Física 2n de Batxillerat IES El Cabanyal València

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física 2n de Batxillerat IES El Cabanyal València"

Transcripción

1 Dr JM yensa 07 Óptica geométrica. 0/0/07 UESTIONES ísica n de atxillerat IES El abanyal alència Tiempo de la prueba 6 min.- Un objeto de 0. cm de altura, que está situado a 0 cm de un espejo cóncavo, produce una imagen virtual a 0 cm del espejo. Si alejamos el objeto a cm del espejo, dónde se situará la nueva imagen? Justifique si es virtual o real. omprueba los resultados mediante el trazado de rayos. (, puntos).- Describe los fenómenos que avalan la teoría ondulatoria de la luz. (, puntos) 3.- Un ojo miope necesita una lente correctora de - dioptrías de potencia para poder ver nítidamente objetos muy alejados. Sin lente correctora, cuál es la distancia máxima a la que se puede ver nítidamente con este ojo? (0, puntos). Si se sitúa un objeto de altura y = 3 cm a m delante de esta lente, cuál será la posición, tamaño y naturaleza de la imagen?, comprueba tus resultados gráficamente. (, puntos) POLEMS P.- Se tiene un prisma rectangular de vidrio de índice de refracción,48. Del centro de su cara se emite un rayo monocromático el cual forma un ángulo con el eje vertical del prisma, como muestra la figura. La anchura del prisma es de 0 cm y la altura de 30 cm. a) Si el medio exterior es, cuál es el máximo valor de para que el rayo no salga por la cara? ( punto) b) Para este valor de, cuál es el ángulo con el que emerge de la cara? (, puntos) Datos: índice de refracción del, n =,33 P.- Un reproductor lu-ray utiliza luz láser de color azul-violeta cuya longitud de onda es 40 nm. La luz se enfoca sobre el disco mediante una lente convergente de 4 mm de distancia focal que está hecha de un plástico de. de índice de refracción. a) alcula la frecuencia de la luz utilizada y la velocidad de la luz en el interior de la lente.( punto) b) Extraemos la lente y la utilizamos como lupa. Situamos un piojo a 3 mm de la lente y posteriormente, a 6 mm. Indica en cuál de los dos casos la imagen del piojo a través de la lupa es virtual, y determina la posición y el aumento lateral en ambos casos. (, puntos) Datos: c = m/s aire

2 Dr JM yensa 07 Óptica geométrica. 0/0/07 UESTIONES ísica n de atxillerat IES El abanyal alència.- Un objeto de 0. cm de altura, que está situado a 0 cm de un espejo cóncavo, produce una imagen virtual a 0 cm del espejo. Si alejamos el objeto a cm del espejo, dónde se situará la nueva imagen? Justifique si es virtual o real. omprueba los resultados mediante el trazado de rayos. (, puntos) Los espejos cóncavos dan imágenes virtuales, derechas y mayores que el objeto cuando los objetos están situados entre el foco (que está a una distancia f = /) y el espejo, como se muestra en el esquema de rayos de la figura (en él se han tomado dos rayos para obtener la imagen del punto del objeto: el paralelo al eje óptico, el cual se refleja y pasa por el foco, situado en / y el rayo que pasa por el foco objeto, el cual, se refleja saliendo paralelo al eje óptico). Si se aplica la ecuación de los espejos, s s ' el criterio de signos de las normas DIN, s =-0 cm; s = + 0 cm,, se obtiene el radio del espejo. De acuerdo con 0 0 = - 40 cm (resultado coherente con el esquema de rayos propuesto en la figura). El aumento lateral (relación entre los tamaños de la imagen y el objeto) es positivo y, en valor absoluto, mayor y' 0 de. En efecto, L = = +, o sea, el doble de grande y derecha ( L > 0) y s 0 La imagen es virtual porque se forma detrás del espejo (las prolongaciones de los rayos reflejados, procedentes de cualquier punto del objeto se juntan detrás del espejo). Dicha imagen solamente puede captarse con un sistema óptico convergente tal como el ojo o una cámara fotográfica, la cual interpreta que los rayos proceden del espacio situado detrás del espejo. uando se aleja el objeta a cm del espejo, la imagen obtenida es real, invertida y mayor, según se desprende del cálculo analítico mediante la fórmula de espejos y tal como se muestra en el esquema de la marcha de los rayos de la figura. ; s = -00 cm, imagen real, s s ' 40 0 porque se forma delante del espejo (se puede recoger en una pantalla), los puntos de la cual se forman por la conjunción de los rayos procedentes del espejo, después de reflejarse en él. El aumento lateral es negativo (imagen invertida) y, en valor absoluto, mayor de. En efecto, y' 00 L = 00 = - 4, o sea, cuatro veces mayor ( L > ) mayor, pero invertida L < 0 y s.- Describe los fenómenos que avalan la teoría ondulatoria de la luz. (, puntos) Los fenómenos luminosos que pueden explicarse mediante el modelo de ondas electromagnéticas son: Interferencias, difracción, polarización de la luz y variación del plano de polarización mediante

3 Dr JM yensa 07 un campo electromagnético, independencia y que la velocidad de propagación de la luz es independiente del foco que la emite. Interferencias (figura a). l coincidir dos movimientos ondulatorios en una región del espacio, da lugar a la suma de ambas perturbaciones. Las ondas que interfieren no se influencian mutuamente, sino que son independientes. Por ejemplo, si se ilumina una pared que posee dos finos orificios muy juntos, las ondas procedentes de cada orificio tiene la misma frecuencia y están en fase. La figura recogida en una pantalla se corresponde con una serie de discos luminosos alternados de oscuros. Difracción (figuras b). Se presenta siempre que un tren de ondas llega a un obstáculo de dimensiones comparables a su longitud de onda. La onda parece bordear los obstáculos, en vez de propagarse rectilíneamente. En el caso de la luz, cuando llega a una rendija del tamaño de su longitud de onda, da lugar a una distribución espacial de la intensidad constituida por zonas oscuras y brillantes, semejantes a la producida mediante interferencias. Haz luminoso Haz luminoso igura a. igura de interferencias de dos focos de luz coherente igura b. Difracción al pasar por una rendija y por dos rendijas estrechas. En este º caso se muestran, además, interferencias entre las ondas originadas. Las ondas transversales dan lugar al fenómeno de polarización. La polarización de las ondas electromagnéticas es una propiedad de las ondas que pueden oscilar con más de una orientación. En una onda electromagnética, tanto el campo eléctrico y el campo magnético son oscilantes, pero en diferentes direcciones; ambas perpendiculares entre si y perpendiculares a la dirección de propagación de la onda; por convención, el plano de polarización de la luz se refiere a la polarización del campo eléctrico. Se pone de manifiesto cuando la luz atraviesa un medio anisótropo, es decir con propiedades diferentes en distintas direcciones, de manera que si la luz atraviesa dicho medio, solamente pasa la vibración en un solo plano (se dice que se trata de un polarizador). Puede ponerse de manifiesto que la luz está polarizada si la colocar un analizador (objeto análogo al polarizador) pasa más o menos intensidad dependiendo de la posición del analizador, siendo máxima cuando es paralelo al plano de polarización y nulo si es perpendicular a dicho plano, como se muestra en la figura. 3.- Un ojo miope necesita una lente correctora de - dioptrías de potencia para poder ver nítidamente objetos muy alejados. Sin lente correctora, cuál es la distancia máxima a la que se puede ver nítidamente con este ojo? (0, puntos). Si se sitúa un objeto de altura y = 3 cm a m delante de esta lente, cuál será la posición, tamaño y naturaleza de la imagen?, comprueba tus resultados gráficamente. (, puntos) a) El ojo miope no puede enfocar los objetos lejanos porque su potencia es mayor que la de un ojo normal, de manera que los rayos que le llegan desde el infinito convergen delante de la retina. la distancia más lejana que puede ver nítidamente se le llama punto remoto (en un ojo normal es el infinito). Para ver nítidamente los objetos más lejanos que el punto remoto, necesita lentes correctoras divergentes; éstas formarán una imagen virtual en el punto remoto (véase la figura). P Q 3 Punto remoto Q P

4 Dr JM yensa 07 Por aplicación de la ecuación de lentes, (distancia del punto remoto), se tiene, dr = P, con s = (objeto lejano) y s = d r s f' = P = -; d r = - 0, m b) La posición de la imagen, s, se calcula a partir de la ecuación, = P, donde s = - m (el s ' s signo atiende al criterio de las normas DIN) = - ; = - - = -3 s = - /3 m (imagen virtual (delante de la lente)) y 3 El tamaño se calcula a partir del aumento lateral L = ' s ' = +0,333, donde el signo y s positivo indica que la imagen está derecha y es la tercera parte de tamaño que el objeto. y = + 0,33 cm. Q P Q P POLEMS ( puntos cada uno) P..- Se tiene un prisma rectangular de vidrio de índice de refracción aire,48. Del centro de su cara se emite un rayo monocromático el cual forma un ángulo con el eje vertical del prisma, como muestra la figura. La anchura del prisma es de 0 cm y la altura de 30 cm. Si el medio exterior es, cuál es el máximo valor de para que el rayo no salga por la cara? ( punto) Para este valor de, cuál es el ángulo con el que emerge de la cara? (, puntos) Datos: índice de refracción del aire, naire =, índice de refracción del, n =,33 Para que el rayo no salga de, el ángulo de incidencia, que es el ángulo que forma el rayo con la normal a la cara donde se encuentra (ángulo complementario al ángulo ), ha de ser mayor que el ángulo límite y ha de producirse la reflexión total. El ángulo límite es aquel ángulo de incidencia al cual le corresponde un ángulo de refracción de 90º. Solamente se puede hablar de ángulo límite cuando un rayo luminoso pasa de un medio más refringente a otro menos refringente, dado que el ángulo de refracción ha de ser mayor que el de incidencia, según la ª ley de Snell, n.sen i = n.sen r. El seno del ángulo límite, de la definición dada es, n.sen i lim = n.sen 90º, es decir, n, 33 aire sen i lim = = 0,8986; i lim = 63,98º E n, 48 > 90 - i lim = 90 63,98 = 6,09º; para = 6 0º se producirá reflexión total, de manera que llegará a la cara reflejándose con un ángulo complementario al (véase triángulo DE en la figura), es decir ligeramente mayor que el limite, 6,0 º. Por último, el rayo incidente en la cara es 6,0 º y el rayo refractado, al pasar del vidrio al aire, se aleja de la normal. Por la ley de Snell,,48.sen 6,0º =.sen ; = 40,48º. Debe remarcarse que el ángulo D 4

5 Dr JM yensa 07 límite en la cara superior (del vidrio al aire) es mucho mayor mayor que el ángulo de incidencia, dado que,,.sen i lim =.sen 90º i lim = 4,8º (> 6,0º), y no se producirá reflexión total. P.- Un reproductor lu-ray utiliza luz láser de color azul-violeta cuya longitud de onda es 40 nm. La luz se enfoca sobre el disco mediante una lente convergente de 4 mm de distancia focal que está hecha de un plástico de. de índice de refracción. a) alcula la frecuencia de la luz utilizada y la velocidad de la luz en el interior de la lente. (punto) b) Extraemos la lente y la utilizamos como lupa. Situamos un piojo a 3 mm de la lente y posteriormente a 6 mm. Indica en cuál de los dos casos la imagen del piojo a través de la lupa es virtual, y determina la posición y el aumento lateral en ambos casos. (, puntos) Datos: c = m/s a) La velocidad de propagación en el vació se relaciona con la longitud de onda y la frecuencia 8 c 3. 0 por, c = ; = = 7, Hz En los medios materiales, la velocidad de propagación es menor que en el vacío. El índice de c c 3. 0 refracción es, n = v = v n, 8 =.0 8 m/s. b) La lupa es un instrumento óptico constituido por una lente convergente, destinada a producir un aumento angular de la imagen de un objeto próximo, para lo cual el objeto se coloca entre el foco objeto y la (a) Imagen virtual, derecha y mayor, de lente, como en el primer caso del enunciado. objeto colocado entre la lente y el foco. Se formará una imagen virtual derecha y mayor que el objeto, como se muestra en la figura (a). Si se coloca a 3 mm de la lente, s = - 3mm, con f = + 4 mm, de acuerdo con el criterio de signos de las normas DIN (criterio cartesiano.) Por la ecuación de lentes ; s f' s = - mm (es virtual, porque se forma a la izquierda de la 3 4 lente, dado que los rayos divergen y se necesita un sistema óptico convergente para observarla). y El aumento lateral es L = ' s ' =+ 4, donde el signo positivo indica que es derecha. y s 4 Si se coloca a 6 mm de la lente, s = - 6 mm, f = + 4 mm. Por la ecuación de lentes ; s f' 3 s = + mm (es real, porque se forma a la derecha de la lente y puede recogerse en una pantalla). y El aumento lateral es L = ' s ' = -, donde el signo negativo indica que está invertida y s 6 (es de doble tamaño que el objeto), como se muestra en el diagrama de rayos de la figura (b). Se forma a la derecha de la lente, dado que los rayos convergen y puede recogerse en una pantalla. (b) Imagen real, invertida y mayor, de un objeto colocado más lejano que el foco objeto.

IV - ÓPTICA PAU.98 PAU.98

IV - ÓPTICA PAU.98 PAU.98 1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94

Más detalles

Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp

Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp 01. Ya que estamos en el Año Internacional de la Cristalografía, vamos a considerar un cristal muy preciado: el diamante. a) Calcula la velocidad de la luz en el diamante. b) Si un rayo de luz incide sobre

Más detalles

b) El tamaño mínimo de la pantalla para que se proyecte entera la imagen del objeto.

b) El tamaño mínimo de la pantalla para que se proyecte entera la imagen del objeto. 01. Un foco luminoso puntual está situado en el fondo de un recipiente lleno de agua cubierta por una capa de aceite. Determine: a) El valor del ángulo límite en la superficie de separación. b) El valor

Más detalles

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo

Más detalles

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes:

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes: ONDAS LUMINOSAS La luz que nos llega del sol (luz blanca), está compuesta por rayos de luz de diferentes colores. Este conjunto de rayos constituye lo que se llama espectro visible, el cual, es una zona

Más detalles

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º 1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º. Encuentra el ángulo refractado ( n agua = 1, 33 ).. Encuentra el ángulo límite para la reflexión total interna

Más detalles

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción?

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción? ÓPTICA 2001 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama de rayos, describa la imagen formada por un espejo convexo

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Óptica

FÍSICA 2º Bachillerato Ejercicios: Óptica 1(8) Ejercicio nº 1 Entre las frecuencias del rojo 4 3.10 14 Hz y la del violeta 7 5.10 14 Hz se encuentran todos los colores del espectro visible. Cuáles son su período y su longitud de onda? Ejercicio

Más detalles

Como partícula. Como onda. fotón. electrón. Experiencia de la doble rendija 1803 T. Young. Efecto fotoeléctrico 1905 A. Einsten

Como partícula. Como onda. fotón. electrón. Experiencia de la doble rendija 1803 T. Young. Efecto fotoeléctrico 1905 A. Einsten La luz se comporta a la vez como onda y partícula. Algunos fenómenos se explican más mejor suponiendo que la luz es una onda (reflexión, refracción, interferencia, difracción) en tanto que otros fenómenos,

Más detalles

TEMA 6.- Óptica CUESTIONES

TEMA 6.- Óptica CUESTIONES TEMA 6.- Óptica CUESTIONES 51.- a) Si queremos ver una imagen ampliada de un objeto, qué tipo de espejo tenemos que utilizar? Explique, con ayuda de un esquema, las características de la imagen formada.

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica A) Óptica Física 1.- Un haz de luz roja penetra en una lámina de vidrio de 30 cm de espesor con un ángulo de incidencia de 45 º. a) Explica si cambia el color de la luz al penetrar en el vidrio y determina

Más detalles

n = 7, s 1 λ = c ν = , = 4, m

n = 7, s 1 λ = c ν = , = 4, m . (Andalucía, Jun. 206) Un rayo de luz con una longitud de onda de 300 nm se propaga en el interior de una fibra de vidrio, de forma que sufre reflexión total en sus caras. a) Determine para qué valores

Más detalles

ÓPTICA GEOMÉTRICA MODELO 2016

ÓPTICA GEOMÉTRICA MODELO 2016 ÓPTICA GEOMÉTRICA MODELO 2016 1- Se desea obtener una imagen virtual de doble tamaño que un objeto. Si se utiliza: a) Un espejo cóncavo de 40 cm de distancia focal, determine las posiciones del objeto

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 1 octubre 2013

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 1 octubre 2013 2014-Modelo A. Pregunta 4.- Utilizando una lente convergente delgada que posee una distancia focal de 15 cm, se quiere obtener una imagen de tamaño doble que el objeto. Calcule a qué distancia ha de colocarse

Más detalles

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA Capítulo 1 SEMINARIO 1. Un foco luminoso se encuentra situado en el fondo de una piscina de 3,00 metros de profundidadllena de agua. Un rayo luminoso procedente del foco que llega al ojo de un observador

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com ÓPTICA 1- a) Explique la marcha de rayos utilizada para la construcción gráfica de la imagen formada por una lente convergente y utilícela para obtener la imagen de un objeto situado entre el foco y la

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1 ÓPTICA FÍSICA (luz) 1. Ondas electromagnéticas. 2. Espectro electromagnético 3. Naturaleza de la luz. 4. Propagación de la luz. 5. Fenómenos ondulatorios. 6. Fenómenos corpusculares. Física 2º bachillerato

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

ÓPTICA. b.- El objeto se encuentra a una distancia del espejo menor que la distancia focal.

ÓPTICA. b.- El objeto se encuentra a una distancia del espejo menor que la distancia focal. ÓPTICA. JUNIO 1997: 1.- Qué se entiende por límite o poder de resolución de un instrumento óptico? 2.- Una lente convergente forma la imagen de un objeto muy lejano (haces de luz incidentes paralelos),

Más detalles

Ejercicio 1. y el ángulo de refracción será:

Ejercicio 1. y el ángulo de refracción será: Ejercicio 1 Un rayo de luz que se propaga en el aire entra en el agua con un ángulo de incidencia de 45º. Si el índice de refracción del agua es de 1,33, cuál es el ángulo de refracción? Aplicando la ley

Más detalles

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B.

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B. Junio 2013. Pregunta 5A.- A 10 cm de distancia del vértice de un espejo cóncavo de 30 cm de radio se sitúa un objeto de 5 cm de altura. a) Determine la altura y posición de la imagen b) Construya la imagen

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

Óptica Geométrica. Los medios materiales pueden ser: Transparentes Opacos Translúcidos

Óptica Geométrica. Los medios materiales pueden ser: Transparentes Opacos Translúcidos Óptica Geométrica La Óptica estudia las propiedades y la naturaleza de la luz y sus interacciones con la materia. La luz se puede propagar en el vacío o en otros medios. La velocidad a la que se propaga

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión.

ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. Física 2º bachillerato Óptica geométrica 1 ÓPTICA GEOMÉTRICA La óptica geométrica

Más detalles

I.E.S. El Clot Dto. Física y Química Curso

I.E.S. El Clot Dto. Física y Química Curso I.E.S. El Clot Dto. Física y Química Curso 2014-15 PROBLEMAS Y CUESTIONES SELECTIVO. ÓPTICA. 60º 1cm 1) (P Jun94) Determinad el desplazamiento paralelo de un rayo de luz al atravesar una lámina plana de

Más detalles

Problemas de Óptica. PAU-PAEG-EVAU

Problemas de Óptica. PAU-PAEG-EVAU 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

ONDAS ELECTROMAGNÉTICAS Y ESPECTRO VISIBLE

ONDAS ELECTROMAGNÉTICAS Y ESPECTRO VISIBLE IV ONDAS ELECTROMAGNÉTICAS Y ESPECTRO VISIBLE En estas páginas ofrecemos, resueltas, una selección de las actividades más representativas de las unidades que componen este bloque. No debes consultar estas

Más detalles

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( ) CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.

Más detalles

a) La vlocidad de propagación de la luz en el agua. b) La frecuencia y la longitud de onda de dicha luz en el agua.

a) La vlocidad de propagación de la luz en el agua. b) La frecuencia y la longitud de onda de dicha luz en el agua. Capítulo 1 SEMINARIO 1. Un teléfono móvil opera con ondas electromagnéticas cuya frecuencia es 1, 2 10 9 Hz. a) Determina la longitud de onda. b) Esas ondas entran en un medio en el que la velocidad de

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Introducción a la óptica geométrica 2. Óptica de la reflexión. Espejos planos y esféricos 3. Óptica de

Más detalles

MADRID / JUNIO 04. LOGSE / FÍSICA / ÓPTICA / REPERTORIO B / PROBLEMA 2

MADRID / JUNIO 04. LOGSE / FÍSICA / ÓPTICA / REPERTORIO B / PROBLEMA 2 MADRID / JUNIO 04. LOGSE / FÍSICA / ÓPTICA / REPERTORIO B / PROBLEMA PROBLEMA. Un rayo de luz monocromática incide sobre una cara lateral de un prisma de vidrio, de índice de refracción n =. El ángulo

Más detalles

Física basada en Álgebra

Física basada en Álgebra Slide 1 / 66 Slide 2 / 66 ísica basada en Álgebra Óptica Geométrica 2015-12-01 www.njctl.org Tabla de ontenidos Slide 3 / 66 lick sobre el tópico para ir al tema Reflexión Espejo Esférico Refracción y

Más detalles

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO DIOPTRIO PLANO Ejercicio 1. Junio 2.013 Un objeto se encuentra delante de un espejo plano a 70 cm del mismo. a. Calcule la distancia al espejo a la que se forma la imagen y su aumento lateral. b. Realice

Más detalles

1. Fundamentos de óptica

1. Fundamentos de óptica Relación microscopio - ojo Espectro radiación electromagnética Diferencias en intensidad o brillo Propiedades de la luz Teoría corpuscular Teoría ondulatoria Dualidad onda-corpúsculo Propiedades de la

Más detalles

Profr. Jonathan Torres Barrera 5 de Abril de 2017

Profr. Jonathan Torres Barrera 5 de Abril de 2017 FISICA 4. UNIDAD II: Sistemas ópticos. 51.- Menciona la aportación que realizaron los personajes siguientes, acerca de la naturaleza de la luz: Arquimedes: Hertz: Huygens: Young: Newton: Planck: Einstein:

Más detalles

A-PDF Manual Split Demo. Purchase from to remove the watermark

A-PDF Manual Split Demo. Purchase from  to remove the watermark 0 A-PD Manual Split Demo. Purchase from www.a-pd.com to remove the watermark 86 ÓPTIA GEOMÉTRIA j Sigue practicando. a) onstruya gráficamente la imagen obtenida en un espejo cóncavo de un objeto situado

Más detalles

10. Óptica geométrica (I)

10. Óptica geométrica (I) 10. Óptica geométrica (I) Elementos de óptica geométrica Centro de curvatura: centro de la superficie esférica a la que pertenece el dioptrio esférico Radio de curvatura: radio de la superficie esférica

Más detalles

La luz. Óptica geométrica. J.M.L.C. - Chena Física 2 o Bachillerato

La luz. Óptica geométrica. J.M.L.C. - Chena  Física 2 o Bachillerato Óptica geométrica J.M.L.C. - Chena chenalc@gmail.com www.iesaguilarycano.com Física 2 o Bachillerato Conceptos Los fenómenos relacionados con la reflexión y refracción de la luz pueden justificarse prescindiendo

Más detalles

Ondas y Óptica Cuestiones y Problemas PAU Física 2º Bachillerato

Ondas y Óptica Cuestiones y Problemas PAU Física 2º Bachillerato Ondas y Óptica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato 1. a) Si queremos ver una imagen ampliada de un objeto, qué tipo de espejo tenemos que utilizar? Explique, con ayuda de un esquema,

Más detalles

CONCEPTOS DE ÓPTICA GEOMÉTRICA

CONCEPTOS DE ÓPTICA GEOMÉTRICA CONCEPTOS DE ÓPTICA GEOMÉTRICA DEFINICIÓN DE ÓPTICA GEOMÉTRICA La óptica geométrica es la parte de la óptica que trata, a partir de representaciones geométricas, de los cambios de dirección que experimentan

Más detalles

FORMACIÓN DE IMÁGENES EN ESPEJOS

FORMACIÓN DE IMÁGENES EN ESPEJOS FORMACIÓN DE IMÁGENES EN ESPEJOS La reflexión que producen los objetos depende de las características de los cuerpos, de esta forma existen dos tipos de reflexiones a saber: 1.- Reflexión especular o regular.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 24 septiembre 2013.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 24 septiembre 2013. 2013-Septiembre B. Pregunta 3.- Se tiene un prisma rectangular de vidrio de indice de refracción 1,48. Del centro de su cara A se emite un rayo que forma un ánguto α con el eje vertical del prisma, como

Más detalles

G UIA DE APRENDIZ AJ E "Luz"

G UIA DE APRENDIZ AJ E Luz Saint John s School FISICA - Electivo II - Profesor: Iván Torres A. G UIA DE APRENDIZ AJ E "Luz" Ejercicios de Selección Múltiple 1. Juan consultando en un libro, leyó que el índice de refracción para

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO PRIMERA EVALUACION DE FISICA D. Nombre: Nota: Paralelo:

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO PRIMERA EVALUACION DE FISICA D. Nombre: Nota: Paralelo: ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO 2012 2013 PRIMERA EVALUACION DE FISICA D Nombre: Nota: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos

Más detalles

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica Slide 1 / 52 Las Ondas Electromagnéticas Problemas de Práctica Slide 2 / 52 Multiopcion Slide 3 / 52 1 Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en

Más detalles

1 LA LUZ. 2 La velocidad de la luz

1 LA LUZ. 2 La velocidad de la luz 1 LA LUZ -Newton: La luz está formada por corpúsculos -Hyugens: La luz es una onda -Interferencia -Las ecuaciones de Maxwell -El éter. -Einstein y la teorí a de los fotones. E=hν La luz posee una naturalez

Más detalles

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FISICA I TERMINO ACADEMICO 2013-2014 PRIMERA EVALUACIÓN DE FISICA D 01 DE JULIO DEL 2013 COMPROMISO

Más detalles

Problemas de Óptica I. Óptica física 2º de bachillerato. Física

Problemas de Óptica I. Óptica física 2º de bachillerato. Física Problemas de Óptica I. Óptica física 2º de bachillerato. Física 1. Calcular la energía de un fotón de luz amarilla de longitud de onda igual a 5,8.10 3 A. Solución: 3,43.10-19 J. 2. Una de las frecuencias

Más detalles

Física 2 ByG / curso de verano 2017 Guía 2: Óptica geométrica. Dioptras, espejos, lentes delgadas e instrumentos.

Física 2 ByG / curso de verano 2017 Guía 2: Óptica geométrica. Dioptras, espejos, lentes delgadas e instrumentos. Guía 2: Óptica geométrica. Dioptras, espejos, lentes delgadas e instrumentos. A. Dioptras Espacio objeto : Espacio imagen : semi-espacio de donde viene la luz el otro semi-espacio, hacia donde avanza la

Más detalles

Reflexión. Física basada en Álgebra. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Reflexión. Física basada en Álgebra. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 ísica basada en Álgebra Óptica Geométrica 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Tabla de ontenidos lick sobre el tópico para ir al tema Reflexión Refracción y Ley

Más detalles

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FISICA II TERMINO ACADEMICO 2013-2014 TERCERA EVALUACIÓN DE FISICA D 26 DE FEBRERO DEL 2014 COMPROMISO

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u) 1)

Más detalles

Sistema óptico: sistema a través del cual puede pasar la luz y que separa dos medios de distinto índice de refracción Sistemas centrados

Sistema óptico: sistema a través del cual puede pasar la luz y que separa dos medios de distinto índice de refracción Sistemas centrados Óptica geométrica. Formación de imágenes en espejos y lentes. La longitud de onda de la luz suele ser muy peueña en comparación con el tamaño de obstáculos o aberturas ue se encuentra a su paso. Esto permite

Más detalles

Guía de la Luz b) La reflexión de la luz se produce porque la luz rebota y se devuelve

Guía de la Luz b) La reflexión de la luz se produce porque la luz rebota y se devuelve Guía de la Luz 2017 Objetivo.- Conocer y aplicar las característica de la Luz. Nombre: Curso: La luz en la ciencia: Huygens considera a la luz como una onda y con esta teoría explica todas las propiedades

Más detalles

ANALOGIAS. (Págs. 70, 71, 72 y 73).

ANALOGIAS. (Págs. 70, 71, 72 y 73). 1 LICEO SALVADOREÑO CIENCIA, SALUD Y MEDIO, AMBIENTE HERMANOS MARISTAS PROFESORES: CLAUDIA POSADA / CARLOS ALEMAN GRADO Y SECCIONES: 9º: A, B, C, D Y E. UNIDAD N 5: ONDAS, LUZ Y SONIDO. GUIA N 1 ANALOGIAS.

Más detalles

Temas de la unidad: Objetivo:

Temas de la unidad: Objetivo: Unidad N 2: LA LUZ Temas de la unidad: Origen de la luz Naturaleza de la luz Reflexión de la luz Espejos Refracción de la luz Lentes El ojo y la visión humana Objetivo: Reconocer el origen de los fenómenos

Más detalles

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real, es cuando está formada sobre los propios rayos. Estas imágenes se pueden recoger sobre una pantalla. Imagen virtual, es cuando está formada por la prolongación

Más detalles

Problemas de Ondas Electromagnéticas

Problemas de Ondas Electromagnéticas Problemas de Ondas Electromagnéticas AP Física B de PSI Nombre Multiopción 1. Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de sombra"?

Más detalles

Problemario de Ondas Electromagnéticas, Luz y Óptica

Problemario de Ondas Electromagnéticas, Luz y Óptica Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Problemario de Ondas Electromagnéticas, Luz y Óptica Física General III Prof. Anamaría Font Mayo 2008 Índice 1. Ondas Electromagnéticas

Más detalles

1,25 10 ms. 0,2m y recordando que (n 1) f R R (2,4 1) 5 1,4 R1 0,2 R R R ,4 (2,4 1) 5 R2

1,25 10 ms. 0,2m y recordando que (n 1) f R R (2,4 1) 5 1,4 R1 0,2 R R R ,4 (2,4 1) 5 R2 01. Ya que estamos en el Año Internacional de la Cristalografía, amos a considerar un cristal muy preciado: el diamante. a) Calcula la elocidad de la luz en el diamante. b) Si un rayo de luz incide sobre

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE LA LUZ. OPTICA. José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE LA LUZ. OPTICA. José Mª Martín Hernández Generalidades: 1. (103-S11) La estrella más cercana a la Tierra dista 4 años-luz y puede observarse con un telescopio. a) Si en la estrella citada se produce una explosión, se daría cuenta de ello inmediatamente

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora ÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios Departamento de ísica Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores 2. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

TEMA 7. ÓPTICA GEOMÉTRICA.

TEMA 7. ÓPTICA GEOMÉTRICA. TEMA 7. ÓPTICA GEOMÉTRICA. I. CONCEPTOS BÁSICOS. La óptica geométrica es la parte de la Física que estudia la trayectoria de la luz cuando experimenta reflexiones y refracciones en la superficie de separación

Más detalles

UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA GEOMÉTRICA

UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA GEOMÉTRICA UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA GEOMÉTRICA En la práctica anterior se trabajó con una onda de naturaleza

Más detalles

Óptica Geométrica Problemas de Practica AP Física B de PSI. Preguntas de Multiopción

Óptica Geométrica Problemas de Practica AP Física B de PSI. Preguntas de Multiopción Óptica Geométrica Problemas de Practica AP Física B de PSI Nombre Preguntas de Multiopción 1. Cuando un objeto es colocado en frente de un espejo plano la imagen es: (A) Vertical, magnificada y real (B)

Más detalles

TEMA 11 : ÓPTICA GEOMÉTRICA

TEMA 11 : ÓPTICA GEOMÉTRICA . INTRODUCCIÓN A LA ÓPTICA GEOMÉTRICA Las leyes sobre las que se estructura la óptica geométrica son: Ley de propagación rectilínea de la luz Ley de independencia de los rayos luminosos. Cada rayo es independiente

Más detalles

1. El (los) espejo(s) que puede(n) formar una imagen virtual, derecha y de igual tamaño que el objeto observado, es (son)

1. El (los) espejo(s) que puede(n) formar una imagen virtual, derecha y de igual tamaño que el objeto observado, es (son) Programa Estándar Anual Nº Guía práctica Ondas V: imágenes en espejos y lentes Ejercicios PSU 1. El (los) espejo(s) que puede(n) formar una imagen virtual, derecha y de igual tamaño que el objeto observado,

Más detalles

ÓPTICA. 1. Introducción. 2. Influencia del medio: índice de refracción. 3. Óptica Física Principio de Huygens Reflexión y refracción.

ÓPTICA. 1. Introducción. 2. Influencia del medio: índice de refracción. 3. Óptica Física Principio de Huygens Reflexión y refracción. ÓPTICA. Introducción La óptica es la parte de la Física que estudia los fenómenos que se nos manifiestan por el sentido de la vista. Los manantiales de luz son los cuerpos luminosos, bien por sí mismos,

Más detalles

FÍSICA 2 (FÍCOS) - CÉDRA PROF. SKIGIN SEGUNDO CUATRIMESTRE DE 2016 GUÍA 3: DESCRIPCIÓN GEOMÉTRICA DE MOVIMIENTOS ONDULATORIOS

FÍSICA 2 (FÍCOS) - CÉDRA PROF. SKIGIN SEGUNDO CUATRIMESTRE DE 2016 GUÍA 3: DESCRIPCIÓN GEOMÉTRICA DE MOVIMIENTOS ONDULATORIOS FÍSICA 2 (FÍCOS) - CÉDRA PROF. SKIGIN SEGUNDO CUATRIMESTRE DE 2016 GUÍA 3: DESCRIPCIÓN GEOMÉTRICA DE MOVIMIENTOS ONDULATORIOS 1. a) Si un rayo parte del punto A = (0,1,0), se refleja en el espejo plano

Más detalles

BLOQUE III: ÓPTICA. 10.1) Historia sobre la naturaleza de la luz. 10.2) La luz y las ondas electromagnéticas. 10.3) Fenómenos ondulatorios de la luz.

BLOQUE III: ÓPTICA. 10.1) Historia sobre la naturaleza de la luz. 10.2) La luz y las ondas electromagnéticas. 10.3) Fenómenos ondulatorios de la luz. BLOQUE III: ÓPTICA TEMA 0: NATURALEZA DE LA LUZ 0.) Historia sobre la naturaleza de la luz. Hasta el s.xvii: Propagación rectilínea de la luz (formación de sombras, reflexión). Del s. XVII al s XIX (Coexistencia

Más detalles

LA LUZ. 1.- Qué es la luz?

LA LUZ. 1.- Qué es la luz? 1.- Qué es la luz? LA LUZ La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS. La luz es una radiación electromagnética.

Más detalles

Óptica Geométrica. Slide 1 / 55. Slide 2 / 55. Slide 3 / 55. El Modelo de Rayos de la Luz. Reflexión. θ i. θ r

Óptica Geométrica. Slide 1 / 55. Slide 2 / 55. Slide 3 / 55. El Modelo de Rayos de la Luz. Reflexión. θ i. θ r Slide 1 / 55 Óptica Geométrica ' El Modelo de Rayos de la Luz Slide 2 / 55 La luz puede viajar en una linea recta. Representamos esto con rayos, cuales son lineas rectas emitidos por una fuente de luz

Más detalles

Óptica Eddie L. Segura C. ÓPTICA GEOMÉTRICA

Óptica Eddie L. Segura C. ÓPTICA GEOMÉTRICA ÓPTICA GEOMÉTRICA 1. INTRODUCCIÓN A LA ÓPTICA GEOMÉTRICA Las leyes sobre las que se estructuró la óptica geométrica son: Ley de propagación rectilínea de la luz Ley de independencia de los rayos luminosos.

Más detalles

PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD

PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD 1.- Un objeto luminoso de 2mm de altura está situado a 4m de distancia de una pantalla. Entre el objeto y la pantalla se coloca una lente esférica delgada L, de distancia

Más detalles

Óptica Geométrica. Slide 1 / 55. Slide 2 / 55. Slide 4 / 55. Slide 3 / 55. Slide 6 / 55. Slide 5 / 55. El Modelo de Rayos de la Luz.

Óptica Geométrica. Slide 1 / 55. Slide 2 / 55. Slide 4 / 55. Slide 3 / 55. Slide 6 / 55. Slide 5 / 55. El Modelo de Rayos de la Luz. Slide 1 / 55 Óptica Geométrica Slide 2 / 55 El Modelo de Rayos de la Luz La luz puede viajar en una linea recta. Representamos esto con rayos, cuales son lineas rectas emitidos por una fuente de luz or

Más detalles

Preguntas del capítulo Ondas electromagnéticas

Preguntas del capítulo Ondas electromagnéticas Preguntas del capítulo Ondas electromagnéticas 1. Isaac Newton fue uno de los primeros físicos en estudiar la luz. Qué propiedades de la luz explicó usando el modelo de partícula? 2. Quién fue la primer

Más detalles

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48.

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48. EJERCICIOS OPTICA GEOMÉTRICA. 2.- El rayo de luz que se muestra en la Figura 2, forma un ángulo de 20 0 con la normal NN a la superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ.

Más detalles

Física II- Curso de Verano. Clase 7

Física II- Curso de Verano. Clase 7 Física II- Curso de Verano Clase 7 Formación de imágenes: ESPEJOS PLANOS Leyes de reflexión Imagen virtual, formada por la prolongación de los rayos Distancia imagen = distancia objeto d o =d i No invierte

Más detalles

Observar los fenómenos de reflexión y refracción en espejos y lentes para determinar las características básicas de la formación de imágenes.

Observar los fenómenos de reflexión y refracción en espejos y lentes para determinar las características básicas de la formación de imágenes. Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Física General Práctica # 4 Espejos y lentes I. Introducción. Los fenómenos de reflexión y refracción están presentes en nuestra vida diaria:

Más detalles

LUZ Y ÓPTICA. Propagación de la luz

LUZ Y ÓPTICA. Propagación de la luz LUZ Y ÓPTICA Propagación de la luz La luz se propaga en línea recta en un medio homogéneo. La hipótesis de la propagación de la luz explica varios fenómenos entre los que se puede resaltar: Cuando un rayo

Más detalles

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA-

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Tópicos Selectos Práctica # 5 Espejos

Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Tópicos Selectos Práctica # 5 Espejos Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Tópicos Selectos Práctica # 5 Espejos I. Introducción. El fenómeno de reflexión esta presente en nuestra vida diaria: cuando nos vemos en un

Más detalles

Física 2º Bto. (A y B) Campo magnético. Óptica. Física Moderna 04 junio 2008 B 1 = 2 $

Física 2º Bto. (A y B) Campo magnético. Óptica. Física Moderna 04 junio 2008 B 1 = 2 $ Nombre y apellidos: Puntuación:. Descripción vectorial del campo magnético Dos conductores eléctricos, rectos y paralelos, están separados por una distancia de,00 m y colocados perpendicularmente al plano

Más detalles

Resumen de Optica. Miguel Silvera Alonso. Octubre de 2000

Resumen de Optica. Miguel Silvera Alonso. Octubre de 2000 Resumen de Optica Miguel Silvera Alonso Octubre de 2000 Índice 1. Sistemas Opticos ideales 2 1.1. Espejo Plano................. 2 1.2. Espejo Esférico................ 2 1.3. lámina delgada................

Más detalles

PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión

PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión Comprobación experimental de la Ley de la Reflexión de la luz en espejos planos y cilíndricos Objetivos Estudiar las leyes de la óptica

Más detalles

FENÓMENOS ONDULATORIOS

FENÓMENOS ONDULATORIOS FENÓMENOS ONDULATORIOS 1. Superposición de ondas. 2. Ondas estacionarias. 3. Pulsaciones. 4. Principio de Huygens. 5. Difracción. 6. Refracción. 7. Reflexión. 8. Efecto Doppler. Física 2º Bachillerato

Más detalles

Óptica geométrica: conceptos generales

Óptica geométrica: conceptos generales Óptica geométrica: conceptos generales Para comprender las imágenes y su formación, sólo necesitamos el modelo de rayos de la luz, las leyes de reflexión y refracción, y un poco de geometría y trigonometría

Más detalles

Seminario 4: Óptica Geométrica

Seminario 4: Óptica Geométrica Seminario 4: Óptica Geométrica Fabián Andrés Torres Ruiz Departamento de Física,, Chile 7 de Abril de 2007. Problemas. (Problema 5, capitulo 36,Física, Raymond A. Serway, V2, cuarta edición) Un espejo

Más detalles

Problemario de Ondas Electromagnéticas, Luz y Óptica

Problemario de Ondas Electromagnéticas, Luz y Óptica Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Problemario de Ondas Electromagnéticas, Luz y Óptica Física General III Prof. Anamaría Font Marzo 2009 Índice 1. Ondas Electromagnéticas

Más detalles