UNIDAD 3: ANILLOS DE POLINOMIOS
|
|
- Sara Ortiz Henríquez
- hace 6 años
- Vistas:
Transcripción
1 UNIDAD 3: ANILLOS DE POLINOMIOS En nuestra educación matemática se nos introdujo muy pronto -generalmente en los primeros años de secundariaal estudio de los polinomios. Durante una temporada que parecía que no iba a tener fin, se nos obligaba, hasta el punto del aburrimiento insoportable, a factorizarlos, multiplicarlos, dividirlos y simplificarlos. La facilidad en factorizar un polinomio cuadrático, se interpretaba como una muestra de genuino talento matemático. Posteriormente, en los primeros años de la educación superior, los polinomios hacen de nuevo su aparición en un marco algo distinto. Ahora son funciones, con sus valores, y nos preocupan su continuidad, sus derivadas, sus integrales y sus máximos y sus mínimos. También aquí nos interesaremos en los polinomios, pero desde un punto de vista distinto de cualquiera de los dos que hemos enumerado. Para nosotros, los polinomios serán simplemente, elementos de un cierto anillo y lo que nos interesará serán las propiedades algebraicas de ese anillo. Los conjuntos de polinomios con coeficientes en Z, Q, R o C, que simbolizaremos mediante Z[x], Q[x], R[x] y C[x] respectivamente, son, con respecto a la suma y el producto habituales de polinomios, dominios de integridad conmutativos con unidad (Ejercicio). En general, dado un anillo A, el conjunto A[x] de polinomios a coeficientes en A se define como: { } A[x] = p(x) = a i x i : a i A, i = 1,..., n n N El grado de un polinomio p A[x] no nulo, que denotaremos gr(p), se define como el mayor natural n tal que a n 0. Vale decir, Un polinomio de grado n se llama mónico si a n = 1. gr(p) = n a n 0 a n+1 = a n+2 =... = 0 En A[x], la suma y el producto se definen de la siguiente manera. Sean p(x) = a i x i y q(x) = b j x j dos elementos de A[x] y, supongamos que n = gr(p) gr(q) = m. Entonces, j=0 la suma entre p(x) y q(x) es el producto entre p(x) y q(x) es p(x)q(x) = p(x) + q(x) = n+m (a i + b i )x i + c i x i donde c i = i=m+1 i a i x i j=0,j n,i j m a j b i j 1. En Z[x], sean p(x) = 3x 2 + x + 5 y q(x) = x 3 x + 3, es p(x) + q(x) = x 3 + 3x (Ejercicio) p(x)q(x) = 3x 5 + x 4 + 2x 3 + 8x 2 2x + 15 (Ejercicio) 2. En Z 6 [x], sean p(x) = 3x 2 + x + 5 y q(x) = x 3 x + 3, es MSL (2010) 3 o Profesorado en Matemática-Álgebra 1
2 p(x) + q(x) = x 3 + 3x (Ejercicio) p(x)q(x) = 3x 5 + x 4 + 2x 3 + 2x 2 + 4x + 3 (Ejercicio) Sea A un anillo conmutativo con identidad. Con la suma y el producto, anteriormente definidos, el anillo de polinomios (A[x], +, ) es un anillo conmutativo y con identidad. Si A es un dominio de intergidad, su anillo de polinomios A[x] también es un dominio de integridad. Sean p(x) = a i x i y q(x) = b i x i en A[x], con a n 0 y b m 0. Si p(x)q(x) = a n b m 0, ya que A es un dominio de integridad. p(x)q(x) 0 n+m a i x i c m+n = Si A es un dominio de integridad y p y q son dos polinomios no nulos, entonces gr(pq) = gr(p) + gr(q) Ejemplo Si el anillo no es un dominio de integridad, el resultado del corolario anterior no es cierto (Ejercicio). En general, si a es un divisor de cero y b 0 es tal que ab = 0 o ba = 0, entonces: (ax n ) (bx m ) = 0 (bx n ) (ax m ) = 0 Si A es un dominio de integridad, los elementos invertibles de A[x] coinciden con los elementos invertibles de A. Llamemos U (A[x]) y U(A) a los conjuntos formados por los elementos invertibles de A[x] y A, respectivamente. Queremos ver que U (A[x]) = U(A). ) Puesto que A es un subanillo de A[x], todo elemento invertible de A lo es, obviamente, de A[x]. ) Sea p(x) U (A[x]) q(x) U (A[x]) /p(x)q(x) = 1 0 = gr(1) = gr(pq) = gr(p) + gr(q) pues A es dominio de integridad. Luego, Pero entonces ab = 1 a U(A). gr(p) = 0 p(x) = a A gr(q) = 0 q(x) = b A 1. U (Z[x]) = { 1, 1} 2. U (Q[x]) = Q {0} 3. Si F es cuerpo U (F [x]) = F {0} MSL (2010) 3 o Profesorado en Matemática-Álgebra 2
3 Teorema Sea C un cuerpo y p(x), q(x) C[x] con q 0. Entonces, existen s(x), r(x) C[x] tales que p(x) = s(x)q(x)+r(x) y r(x) = 0 o gr(p) < gr(q). Supongamos que p(x) = a i x i y q(x) = b i x i. Si gr(p) < gr(q), basta tomar s(x) = 0 y r(x) = p(x). Si gr(p) gr(q) (vale decir, m n), al ser C un cuerpo, tiene un inverso multiplicativo, que escribiremos 1 ; entonces Ahora bien, r(x) = y gr( r) m 1 < gr(p) ( ) p(x) = am x m n q(x) + p(x) am x m n q(x) = am x m n q(x) + r(x) a i x i a m x m n b i x i = a m x m a m x m + a m 1 x m = a m 1 x m Si r 0 o gr( r) < gr(q), el teorema está probado. Si r(x) = c p x p + c p 1 x p , con p n, escribimos ( ) ( ) a p(x) = m bn x m n + cp x p n q(x) + r(x) co x p n q(x) con gr( r) < gr( r). = c(x)q(x) + r(x) Este proceso nos permite llegar en, a lo sumo, m n + 1 pasos a la descomposición p(x) = s(x)q(x) + r(x). (Ejercicios) 1. Cuál es la descomposición en Q[x] si p(x) = x 4 x y q(x) = 2x 2 + 1? 2. Cuál es la descomposición en Z 7 [x] si p(x) = x 4 x y q(x) = 2x 2 + 1? Dado un polinomio p(x) con coeficientes en un anillo A y un elemento a de A, p(a) es el resultado de realizar en el anillo las operaciones que se obtienen sustituyendo x por a en el polinomio. Dados dos polinomios p(x) y q(x) con coeficientes en un anillo A, diremos que q(x) divide a p(x) si c(x) A[x]/p(x) = c(x)q(x) Sea C cuerpo; si p(x) C[x] y a C, x a divide a p(x) sii p(a) = 0. Ejemplo x 3 divide a p(x) = x 2 + x + 1 en Z 13 [x], pero x 3 no divide a p(x) = x 2 + x + 1 en Q[x]. MSL (2010) 3 o Profesorado en Matemática-Álgebra 3
4 Dado un polinomio p(x) A[x], a A se dice raíz de p si p(a) = 0; por tanto, de acuerdo con el corolario anterior, en un cuerpo, a es una raíz de p sii x a divide a p(x). Si (x a) n divide a p(x) pero (x a) n+1 no lo divide, se dice que la raíz a tiene multiplicidad n. Ejemplo 1 es raíz simple de x 2 1 en Q[x], pero es raíz doble de x 2 2x + 1 en el mismo anillo. Sea C cuerpo, dado un polinomio p(x) C[x] con gr(p) = n 1, p(x) tiene a lo sumo n raíces, contando cada raíz tantas veces como indica su multiplicidad. Sug.: Realizar inducción sobre n = gr(p). Ejemplo (Ejercicio) Qué sucede si C no es cuerpo? Sea C un cuerpo y p(x) un polinomio de grado n en C[x]. Si existen m elementos distintos a 1, a 2,..., a m de C tales que p(a i ) = 0, i = 1, 2,..., m y m es mayor que n, el polinomio p(x) es el polinomio nulo. Una consecuencia de que el polinomio 0 sea el neutro de A[x] es que dos polinomios p(x) = b i x i son iguales sii a i = b i, i = 1,..., n. Además, todo polinomio p(x) = función polinómica p : A A dada por p(a) = Sea p(x) = a i a i. a i x i y q(x) = a i x i de A[x] define una a i x i un polinomio con coeficientes en un cuerpo C, que posee n raíces r 1,..., r n (contando raíces múltiples por separado). Entonces, p(x) = a n (x r 1 )...(x r n ) MSL (2010) 3 o Profesorado en Matemática-Álgebra 4
5 CRITERIOS DE IRREDUCIBILIDAD PARA POLINOMIOS Uno de los conceptos más fructíferos cuando estudiamos, alguna vez, los números enteros fue el de número primo. En los anillos de polinomios también se puede definir un concepto análogo al de número primo en el anillo (Z, +, ); en el caso de los anillos de polinomios, los elementos que satisfacen propiedades similares a las de los primos en Z se llamarán irreducibles. Todo número entero positivo puede descomponerse en un producto de números primos; éste es el teorema fundamental de la artimética. Algo similar ocurre en algunos anillos de polinomios. Los elementos primos de un anillo de polinomios serán llamados polinomios irreducibles. En caso contrario diremos que el polinomio es reducible. En esta sección estudiaremos algunos criterios de irreducibilidad para polinomios en Z[x], Q[x], R[x] y C[x]; en algunos casos la reducibilidad o irreducibilidad de un polinomio puede estudiarse mirando sus raíces, por lo que también veremos cómo encontrar raíces de polinomios en algunos casos particulares. Sea A un anillo conmutativo con identidad. Un polinomio p(x) A[x] que no sea invertible en A[x], se dice que es irreducible si para toda descomposición de la forma p(x) = q(x)r(x) con q(x), r(x) A[x], se tiene que o bien gr(q) = 0 o bien gr(r) = 0. Un polinomio que no es irreducible, se dice reducible. x 2 2 = (x + 2)(x 2) es irreducible en Q[x] pero no en R[x], y x aún siendo irreducible en Q[x] y R[x], no lo es en C[x]. Observación La irreducibilidad de un polinomio depende del anillo que se considere. Sea C cuerpo y p(x) C[x] un polinomio de grado 2 o 3. p(x) es reducible en C[x] sii p(x) tiene una raíz en C. Si p(x) tiene una raíz a en C, podemos escribir p(x) = (x a)q(x) y, por tanto, p(x) es reducible. Recíprocamente, si p(x) es reducible, podemos escribir p(x) = q(x)r(x) donde al menos uno de estos dos polinomios en los que se descompone p(x) es de grado uno; como C es cuerpo, este polinomio de grado uno, tiene una raíz en C este polinomio de grado uno, tiene una raíz en C, y ésta es a su vez raíz de p(x). 1. El polinomio p(x) = x 2 + x + 1 no tiene raíces en Q; por tanto, es irreducible en Q[x]. 2. El resultado anterior no es cierto para polinomios de grado superior a tres. Si tomamos p(x) = x 4 + 2x = (x 2 + 1) 2, p(x) no tiene raíces en Q y sin embargo puede reducirse en Q[x]. Sea p(x) = a i x i un polinomio con coeficientes en Z. Si a b debe ser divisor de a 0 y b debe ser divisor de a n. Si a b es una raíz de p(x) se tiene Multiplicando por, obtenemos p ( a b ) = an ( a b ) n + an 1 ( a b ) n a1 ( a b ) + a0 = 0 es una raíz de p(x) con a y b primos entre sí, a MSL (2010) 3 o Profesorado en Matemática-Álgebra 5
6 a n a n + a n 1 a n 1 b a 1 a 1 = a 0 Como a es común a todos los términos de la parte izquierda de esta igualdad, sacando factor común se deduce que a divide a a 0 ; como a y b son primos entre sí, a no puede dividir a y por tanto debe ser un divisor de a 0. La igualdad anterior también puede escribirse de la forma Ejercicio: Completar la prueba para este caso. Ejemplo a n a n = a n 1 a n 1 b... a 1 a 1 a 0 x no tiene raíces en Q ya que si las tuviera, tendrían que ser 1 o 1. Teorema Fundamental del Álgebra (Gauss) Todo polinomio p(x) no constante con coeficientes complejos tiene al menos una raíz en C. No la haremos pues, si bien pueden darse varias demostraciones de este teorema, la más sencilla hace uso de la teoría de funciones de variable compleja. Un polinomio de C[x] es irreducible sii es de grado 1. Si r = a + bi es una raíz compleja de p(x) R[x], su conjugada, r = a bi también lo es. Si p(x) R[x] es irreducible en R[x], su grado es 1 ó 2. Además, si el grado es 2 y p es irreducible, p(x) = ax 2 + bx + c, con b 2 4ac < 0. Los polinomios de grado 0 no nulos son invertibles en R[x]. Todo polinomio de grado 1 es obviamente irreducible. Si p(x) = ax 2 + bx + c es irreducible, no puede tener raíces reales y, por tanto, el discriminante de la ecuación ax 2 + bx + c = 0, que es b 2 4ac, debe ser negativo. Si gr(p) 3, sea r C una raíz de p; si r R, x r divide a p(x) R[x] y p(x) no es irreducible; si r = a + bi / R, r = a bi es también una raíz de p(x), y en C[x], se tiene p(x) = (x (a bi))(x (a + ib))q(x) = ((x a) bi)((x a) + bi)q(x) = (x 2 2ax + a 2 + b 2 )q(x) por tanto q ha de pertenecer a R[x], gr(q) 1 y p(x) no es irreducible. 1. x 2 4x + 5 es irreducible sobre R[x] (Verificarlo). 2. x 4 + 3x 3 + 4x 2 + x 3 es reducible en Z[x] (Verificarlo). El contenido de un polinomio p(x) = a i x i se define como C(p) = mcd (a n,..., a 1, a 0 ) MSL (2010) 3 o Profesorado en Matemática-Álgebra 6
7 El polinomio se dice primitivo si su contenido, C(p), es 1. 2x 2 + 4x + 5 y x son primitivos, mientras que 2x 2 + 4x + 6 no lo es. Lema de Gauss Si p(x) y q(x) son dos polinomios primitivos en Z[x], entonces p(x)q(x) también lo es. No la haremos. Sean p(x) y q(x) dos polinomios en Z[x] y p(x) primitivo. Si p(x) divide a q(x) en Q[x], p(x) divide a q(x) en Z[x]. Como p(x) q(x) en Q[x], existe a(x) Q[x] tal que q(x) = p(x)a(x), y escribiendo dicho polinomio a(x) como a(x) = ( ) 1 b ã(x) con ã(x) Z[x] se sigue que bq(x) = p(x)ã(x). Tomando contenidos, tendríamos, C(bq) = C(pã) = C(p)C(ã); es decir, bc(q) = C(ã) ( Por qué?). En estas condiciones se obtiene que b C(ã), lo que implica que a(x) = ( ) 1 b ã(x) ya pertenecía, de entrada, a Z[x]. Por lo tanto, la factorización q(x) = p(x)a(x) es también una factorización en Z[x]. Teorema Sea p(x) un polinomio primitivo en Z[x], entonces p(x) es irreducible en Q[x] sii es irreducible en Z[x]. ) Si p(x) fuera reducible en Z[x], se tendría p(x) = q(x)r(x) con q(x) y r(x) polinomios con coeficientes enteros y ninguno de ellos una unidad; por tanto, 1 = C(q)C(r), ya que p(x) es primitivo, de donde se deduce que C(q) = C(r) = 1; esto implica que el grado de q(x) y r(x) es mayor o igual que 1, ya que ninguno de los dos es una unidad en Z[x]. Así pues, p(x) = q(x)r(x) es una factorización de p en Q[x] donde ni q(x) ni r(x) son invertibles en Q[x], ya que tienen grado superior a 1, y p(x) también sería reducible en Q[x]. ) Recíprocamente, si p(x) = q(x)r(x) fuera una factorización de p(x) en Q[x], con factores que no son unidades, podemos escribir q(x) = ( ) a b q(x), con q(x) Z[x] y primitivo. Pero entonces, q(x) p(x) en Q[x] y, por la proposición anterior, q(x) p(x) en Z[x]; esto es, p(x) también sería reducible en Z[x]. (Criterio de irreducibilidad de Eisenstein Sea p(x) = a i x i Z[x] un polinomio primitivo con coeficientes enteros tal que existe un entero primo p que divide a a i, i = 0, 1,..., n 1, pero que no divide a A 0 y p 2 no divide a a 0 ; entonces p es irreducible en Z[x]. No la haremos. 1. El polinomio x 4 3x 2 + 6x + 3 es irreducible en Z[x] ya que puede aplicarse el criterio de Eisenstein con p = 3; como es primitivo, es también irreducible en Q[x]. 2. El criterio de Eisenstein proporciona únicamente una condición suficiente de irreducibilidad, pero no necesaria (Analizar el polinomio x 2 + 4). 3. Si p es un entero positivo primo, los polinomios x n + p son irreducibles en Z[x] y en Q[x] para cualquier exponente natural n. Así pues, al contrario de lo que ocurre en C[x] y R[x], es posible encontrar en Z[x] y Q[x] polinomios irreducibles de cualquier grado. Bibliografía FIN DORRONSORO, J. y HERNÁNDEZ, E. Números, grupos y anillos. Madrid, España: Ed. Addison- Wesley Iberoamericana España, S.A., HERSTEIN, I.N. Álgebra moderna. México: Editorial F. Trillas, MSL (2010) 3 o Profesorado en Matemática-Álgebra 7
8 PRÁCTICA 3: Anillos de polinomios 1. Encontrar las raíces racionales de: (a) 3x 3 7x 5 = 0 (b) 2x 3 3x + 1 = 0 2. Probar que 30x n = 91 no tiene raíces racionales para ningún n > Estudiar la irreducibilidad de x y x 3 + x + 2 en Z 3 [x] y en Z 5 [x]. 4. Encontrar todos los polinomios cuadráticos mónicos con coeficientes en Z Descomponer x 4 5x sobre Q[x] y sobre R[x]. 6. Descomponer x 6 1 sobre Q[x], R[x], C[x], Z[x] y Z 7 [x]. 7. Descomponer x 8 1 sobre Q[x], R[x], [x] y sobre Z 5 [x]. 8. Estudiar la irreducibilidad en Q[x] de los siguientes polinomios: (a) x 3 + 2x 2 + 4x + 2 (b) x 4 + 3x 3 + 4x 2 + 6x + 4 (c) x 3 + 6x 2 + 5x + 25 (d) x 3 + 6x x + 8 (e) 2x 4 8x (f) x 4 2x 2 + 8x + 1 (g) x 4 + 2x 2 x + 2 MSL (2010) 3 o Profesorado en Matemática-Álgebra 8
Dominios de factorización única
CAPíTULO 3 Dominios de factorización única 1. Dominios euclídeos En la sección dedicada a los números enteros hemos descrito todos los ideales de Z. En este apartado introducimos una familia de anillos
Factorización de polinomios
Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes
Polinomios y Fracciones Algebraicas
Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.
1. Suma y producto de polinomios. Propiedades
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resumen teoría Prof. Alcón 1. Suma y producto de polinomios. Propiedades Sea (A, +,.) un anillo conmutativo. Llamamos polinomio en una indeterminada x con coeficientes
1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):
Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen
Ejercicios Resueltos del Tema 4
70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la
El anillo de polinomios sobre un cuerpo
Capítulo 2 El anillo de polinomios sobre un cuerpo En este capítulo pretendemos hacer un estudio sobre polinomios paralelo al que hicimos en el capítulo anterior sobre los números enteros. Para esto, es
Polinomios. Antes de empezar
Antes de empezar Utilidad de los polinomios Los polinomios no solo están en la base de la informática, en economía los cálculos de intereses y duración de las hipotecas se realizan con expresiones polinómicas,
ÁLGEBRA III. Práctica 1 2d. Cuatrimestre - 2007
ÁLGEBRA III Práctica 1 2d. Cuatrimestre - 2007 Anillos conmutativos, cuerpos y morfismos Nota: Todo anillo considerado en esta práctica será conmutativo, en particular todo ideal es bilátero. Ejercicio
Divisibilidad y números primos
Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
Anexo 1: Demostraciones
75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:
Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo
POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
Funciones polinomiales de grados 3 y 4
Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados
Polinomios y fracciones algebraicas
UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (
TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS
Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro
Apuntes de Matemática Discreta 9. Funciones
Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y
Números Reales. MathCon c 2007-2009
Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación
EXPRESIONES ALGEBRAICAS. POLINOMIOS
EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0.
NÚMEROS COMPLEJOS. INTRO. ( I ) Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0. Si bien esto no era un problema
30 = 2 3 5 = ( 2) 3 ( 5) = 2 ( 3) ( 5) = ( 2) ( 3) 5.
11 1.3. Factorización Como ya hemos mencionado, la teoría de ideales surgió en relación con ciertos problemas de factorización en anillos. A título meramente ilustrativo, nótese que por ejemplo hallar
Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x
Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada
Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes
4 Polinomios Objetivos En esta quincena aprenderás: A trabajar con expresiones literales para la obtención de valores concretos en fórmulas y ecuaciones en diferentes contextos. La regla de Ruffini. El
Espacios Vectoriales
Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
Estructuras algebraicas
Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota
Álgebra. Curso 2007-2008
Álgebra. Curso 2007-2008 11 de septiembre de 2008 Resolución Ejercicio. 1. Sea A un anillo conmutativo. (1) Demostrar que cualesquiera ideales a, b de A verifican (a b)(a + b) ab. (2) Para A = Z[X] dar
La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:
Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número
Números algebraicos. Cuerpos de números. Grado.
< Tema 5.- Números algebraicos. Cuerpos de números. Grado. 5.1 Cuerpo de fracciones de un dominio. Tratamos de generalizar la construcción de Q, a partir de Z. Sea A un dominio de integridad. En A (A \
Biblioteca Virtual Ejercicios Resueltos
EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar
POLINOMIOS. División. Regla de Ruffini.
POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se
Profr. Efraín Soto Apolinar. Factorización
Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
CAPÍTULO III. FUNCIONES
CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN
1. División de polinomios por monomios
1. División de polinomios por monomios El cociente de dos monomios (si es posible) es igual a otro monomio que tiene: como coeficiente, el cociente de los coeficientes; como parte literal, las letras que
NÚMEROS NATURALES Y NÚMEROS ENTEROS
NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
VII. Estructuras Algebraicas
VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices
1 Espacios y subespacios vectoriales.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
Notaciones y Pre-requisitos
Notaciones y Pre-requisitos Símbolo Significado N Conjunto de los números naturales. Z Conjunto de los números enteros. Q Conjunto de los números enteros. R Conjunto de los números enteros. C Conjunto
Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2
SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables
ESTRUCTURAS ALGEBRAICAS 1
ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia
ESTRUCTURAS ALGEBRAICAS
ESTRUCTURAS ALGEBRAICAS 1.1. LEY DE COMPOSICIÓN INTERNA Definición 1.1.1. Sea E un conjunto, se llama ley de composición interna en E si y sólo si a b = c E, a, b E. Observación 1.1.1. 1. también se llama
Polinomios. Pablo De Nápoli. versión 0.8.5
Polinomios Pablo De Nápoli versión 0.8.5 Resumen Este es un apunte de las teóricas de álgebra I, del primer cuatrimestre de 2007, turno noche, con algunas modificaciones introducidas en 2014. 1. Introducción
Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones
Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación
Subespacios vectoriales en R n
Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace
2.2 Transformada de Laplace y Transformada 2.2.1 Definiciones 2.2.1.1 Transformada de Laplace Dada una función de los reales en los reales, Existe una función denominada Transformada de Laplace que toma
ALGEBRA. Versión Preliminar. Renato A. Lewin
ALGEBRA Versión Preliminar Renato A. Lewin Indice CAPITULO 1. Introducción a la Teoría de Números 5 1. Los Números Naturales y los Números Enteros 5 2. Divisibilidad 7 3. Congruencias 14 4. Clases Residuales
AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES
AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán
Clasificación de métricas.
Clasificación de métricas. 1. El problema de clasificación. Como bien sabemos, el par formado por una métrica T 2 (esto es, un tensor 2-covariante simétrico) sobre un espacio vectorial E, (E, T 2 ), constituye
342 SOBRE FORMAS TERNARIAS DE SEGUNDO GRADO.
342 SOBRE FORMAS TERNARIAS DE SEGUNDO GRADO. ALGUNAS APLICACIONES A LA TEORIA DE LAS FORMAS BINARIAS. Encontrar una forma cuya duplicación produce una forma dada del género principal. Puesto que los elementos
Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo
Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie
4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN
4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,
TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.
NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
1. Ecuaciones no lineales
1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
Lección 9: Polinomios
LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios
Tema 3. Espacios vectoriales
Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición
Nombre/Código: Febrero 21 2015. Examen I. 5 /10pts. Total: /50pts
1 Álgebra abstracta II Guillermo Mantilla-Soler Nombre/Código: Febrero 21 2015 Examen I Problemas Puntuación 1 /10pts 2 /10pts 3 /10pts 4 /10pts 5 /10pts Total: /50pts 2 Preguntas Problema 1[10 pts]: Sea
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
E 1 E 2 E 2 E 3 E 4 E 5 2E 4
Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),
Espacios generados, dependencia lineal y bases
Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................
INSTITUTO VALLADOLID PREPARATORIA página 9
INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que
Grupos. Subgrupos. Teorema de Lagrange. Operaciones.
1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial
Ecuaciones diferenciales de orden superior
CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.4.2 ED lineales homogéneas con coeficientes constantes de orden n 3 En la sección anterior hemos obtenido las soluciones de la ED lineal homogénea
Colegio Las Tablas Tarea de verano Matemáticas 3º ESO
Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y
Módulo 9 Sistema matemático y operaciones binarias
Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional
1. Números Reales 1.1 Clasificación y propiedades
1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora
. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.
Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
Límite de una función
Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones
Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces
EJERCICIOS RESUELTOS DE NÚMEROS COMPLEJOS
EJERCICIOS RESUELTOS DE NÚMEROS COMPLEJOS 1. Dados = -+4i, z = 5-i, z = y z 4 =7i, calcular: a) ( - z ) z b) z 4 + z z 4 c) + z 4-5z d) + z -1 f) z g) ( + 1 ) 1 z z h) z 1 z i) z j) e) z -1 z + z 4 a)
Qué son los monomios?
Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes
Ecuaciones de segundo grado
3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver
AMPLIACIÓN DE MATEMÁTICAS. REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros
AMPLIACIÓN DE MATEMÁTICAS REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros Z = {..., n,..., 2, 1, 0, 1, 2, 3,..., n, n + 1,...} tenemos definidos una suma y un producto
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 2 Polinomios y fracciones algebraicas Elaborado por la Profesora Doctora
Anillos Especiales. 8.1 Conceptos Básicos. Capítulo
Capítulo 8 Anillos Especiales 8.1 Conceptos Básicos En este capítulo nos dedicaremos al estudio de algunos anillos especiales que poseen ciertas condiciones adicionales, aparte de las propias de la definición,
Ejemplos y problemas resueltos de análisis complejo (2014-15)
Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es
EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO
MATEMÁTICAS EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO Juan Jesús Pascual TEOREMAS DEL VALOR MEDIO. Es aplicable el teorema de Rolle a la función f( x) = x 5x 6 en [ 0, 5 ]? El teorema de Rolle
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Diferenciabilidad. 1. Definición de función diferenciable Después del estudio de los ites de funciones
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación.
Conjuntos Numéricos Axiomas de los números La matemática se rige por ciertas bases, en la que descansa toda la matemática, estas bases se llaman axiomas. Cuántas operaciones numéricas conocen? La suma
Diagonalización de matrices
diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla
EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO
RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.