalos de crecimiento y decrecimiento de la función f() = e -, sus etremos relativos, puntos de infleión y asíntotas. (b) Esbócese la gráfica de f y calcúlese f()d. 7 de julio de 05 Página de 6
5 . [005] [JUN-B] Hállese el área del recinto limitado por las gráficas de las funciones y = ; y = ; y =.. [00] [ET-A] Hállese el área del recinto limitado por las parábolas de ecuaciones respectivas: y = 6- ; y = [00] [ET-B] a) Dada la función f:[,e] definida por f() = + ln, determínese de entre todas las rectas tangentes a la gráfica de f la que tiene máima pendiente. b) Calcúlese una función primitiva de f() que pase por el punto P(e,). 6. [00] [ET-B] Hállese el área limitada por las gráficas de las funciones y = -, y = [00] [JUN-A] Sea la función f() = e -. a) Estúdiese su monotonía, etremos relativos y asíntotas. b) Calcúlese el área de la región plana comprendida entre la gráfica de la función y las rectas = y = [00] [JUN-A] De todas las primitivas de la función f() = tg() sec (), hállese la que pasa por el punto P,. 9. [00] [JUN-B] Sea f() = +a +b+c. Determínese a, b y c de modo que f() tenga un etremo relativo en = 0, la recta tangente a la gráfica de f() en = sea paralela a la recta y- = 0, y el área comprendida por la gráfica de f(), el eje O y las rectas = 0 y = sea igual a. 50. [00] [JUN-B] Calcúlese (-) d. 5. [00] [ET-A] Calcular el área de la región limitada por la gráfica de la función f() = (-) (+), el eje O y la rectas = -, =. 5. [00] [ET-B] a) Hallar las coordenadas del punto P de la gráfica de la función y = cos, siendo 0 con la propiedad de que la suma de la ordenada y la abscisa sea máima. b) Calcular el área comprendida por la curva y = cos y la recta y = en el intervalo -,. 5. [00] [JUN-A] Dada la función f() = +, hallar: a) Los intervalos de crecimiento y decrecimiento y sus máimos y mínimos relativos. b) El área de la región limitada por la gráfica de f, el eje O y las rectas = -, =. 5. [00] [JUN-B] Hallar el área de la región limitada por la curva y = y la recta y = +. Soluciones 9. a) ln +sen +c b) - 0. a) (0,8), (,-8) b) 7 - si - < < si < < b) e a), 0 b) - ln. a) ln et +c b) e t + -. a) arctg+ +c b) 5 + c ln - ln ln a) cont (-,); derv (-,) (,); f'() = 9. a) +ln 0. a) si b) arctg(sen)+c 7 de julio de 05 Página 5 de 6
6 . a) - - b) -ln. a) crec: 0, 5, ; 56 b) -. arctg +c. a) 7. ln -ln + +c 8. arcsen - + c 9. a) Crec: 0, e ; ma: e; asint: = 0; y = 0; - - b) - +ln c) 5. ln + - ln - +c 6. +c 0. a) Cont: ; Deriv: -{0} b) -. ln-. a) Creciente: -,. Máimo:. Mínimo: -. Asíntotas: y = 0. Gráfica: - b) ln. a) Creciente:. Convea: -,0,+. - Asíntotas: = -; = ; y = 0. Gráfica: - - b) ln a) Dominio: -{0}. Asíntotas: =, y = -. Simetría: respecto al origen. Gráfica: - - P.i: = b) ln a) Creciente:. Cóncava: -,+. Asíntotas: y =. Gráfica: b) ln- 9. (a) Derivable en. Creciente en (0,+ ). (b) + +ln- 0.,. arctg+ +c. (a) Crec: (-,0); Ma: (0,e); P.i:, e, -, e ; asint.hor: y = 0 b) ; e e 8 5. a) -y+ln = 0 b) F() = ln +ln a) Creciente: (-,0); ma: (0,); asínt: y = 0 b) - e 8. F() = tg () + 9., 0, c a), b) a) Crec: (-,); ma:, ; min: -,- b) ln 5. 7 de julio de 05 Página 6 de 6
para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3
. [4] [ET-A] Se considera la función real de variable real definida por f() = e +. a) Esbócese la gráfica de la función f. b) Calcúlese el área del recinto plano acotado limitado por la gráfica de la función,
1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x
. [4] [ET-A] Dada la función f() = + +, se pide: +4 a) Determinar el dominio de f y sus asíntotas. b) Calcular f'() y determinar los etremos relativos de f(). c) Calcular f()d 5sen + si
5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1)
--e +sen(). [04] [JUN-A] Calcular justificadamente: a) lim ; b) lim 5 + (-6) - (-) a+ln(-) si < 0. [04] [JUN-B] Dada la función f() = e - (donde ln denota logaritmo neperiano) se pide: si 0 a) Calcular
4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx
. [] [SEP-B] Sea f: la función definida por f() = 9-. a) Halla la ecuación de la recta tangente a la gráfica de f en el punto de abscisa =. b) Esboza el recinto limitado por la gráfica de f, la recta +y
x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula
. [] [ET-A] Calcula d. --. [] [ET-B] Calcula / d. (Sugerencia: integración por partes) cos. [] [JUN-A] Sean f: y g: las funciones definidas respectivamente por: f() = y g() = +. a) Esboza las gráficas
CÁLCULO. Ejercicio 1. Modelo Se considera la función real de variable real 4
Ejercicio. Modelo.04 4 si x 0 { x + si x > 0 x + a. Determínense las asíntotas de la función y los puntos de corte con los ejes.. b. Calcúlese f(x)dx Ejercicio. Modelo.04 La figura representa la gráfica
Idea de Derivada. Tasa de variación media e instantánea
Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años) 0 6 9 8 Altura (cm.) 8 6 74 78 80 a) Representar
x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.
. [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos
INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx
INTEGRAL DEFINIDA. PROBLEMAS. º-Calcular las siguientes integrales definidas: π sen. ln(+ )d. d. + sen - cos -π +. d.5 -) - ( - d.6 E[]d -.7 E[] d.8 cos d - º-Calcular el área limitada por las gráficas
2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.
cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..
dada por c(x) = donde x indica el tamaño de los pedidos para renovar existencias
FUNCIONES +, si
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
ejerciciosyexamenes.com
ejerciciosyeamenes.com Eamen de derivadas 1. Razona la verdad o falsedad de las siguientes afirmaciones: a) f() toma todos los valores entre f(a) y f(b), es continua? b) Si f'() > 0 y g'() > 0 en [a,b]
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
x = 0, la recta tangente a la gráfica de f (x)
CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas
Aplicaciones de la integral definida al cálculo de áreas
Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano
1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3
[4] [EXT-A] a) La derivada de la función f() es: (-) (-) Determine la función f() sabiendo que f() = b) Determine el límite: lim + ++ ++ + [4] [EXT-B] a) Dadas las funciones f() = y g() = - +, determine
tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo.
Selectividad CCNN 006. [ANDA] [SEP-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos
1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.
ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente
Ejercicios de integración
1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) + 6 6 + 1 d 5) + + 1 + 1 7) d 8) + Ejercicios de integración d ) + + 1 d 6) ( + 1) + + d + d 9) ( + + 1) ln d + 1 + + 1) d 11) d 1) + + 1 d + 1 1)
FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m.
Enunciados de problemas de selectividad. Matemáticas II. Funciones FUNCIONES.(97).- Hay alguna función f() que no tenga límite cuando y que, sin embargo, [f()] sí tenga límite cuando?. Si la respuesta
x = 1 Asíntota vertical
EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones
1. Calcular el dominio de f(x)= 2. Averiguar en qué valores del intervalo [0,2 ] está definida la función. 3. Calcular
. Calcular el dominio de f()= ln(0 ) ln. Averiguar en qué valores del intervalo [0,] está definida la función f()= 3 sen 3 3sen 3 0 lim 3 5 4 3. Calcular 4. Averiguar el valor de k para que la función
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?
-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.
EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta
a sea la siguiente: x 2 +bx+c 1. [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y =
Y [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y = a sea la siguiente: 2 +b+c 3 2-2 3 4 X 2 [ARAG] [20] [JUN-A] Sea la función f() = 2 +2 a) Calcular su dominio b) Obtener sus asíntotas c)
TEMA 2: CÁLCULO DIFERENCIAL DE UNA VARIABLE.
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingeniería Industrial (GITI/GITI+ADE) Ingeniería de Telecomunicación (GITT/GITT+ADE) CÁLCULO Curso 05-06 TEMA : CÁLCULO
2. [2013] [ASTU] [JUN-B] Calcule lim (2-x)
[204] [EXTR] [JUN-B] a) Enuncie el teorema de Bolzano b) Aplique el teorema de Bolzano para probar que la ecuación cos = 2 - tiene soluciones positivas c) Tiene la ecuación cos = 2 - alguna solución negativa?
, siendo ln(1+x) el logaritmo neperiano de 1+x. x
Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión
Profesor: Fernando Ureña Portero
MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)
Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3 puntos).
PAU. CASTILLA Y LEON - 1998 a x + y z = z PR-1. Dado el sistema x + ay + z = x 3x + 3y + z = y Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN
9- DERIVADAS - DERIVADA EN UN PUNTO Calcula la derivada de y = + en o = utilizando la definición Solución: y'() = 8 Calcula la derivada de - en o = utilizando la definición Solución: y '() = -6 Calcula
Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2
Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el
a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím
Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que
MATEMÁTICAS 2º BACH CIENCIAS ANÁLISIS: Ejercicios de Exámenes Profesor: Fernando Ureña Portero
MATEMÁTICAS º BACH CIENCIAS ANÁLISIS: Ejercicios de Eámenes.-Calcular los siguientes límites: CURSO 5-6 a) (4 p.)lim +e/ 0 +e / b) (3 p.)lim 0 cos() e sen() c) (3 p.)lim 0 ( e + )/.-a)(4 p.)calcular el
IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS
Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas
Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.
UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4
ANÁLISIS (Selectividad)
ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
Alonso Fernández Galián
Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de
Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo?
Análisis I (A y B) febrero9 Consideremos f() = sen() arctg( 3 Calcular el límite de f cuando tiende a Sea la sucesión ) a n = cosn Es convergente? Determinar el límite, si eiste, de la sucesión {f(a n
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4
. Calcula la derivada de las siguientes funciones:. y = 2-2 +2 2. y = 2-2 2 +2. y = 2 -ln +e 4. y = 2 e 2 5. y = e 6. y = 2 ln 2 7. y = 2-8. y = e. y = 2 + 4. y = ln 2-5. y = 2 2 2 6. y = 2-9. y = e 2
. (Nota: ln x denota el logaritmo neperiano de x).
e - si 0. [04] [ET-A] Sea la función f() = k si = 0 a) Determine razonadamente el valor del parámetro k para que la función sea continua para todos los números reales. b) Estudie si esta función es derivable
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
Idea de Derivada. Tasa de variación media e instantánea
TEMA 6. Derivadas Nombre CURSO: BACH CCSS Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años)
EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES
IES Padre Poveda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (5-M-A-) (5 puntos) Calcula el valor de a > sabiendo que el área del recinto comprendido entre la parábola y + a y la recta y es
Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO
EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2
Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =
Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón
TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría
CONTINUIDAD Y DERIVABILIDAD
. Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
ANÁLISIS MATEMÁTICO I (2012)
ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema
APLICACIONES DE LAS DERIVADAS
APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación
EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.
EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)
DERIVABILIDAD. 1+x 2. para x [1, 3]
1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)
Representaciones gráficas
1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
EXAMEN GLOBAL. 4. Dada la función y = 1/x. Existe algún punto en el que la recta tangente esté inclinada 45º?, y 135º?. Calcula esa recta tangente.
ejerciciosyeamenes.com. a) Enunciado y demostración del teorema del seno. b) Dos coches parten al mismo tiempo de un mismo punto. Van por carreteras rectas que forman entre sí un ángulo de 30º. El primer
Funciones en explícitas
Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos
Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO
EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD
TEMA. FUNCIONES REALES DE VARIABLE REAL.4. APLICACIONES DE LA DERIVABILIDAD .4. APLICACIONES DE LA DERIVABILIDAD.4.1. Intervalos de crecimiento y decrecimiento.4.. Etremos locales de una función.4.3. Intervalos
x+3 3. f(x) = x 2 -x-2 x-2 x f(x) = 22. f(x) = tag(x+1) 23. f(x) = cos(x+1) x+2 x+2, x< f(x) =
. Hallar el dominio de la función:. f() = +. f() = - + +. f() = -- + 4. f() = 4 +8 +- 5. f() = + 6. f() = - 7. f() = ++ 8. f() = -- 9. f() = +4 0. f() = + - -. f() = +4+. f() = - -4. f() = - + 6. f() =
ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante.
Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ANÁLISIS Junio 99. Sea f: una función cuya primera derivada es f () =. Se pide: a) Determinar los intervalos
03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009
0 Ejercicios de Selectividad Continuidad y derivabilidad de unciones Ejercicios propuestos en 009 1- [009-1-A-] a) [1 5] Halle las unciones derivadas de las unciones deinidas por las siguientes ln epresiones:
Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.
Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =
MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real
MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL 1. Escribe la ecuación de la recta normal a la curva de ecuación: arcsen abscisa 1. Haz un estudio de todas las asíntotas de la función: 1 e f ( ). Halla los valores
Dos curvas interesantes: Unidad 10: REPRESENTACIÓN DE FUNCIONES TRACTRIZ INTRODUCCIÓN
Unidad 10: REPRESENTACIÓN DE FUNCIONES INTRODUCCIÓN Concepto de función Una de las ideas más fecundas y brillantes del siglo XVII fue la de la coneión entre el concepto de función y la representación gráfica
EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS)
EXAMEN DE MATEMÁTICAS (º DE BACHILLERATO) ANÁLISIS (DERIVADAS) 009 1 (CLS09) (1 punto) Probar que la ecuación e + 0 tiene alguna solución (CLJ13) (1 punto) Sea la función + Calcula sus asíntotas y estudia
Hallar el dominio de las siguientes funciones : 1. log F(x) = 234. F(x) = x F(x) = ln( F(x) = 9 3. x.calcular simplificando
Hallar el dominio de las siguientes funciones : 4. F() = 3 8 0 6 5. F() = 3 7 6. F() = 6 7. F() = 9 4 8. F() = ln 9. F() = e e 30. F() = e 3 3. F() = log 7 3. F() = sen 33. F() = 3 8 34. F() = 3 3 4 35.
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor
Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)
Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =
APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA
Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN
La concentración de ozono contaminante, en microgramos por metro cúbico, en una
ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90
PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS
PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS MODELO 2000: OPCIÓN A: a. Calcúlense p y q de modo que la curva y = x $ + px + q contenga al punto ( 2, 1) y presente un mínimo
EJERCICIOS DE SELECTIVIDAD FUNCIONES
EJERCICIOS DE SELECTIVIDAD FUNCIONES Representación gráfica Monotonía Curvatura - Asíntotas 1. Dadas las funciones siguientes, 6 + 1 a) b) = c) = 1 + d) + 4 1 = e) = f) = 1 g) + 1 + 1 = h) = i) =, 1 +
TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos
64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función
24 Apuntes de Matemáticas II para preparar el examen de la PAU
Apuntes de Matemáticas II para preparar el eamen de la PAU TEMA 7. INTEGRALES DEFINIDAS. ÁREAS.. Aproimación de áreas bajo una curva. Límite de la definición, integral definida.. Área comprendida por una
TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R
TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le
(1-mx)(2x+3) x 2 +4 = 6. x > -1
. [04] [EXT-A] Sea la función f(x) = e x +ax+b a) Calcular a y b para que f(x) tenga un extremo en el punto (,). b) Calcular los extremos de la función f(x) cuando a = 0 y b = 0.. [04] [EXT-B] En la figura
Hacia la universidad Análisis matemático
Hacia la universidad Análisis matemático OPCIÓN A. a) Deriva las funciones f( ) = 8, g ( ) =, h ( ) = e. f( ) si 0 b) Indica si la función m ( ) = es continua en =. g ( ) si < c) Escribe la ecuación de
Matemáticas II TEMA 11 La integral definida Problemas Propuestos
Análisis Integral Indefinida Matemáticas II TEMA La integral definida Problemas Propuestos Integrales definidas Halla el valor de: a) d b) 7 c) d 5 d d) e d Calcula la integral e ln( ) d Utilizando el
x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4
CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2
Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.
Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.
Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)
Ejercicios de representación de funciones: Primer ejemplo:
www.juliweb.es tlf. 69886 Ejercicios de representación de funciones: Primer ejemplo: f ( ) º) Dominio. Dom f ( ) R {} º) Simetrías. f ( ) No es par f ( ) f ( ) No es impar No hay simetría. º) Puntos de
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
CONTINUIDAD Y DERIVABILIDAD. DERIVADAS
CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad
2.2.1 Límites y continuidad
. Listas de ejercicios de Cálculo Diferencial. Listas de ejercicios de Cálculo Diferencial.. Límites y continuidad 3. Hallar el dominio de las funciones reales de variable real dadas por: a) f () = b)